首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alzheimer disease (AD) is a neurodegenerative disorder characterized by neuropathological hallmarks including deposits of the beta-amyloid peptide (AssP). Studies have shown that immunization with Abeta42 peptide reduces both the spatial memory impairments and Alzheimer disease-like neuropathologic changes in Alzheimer disease transgenic mice, but can cause side effect of a cell-mediated autoimmune meningoencephalitis. Recently, some studies showed that DNA vaccination could be used to generate an antibody response to Abeta without the adverse cell-mediated immune effect. In the current study, we generate four DNA vaccine plasmids (pV-GE1, pV-GE2, pV-GE3, and pV-GE4) against Alzheimer disease by separately fusing Abeta epitope sequences (coding for EFGH, DAEFGH, EFGH+EFGH, and EFGH+DAEFGH) with IgG heavy chain coding region of mouse. Meanwhile, the full-length gene Abeta encoding plasmid (pV-Abeta), empty vector (pVAX) and synthetic AssP were also included as control. The sera of BALB/c mice immunized via intramuscular with plasmids and peptide were tested by indirect ELISA for auto-AssP immunoreactivity. The results showed that all the DNA vaccine plasmids induced AssP-specific antibodies; moreover pV-GE2 and pV-Abeta constructs elicited higher antibody titers than other constructs (P < 0.05). To further enhance the immune response, GM-CSF encoding plasmid (pGM-CSF) and purified BCG-DNA were used as molecular adjuvants. BCG-DNA could enhance humoral and cellular immune responses simultaneously and did not alter the phenotype of the immune responses, whereas pGM-CSF showed no obvious effect on immune response. These results suggest that this immunization strategy of using Abeta epitope encoding plasmid plus BCG-DNA adjuvant may serve as the basis for developing anti-Alzheimer disease vaccines.  相似文献   

2.
Active amyloid beta (Abeta) vaccination has been shown to be effective in clearing cerebral Abeta and improving cognitive function in mouse models of Alzheimer's disease (AD). The meningoencephalitis observed in AD vaccination trial was likely related to excessive T cell-mediated immunity caused by the immunogen Abeta(1-42). To avoid this toxicity, previous researchers have been using synthetic truncated Abeta derivatives that promote humoral immunity. In this study, we develop a novel adenovirus vaccine, which can express quadrivalent foldable Abeta(1-15) (4xAbeta(15)) and gene adjuvant GM-CSF in vivo. Importantly, the 4xAbeta(15) sequence includes an Abeta-specific B cell epitope but lacks the reported T cell epitope. The 4xAbeta(15) adenovirus vaccine induces an Abeta-specific IgG1 predominant humoral immune response, and reduces brain Abeta deposition and cognition deficits in Tg2576 mice. Detection of IL-4 and IFN-gamma in restimulated splenocytes shows a significant Th2-polarized immune response. Stimulation of splenocytes with 4xAbeta(15) peptides results in robust proliferative responses, whereas proliferation is absent after stimulation with full-length Abeta, which indicates that the 4xAbeta(15) adenovirus vaccine does not induce Abeta-specific T cellular immune response. Thus, our results raise the possibility that adenovirus vector encoding 4xAbeta(15) would be a promising candidate for future AD vaccination program.  相似文献   

3.
Vaccines using bone marrow-derived dendritic cells (DCs) sensitized to Abeta 1-42 peptide and other mutant peptides were tested on BALB/c and APP(SW) transgenic mice. Wild type Abeta 1-42-sensitized DC vaccine (DCSV) produced no response, but all peptides with a T-cell epitope mutation induced antibody responses without inflammation. DCSV with Abeta 1-25 peptide with mutated T-cell epitope failed to induce antibody response, while DCSV with Abeta 1-35 with mutated T-cell epitope produced a strong antibody response. The entire T-cell epitope is required in a DC vaccine to induce antibody response. DCSV with Abeta peptide carrying the entire mutant T-cell epitope may be an appropriate vaccine against AD.  相似文献   

4.
Immunotherapy for Alzheimer’s disease (AD) is effective in improving cognitive function in transgenic mouse models of AD. Because the AN1792 [beta-amyloid (Aβ) 1-42] vaccine was halted because of T cell mediated meningoencephalitis, many scientists are searching for a novel vaccine to avoid the T cell mediated immune response caused by the Aβ1-42. Importantly, the time when the immunization is begun can influence the immune effect. In this study, an adenovirus vaccine was constructed containing 10 × Aβ3-10 repeats and gene adjuvant CpG DNA. Transgenic AD mice were immunized intranasally for 3 months. After 10 × Aβ3-10 vaccine immunization, high titers of anti-Aβ42 IgG1 predominant antibodies were induced. In spatial learning ability and probe tests, the 10 × Aβ3-10 immunized mice showed significantly improved memories compared to control mice. The 10 × Aβ3-10 vaccine resulted in a robust Th2 dominant humoral immune response and reduced learning deficits in AD mice. In addition, the 10 × Aβ3-10 vaccine might be more efficient if administered before Aβ aggregation at an early stage in the AD mouse brain. Thus, the adenovirus vector encoding 10 × Aβ3-10 is a promising vaccine for AD.  相似文献   

5.
Amyloid-beta (Abeta) immunization efficiently reduces amyloid plaque load and memory impairment in transgenic mouse models of Alzheimer's disease (AD). Active Abeta immunization has also yielded favorable results in a subset of AD patients. However, a small percentage of patients developed severe aseptic meningoencephalitis associated with brain inflammation and infiltration of T-cells. We have shown that blocking the CD40-CD40 ligand (L) interaction mitigates Abeta-induced inflammatory responses and enhances Abeta clearance. Here, we utilized genetic and pharmacologic approaches to test whether CD40-CD40L blockade could enhance the efficacy of Abeta(1-42) immunization, while limiting potentially damaging inflammatory responses. We show that genetic or pharmacologic interruption of the CD40-CD40L interaction enhanced Abeta(1-42) immunization efficacy to reduce cerebral amyloidosis in the PSAPP and Tg2576 mouse models of AD. Potentially deleterious pro-inflammatory immune responses, cerebral amyloid angiopathy (CAA) and cerebral microhemorrhage were reduced or absent in these combined approaches. Pharmacologic blockade of CD40L decreased T-cell neurotoxicity to Abeta-producing neurons. Further reduction of cerebral amyloidosis in Abeta-immunized PSAPP mice completely deficient for CD40 occurred in the absence of Abeta immunoglobulin G (IgG) antibodies or efflux of Abeta from brain to blood, but was rather correlated with anti-inflammatory cytokine profiles and reduced plasma soluble CD40L. These results suggest CD40-CD40L blockade promotes anti-inflammatory cellular immune responses, likely resulting in promotion of microglial phagocytic activity and Abeta clearance without generation of neurotoxic Abeta-reactive T-cells. Thus, combined approaches of Abeta immunotherapy and CD40-CD40L blockade may provide for a safer and more effective Abeta vaccine.  相似文献   

6.
Active and passive Abeta immunotherapy in Alzheimer's disease (AD)-like mouse models lowers cerebral amyloid-beta protein (Abeta) levels, especially if given early in the disease process, and improves cognitive deficits. In 2002, a Phase IIa clinical trial was halted due to meningoencephalitis in approximately 6% of the AD patients. It is hypothesized that the immunogen, full-length Abeta1-42, may have led to an autoimmune response. Currently, we are developing novel Abeta peptide immunogens for active immunization in amyloid precursor protein transgenic mice (APP Tg) to target Abeta B cell epitopes (within Abeta1-15) and avoid Abeta-specific T cell epitopes (Abeta16-42) so as to generate a safe and effective AD vaccine. Intranasal immunization with dendrimeric Abeta1-15 (16 copies of Abeta1-15 on a lysine core) or a tandem repeat of Abeta1-15 joined by 2 lysines and conjugated to an RGD motif with a mutated form of an E. coli-derived adjuvant generated robust Abeta titers in both wildtype and APP Tg mice. The Abeta antibodies recognized a B cell epitope within Abeta1-7, were mostly T-helper 2 associated immunoglobulin isotypes, bound human AD and APP Tg plaques, and detected Abeta oligomers. Splenic T cells reacted to the immunogens but not full-length Abeta. Six months of intranasal immunization (from 6-to-12 months of age) of J20 mice with each immunogen lowered insoluble Abeta42 by 50%, reduced plaque burden and gliosis, and increased Abeta in plasma. Interestingly, Abeta antibody generation was influenced by route of immunization. Transcutaneous immunization with dbeta1-15, but not full-length Abeta, led to high Abeta titers. In summary, our short Abeta immunogens induced robust titers of predominantly Th2 antibodies that were able to clear cerebral Abeta in the absence of Abeta-specific T cell reactivity, indicating the potential for a safer vaccine. We remain optimistic about the potential of such a vaccine for prevention and treatment of AD.  相似文献   

7.
It has been demonstrated that immunization of transgenic mouse models of Alzheimer's disease (AD) with amyloid-beta(1-42) peptide (Abeta(1-42)) results in prevention of Abeta plaque formation and amelioration of established plaques in the brain. As the response of the T lymphocyte helper (Th) arm of the immune response had not yet been investigated after Abeta immunization, we i.p. immunized C57BL/6 mice with Abeta(1-42), Abeta(1-40), or phosphate-buffered saline (PBS), and examined markers of Th1 and Th2 immune responses in spleen and in splenocytes from these mice. Spleens from Abeta(1-42)-immunized mice demonstrated decreased interleukin-12 receptor beta chain expression compared to mice immunized with Abeta(1-40) or PBS. Consistently, following stimulation with concanavalin A or anti-CD3 antibody, primary splenocytes from Abeta(1-42)-immunized mice demonstrated elevated secretion of interleukin-4 and interleukin-10, and decreased levels of interferon-gamma. To validate this Th1-->Th2 shift in a transgenic mouse model of AD, we immunized Tg APP(sw) mice (line 2576) with Abeta(1-42) and found decreased Th1 (interleukin-2 and interferon-gamma) and elevated Th2 (interleukin-4 and interleukin-10) cytokines in their stimulated primary splenocytes. Interferon-gamma was markedly reduced and interleukin-10 was increased in blood plasma from these mice, effects that were associated with dramatically mitigated Abeta deposition after Abeta(1-42) immunization. Taken together, these results show enhanced Th2 and down-regulated Th1 immunity following immune challenge with Abeta(1-42).  相似文献   

8.
OBJECTIVE: To demonstrate that in APPswe/PS1DeltaE9 transgenic mice, gene gun mediated Abeta42 gene vaccination elicits a high titer of anti-Abeta42 antibodies causal of a significant reduction of Abeta42 deposition in brain. METHODS: Gene gun immunization is conducted with transgenic mice using the Abeta42 gene in a bacterial plasmid with the pSP72-E3L-Abeta42 construct. Enzyme-linked immunoabsorbent assays (ELISA) and Western blots are used to monitor anti-Abeta42 antibody levels in serum and Abeta42 levels in brain tissues. Enzyme-linked immunospot (ELISPOT) assays are used for detection of peripheral blood T cells to release gamma-interferon. Immunofluorescence detection of Abeta42 plaques and quantification of amyloid burden of brain tissue were measured and sections were analyzed with Image J (NIH) software. RESULTS: Gene gun vaccination with the Abeta42 gene resulted in high titers of anti-Abeta42 antibody production of the Th2-type. Levels of Abeta42 in treated transgenic mouse brain were reduced by 60-77.5%. The Mann-Whitney U-test P=0.0286. INTERPRETATION: We have developed a gene gun mediated Abeta42 gene vaccination method that is efficient to break host Abeta42 tolerance without using adjuvant and induces a Th2 immune response. Abeta42 gene vaccination significantly reduces the Abeta42 burden of the brain in treated APPswe/PS1DeltaE9 transgenic mice with no overlap between treated and control mice.  相似文献   

9.
Immunization with synthetic amyloid β-protein (Aβ) peptide has resulted in preventing and clearing Aβ deposits as well as improving cognitive function in transgenic mouse models of Alzheimer's disease (AD). But similar immunization studies in humans were halted due to the risk of inducing T cell-mediated meningoencephalitis. A safe and effective vaccine for AD requires not only therapeutic levels of anti-Aβ antibodies but also the prevention of an adverse T cell-mediated, proinflammatory autoimmune response. In this study, we developed a DNA vaccine, p(Aβ(3-10))(10)-IL-4, encoding ten tandem repeats of Aβ(3-10) fused with mouse cytokine interleukin-4 (IL-4) as a molecular adjuvant. Wild-type mice were injected intramuscularly with p(Aβ(3-10))(10)-IL-4 followed by in vivo electroporation. The p(Aβ(3-10))(10)-IL-4 vaccine elicited high titer anti-Aβ antibodies which bound to Aβ plaque in brain tissue from a ten-month-old APP/PS1 transgenic mouse. The antibody isotype was mainly IgG(1) and the IgG(1)/IgG(2a) ratio in the p(Aβ(3-10))(10)-IL-4 group was approximately eight times greater than that of the Aβ(42) group. Ex vivo cultured splenocytes isolated from mice immunized with p(Aβ(3-10))(10)-IL-4 exhibited a low IFN-γ response and a high IL-4 response compared with the control group. These results indicate that immunization with the p(Aβ(3-10))(10)-IL-4 vaccine induced effective anti-Aβ antibodies and elicited a Th2-polarized immune response that had a lower potential to cause an inflammatory T cell response. Thus, the DNA vaccine, p(Aβ(3-10))(10)-IL-4, may be a safe and efficient vaccine for AD.  相似文献   

10.
This review discusses the molecular basis and current status of immunotherapeutic strategies for prevention and treatment of Alzheimer's disease (AD). From the molecular view-point AD belongs to the group of conformational diseases. In-vitro studies demonstrated that monoclonal antibodies could modulate the conformation of Abeta peptides with subsequent inhibition of amyloid fibrils formation and aggregation. The efficacy of this approach was then successfully proved in the murine models of AD using predominantly Abeta (42) peptide as immunogen. Immunisation of the young animals essentially prevented the development of beta-amyloid plaques formation and of concomittant neuropathology. Treatment of the older animals markedly reduced the pre-existing AD-like neuropathology. Immunisation was capable of preventing cognitive deficits in the young transgenic animals and improve the memory and behavioural disturbances in the older animals. Measurement of specific murine immunoglobulines in Abeta-vaccinated mice demonstrated a predominant IgG1 and IgG2b isotypes, suggesting a type 2 (T (H)2) T-helper cell immune response, which drives humoral immunity. The intensity of the immune response depended on transgenic animals genotype, dose, frequency and route of immunogen administration. The mechanism of antibodies action in transgenic animals consists of inducing conformational and solubility changes in Abeta peptides as well as their peripheral sink. Lymphocyte proliferation assays using Abeta peptides and splenocytes from vaccinated mice demonstrated that vaccine specifically stimulated T-cell epitopes present within the Abeta-peptide. Extensive quantitative morphological, histochemical and molecular analysis of brain tissue from several species of Abeta-immunised transgenic and non-transgenic animals showed no evidence of autoimmune reaction, complement activation or cross-reaction. No pathological changes were found in all other organs, including the kidney. Neuropathologic examination in a patient treated with vaccine revealed similar vaccination effects as in experimental animals. An aseptic meningo-encephalitis was reported in 5 % of patients included in a clinical trial in which a vaccine containing Abeta (42) peptide (AN1792) was administered intramuscularly. The causal relationship to the vaccine administration cannot be excluded since in transgenic mice a transient microglia activation was seen. However, this relatively infrequent although severe adverse effect points to a possible participation of some actually unknown risk factors in the treated patients. With regard to the rapid progress in biotechnology, especially in the vaccines technology, the development of efficacious and safe immunogens as well as of new vaccination techniques for immuntherapy of AD can be expected in the next future.  相似文献   

11.
Studies of amyloid precursor protein transgenic mice suggest that immune responses to amyloid β peptide (Aβ) may be instrumental in the removal of plaques from the brain, but the initial clinical trial of an Aβ vaccine in patients with Alzheimer’s disease (AD) was halted as the result of serious neurological complications in some patients. We now provide evidence that AD patients exhibit an enhanced immune response to Aβ and that, contrary to expectations, Aβ antibodies enhance the neurotoxic activity of the peptide. Serum titers to Aβ were significantly elevated in AD patients and Aβ antibodies were found in association with amyloid plaques in their brains, but there was no evidence of cell-mediated immune responses to Aβ in the patients. Aβ antibodies were detected in the serum of old APP mutant transgenic mice with plaque-like Aβ deposits, but not in the serum of younger transgenic or nontransgenic mice. Serum from APP mutant mice potentiated the neurotoxicity of Aβ. Our data suggest that a humoral immune response to Aβ in AD patients may promote neuronal degeneration, a process with important implications for the future of vaccine-based therapies for AD.  相似文献   

12.
J F Poduslo  G L Curran 《Neuroreport》2001,12(15):3197-3200
Much research is now focused on a potential vaccine for Alzheimer's disease (AD). Current studies involve administering the amyloid beta peptide (Abeta) in Freund's complete adjuvant, which cannot be used in humans. Our studies show that the immune complex of Abeta is taken up by a receptor-mediated process at the blood-brain barrier (BBB). The success of immunization for AD, therefore, may be critically dependent on circulating Abeta levels which are lower in AD patients compared to AD transgenic mice. Moreover, we have found that modifying the antibody with polyamine increases its BBB permeability and may provide a better approach to passive immunization for Alzheimer's disease.  相似文献   

13.
Heat-shock proteins are highly immunogenic. Complexed with an antigen, they act as adjuvants, inducing a humoral and cellular immune response against both the antigen and the chaperone. In this study, we produced an Hsp70-supported vaccine to induce the generation of antibodies against amyloid-beta (Abeta) peptides, the major constituent of beta-amyloid plaques in Alzheimer's disease. The vaccine consisted of synthetic human Abeta42 covalently cross-linked with DnaK, an Hsp70 homolog of Escherichia coli. Active immunization of mice with this vaccine resulted in the generation of antibodies against Abeta, that were detectable in sera after the first booster immunization. Antibody titers varied markedly with the genetic background of the mice. Prophylactic short-term immunization of transgenic mice (APP tg2576) before the onset of plaques, however, did not prevent amyloid plaque deposition. There were no differences in the plaque load and in the level of Triton X-100-soluble Abeta peptides in the brains of immunized and control-treated transgenic mice. Unexpectedly, the level of formic-acid soluble Abeta peptides tended to be higher in immunized mice. The reason for the increase may be an enhanced deposition of Abeta in the small cerebral blood vessels. These data emphasize the need for anti-Abeta antibodies that remove Abeta peptides from the central nervous system without negative side effects.  相似文献   

14.
Zhang J  Wu X  Qin C  Qi J  Ma S  Zhang H  Kong Q  Chen D  Ba D  He W 《Neurobiology of disease》2003,14(3):365-379
Memory impairment progressing to dementia is the main clinical symptom of Alzheimer's disease (AD). Deposition of the amyloid-beta peptide (Abeta) in brain, particularly its 42-amino acid isoform (Abeta42), has been shown to play a primary and crucial role in the pathogenesis of AD. In this study we have developed a recombinant adeno-associated virus (AAV) vaccine against AD. This vaccine could express CB-Abeta42 (cholera toxin B subunit and Abeta42 fusion protein) in vivo. A single administration of the AAV-CB-Abeta42 vaccine induced a prolonged, strong production of Abeta-specific serum IgG in transgenic mice that overexpressed the London mutant of amyloid precursor protein (APP/V717I), and resulted in improved ability of memory and cognition, decreased Abeta deposition in the brain, and a resultant decrease in plaque-associated astrocytosis. Our results extended the immunological approaches for the treatment and prevention of AD to an oral, intranasal, or intramuscular route that might be better tolerated in human patients than repetitive parental immunizations in the presence of adjuvant. AAV has attracted tremendous interest as a promising vector for gene delivery. Our results raised the possibility that AAV-CB-Abeta42 vector immunization may provide the basis of a novel and promising Alzheimer's disease vaccination program.  相似文献   

15.
Vaccine therapy for Alzheimer's disease (AD) based on the amyloid cascade hypothesis has recently attracted attention for treating AD. Injectable immunization using amyloid β peptide (Aβ) comprising 1–42 amino-acid residues (Aβ1–42) as antigens showed therapeutic efficacy in mice; however, the clinical trial of this injected Aβ1–42 vaccine was stopped due to the incidence of meningoencephalitis caused by excess activation of Th1 cells infiltrating the brain as a serious adverse reaction. Because recent studies have suggested that transcutaneous immunization (TCI) is likely to elicit Th2-dominant immune responses, TCI is expected to be effective in treating AD without inducing adverse reactions. Previously reported TCI procedures employed complicated and impractical vaccination procedures; therefore, a simple, easy-to-use, and novel TCI approach needs to be established. In this study, we investigated the vaccine efficacy of an Aβ1–42-containing TCI using our novel dissolving microneedle array (MicroHyala; MH) against AD. MH-based TCI induced anti-Aβ1–42 immune responses by simple and low-invasive application of Aβ1–42-containing MH to the skin. Unfortunately, this TCI system resulted in little significant improvement in cognitive function and Th2-dominant immune responses, suggesting the need for further modification.  相似文献   

16.
Progressive cerebral deposition of amyloid-beta (Abeta) peptide, an early and essential feature of Alzheimer's disease (AD), is accompanied by an inflammatory reaction marked by microgliosis, astrocytosis, and the release of proinflammatory cytokines. Mucosal administration of disease-implicated proteins can induce antigen-specific anti-inflammatory immune responses in mucosal lymphoid tissue which then act systemically. We hypothesized that chronic mucosal administration of Abeta peptide might induce an anti-inflammatory process in AD brain tissue that could beneficially affect the neuropathological findings. To test this hypothesis, we treated PDAPP mice, a transgenic line displaying numerous neuropathological features of AD, between the ages of approximately 5 and approximately 12 months with human Abeta synthetic peptide mucosally each week. We found significant decreases in the cerebral Abeta plaque burden and Abeta42 levels in mice treated intranasally with Abeta peptide versus controls treated with myelin basic protein or left untreated. This lower Abeta burden was associated with decreased local microglial and astrocytic activation, decreased neuritic dystrophy, serum anti-Abeta antibodies of the IgG1 and IgG2b classes, and mononuclear cells in the brain expressing the anti-inflammatory cytokines interleukin-4, interleukin-10, and tumor growth factor-beta. Our results demonstrate that chronic nasal administration of Abeta peptide can induce an immune response to Abeta that decreases cerebral Abeta deposition, suggesting a novel mucosal immunological approach for the treatment and prevention of AD.  相似文献   

17.
The accumulation of the beta-amyloid peptide (Abeta) is a central event in the pathogenesis of Alzheimer's disease (AD). Abeta removal from the brain by immune therapy shows promising potential for the treatment of patients with AD, although the mechanisms of the antibody action are incompletely understood. In this study we compared the biological activities of antibodies raised against various Abeta fragments for Abeta reduction in vitro and in vivo. Antibodies against Abeta enhanced the uptake of Abeta42 aggregates up to 6-fold by primary microglial cells in vitro. The kinetics of Abeta42 uptake varied considerably among antibodies. Based on the activity to mediate Abeta42 uptake by microglial cells, we identified a bioactive antibody that significantly reduced Abeta42 levels in the brains of transgenic mice with neuronal expression of an AD-related mutated amyloid precursor protein. This effect depended on the epitopes recognized by the antibody. Our data suggest that the ability to facilitate Abeta42 uptake by primary microglia cells in vitro can be used to predict the biological activity of the antibody by passive immunization in vivo. This protocol may prove useful for the rapid validation of the activity of antibodies designed to be used in immune therapy of AD.  相似文献   

18.
Mutations in the amyloid precursor protein (APP) gene result in elevated production and deposition of the 42 amino acid beta-amyloid (Abeta1-42) peptide and early-onset Alzheimer's disease (AD). To accurately examine the effect of the APP FAD mutations in vivo, we introduced yeast artificial chromosomes (YACs) containing the entire genomic copy of human APP harboring FAD mutations into transgenic mice. Our current results demonstrate that mutant APP YAC transgenic mice exhibit many features characteristic of human AD, including regional deposition of Abeta with preferential deposition of Abeta1-42, extensive neuritic abnormalities as evidenced by staining with APP, ubiquitin, neurofilament, and hyperphosphorylated tau antibodies, increased markers of inflammation, and the overlapping deposition of Abeta with apolipoproteins E and J. Our results also suggest that APP YAC transgenic mice possess unique pathological attributes when compared to other transgenic mouse models of AD that may reflect the experimental design of each model.  相似文献   

19.
Immunotherapy holds great promise for Alzheimer's disease (AD) and other conformational disorders but certain adverse reactions need to be overcome. The meningoencephalitis observed in the first AD vaccination trial was likely related to excessive cell-mediated immunity caused by the immunogen, amyloid-beta (Abeta) 1-42, and the adjuvant, QS-21. To avoid this toxicity, we have been using Abeta derivatives in alum adjuvant that promotes humoral immunity. Other potential side effects of immunotherapy are increased vascular amyloid and associated microhemorrhages that may be related to rapid clearance of parenchymal amyloid. Here, we determined if our immunization strategy was associated with this form of toxicity, and if the therapeutic effect was age-dependent. Tg2576 mice and wild-type littermates were immunized from 11 or 19 months and their behaviour evaluated prior to killing at 24 months. Subsequently, plaque- and vascular-Abeta burden, Abeta levels and associated pathology was assessed. The therapy started at the cusp of amyloidosis reduced cortical Abeta deposit burden by 31% and Abeta levels by 30-37%, which was associated with cognitive improvements. In contrast, treatment from 19 months, when pathology is well established, was not immunogenic and therefore did not reduce Abeta burden or improve cognition. Significantly, the immunotherapy in the 11-24 months treatment group, that reduced Abeta burden, did not increase cerebral bleeding or vascular Abeta deposits in contrast to several Abeta antibody studies. These findings indicate that our approach age-dependently improves cognition and reduces Abeta burden when used with an adjuvant suitable for humans, without increasing vascular Abeta deposits or microhemorrhages.  相似文献   

20.
Alzheimer's disease (AD) is characterized in part by the deposition of amyloid beta protein (Abeta) in compact fibrillar plaques. These structures can induce an innate immune response in the brain, which triggers progressive inflammation, neuronal loss, and further acceleration of Abeta plaque formation. Compared with the case in normal individuals, the T and B lymphocytes in AD patients and murine models are hyporesponsive to Abeta. However, depending on the route of delivery, tolerance can be overcome by vaccination, with the induction of an anti-Abeta-mediated immune response. Through mechanisms that are incompletely understood, immunized APP transgenic animals show markedly reduced Abeta deposition, preservation of normal neuronal architecture, and improved performance in memory and spatial learning tasks. In human trials, Abeta vaccination stabilized cognition and slowed the progression of dementia. Neuropathologic examination of a vaccinated subject showed reduced cortical Abeta without changes in other AD-associated pathology. However, in some patients, vaccination induced severe meningoencephalitis, causing the trial to be terminated. Thus, vaccination appears to activate both beneficial and deleterious anti-Abeta immunity, suggesting that the vaccine can have potent clinical utility if an appropriate immunologic response can be generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号