首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Rapid detection of enterovirus (EV) infections is essential in the management of aseptic meningitis. Molecular approaches have opened the way to such rapid, but also specific and sensitive, diagnostic tests. The aim of this study was to compare the performance of the CE marked NucliSens EasyQ Enterovirus assay with an in-house two-step RT-PCR assay using cerebrospinal fluid (CSF) and throat swab samples. In addition, specificity was tested with clinical isolates positive for viruses with clinical importance in CSF samples. For nucleic acid extraction, the NucliSens miniMAG and NucliSens magnetic extraction reagents were used. Subsequently real-time nucleic acid sequence-based amplification (NASBA) RNA amplification was performed using NucliSens EasyQ basic kit reagents and NucliSens EasyQ Enterovirus reagents. An EV-specific internal homologous control (IC) RNA was used to monitor the entire NucliSens EasyQ procedure at the individual sample level. No IC but an external inhibition control was available for the RT-PCR method. For the NucliSens EasyQ procedure, amplification and real-time detection reactions were carried out in the NucliSens EasyQ analyzer. The real-time NASBA enterovirus detection was based on NASBA amplification and real-time molecular beacon technology. Data were analyzed using the manufacturer's software on the NucliSens EasyQ analyzer. For the in-house assay, RT-PCR amplicons were detected using agarose gel analysis. The analysis of clinical samples positive for HSV-1, HSV-2, adenovirus, CMV, VZV, mumps and rhinovirus were all negative by NucliSens EasyQ Enterovirus assay. Three rhinovirus samples were, however, strongly positive in RT-PCR. A total of 141 clinical samples were retrospectively tested, including 126 cerebrospinal fluid (CSF) samples and 15 throat swabs. The 91 CSF samples were negative by both methods, 31 CSF samples and 14 throat swab samples were positive by both methods. The four CSF samples were positive by RT-PCR only. One throat swab sample was negative in NucliSens EasyQ but positive in RT-PCR. The sensitivity and specificity of both methods seem to be more or less comparable. However, the in-house RT-PCR assay appears to amplify some rhinovirus strains and should therefore not be used for throat swab samples. NucliSens EasyQ Enterovirus assay gave more invalid results than the in-house RT-PCR, which is obvious taken into account the difference in quality control between the CE marked NucliSens EasyQ Enterovirus assay and the in-house enterovirus assay. The NucliSens EasyQ procedure can be completed within 5h versus 9.5h for the RT-PCR. NucliSens EasyQ Enterovirus assay showed to be a standardized, rapid, specific, sensitive and reliable procedure for the detection of enterovirus RNA.  相似文献   

2.
BACKGROUND: Molecular methods based on RNA amplification are needed for sensitive detection of enteroviruses in clinical samples. Many 'in house' methods based on reverse-transcribed PCR (RT-PCR) could be difficult to use in the routine diagnostic laboratory since they tend to be time-consuming, use reagents from many different suppliers and include non-routine procedures. OBJECTIVES: The aim of this study was to develop and evaluate methods based on nucleic acid sequence based amplification (NASBA) for detection of enterovirus sequences. STUDY DESIGN: 'In house' prepared and commercially available reagents were utilised to develop enterovirus-specific NASBA assays. Optimised methods were evaluated using clinical samples (cerebrospinal fluid, respiratory and stool samples), titred virus controls and in vitro produced synthetic RNA. Results for NASBA were compared with RT-PCR and virus culture. RESULTS: Kit-based reagents gave an equivalent sensitivity to the more laborious 'in house' molecular assays (NASBA and RT-PCR) on clinical material and controls. All molecular methods picked up enterovirus positive clinical samples that were not identified by culture. End point detection sensitivity for the NASBA assay based on the NucliSens Basic Kit was 相似文献   

3.
4.
5.
6.
BACKGROUND: The GeneXpert((R)) Dx System allows for automated extraction, processing, amplification and real-time detection of target nucleic acids. OBJECTIVES: To evaluate the performance of the Cepheid Xperttrade mark enterovirus (EV) assay for detection of EV RNA compared to a nucleic acid sequence based amplification (NASBA((R))) assay and a user-developed TaqMan((R)) RT-PCR assay. STUDY DESIGN: Assays were evaluated using a 12-member proficiency panel and up to 138 CSF specimens. Samples in which EV RNA was detected by two or more assays were considered true positives. RESULTS: The GeneXpert, NASBA, and TaqMan assays correctly identified 10, 8, and 7 of 12 proficiency panel members, respectively. For detection of EV RNA in CSF, the sensitivities of the GeneXpert, NASBA, and TaqMan were 100%, 87.5%, and 96%, respectively. There were no false positives. Two samples tested by GeneXpert and NASBA yielded indeterminate or invalid results and could not be resolved. CONCLUSIONS: The Xpert EV assay is a sensitive and specific method for detection of EV RNA in CSF specimens. The ease of use, random access capability, and minimal hands-on time with the automated GeneXpert system affords laboratories with little molecular diagnostics expertise an opportunity to complete a clinically useful testing within 2.5h.  相似文献   

7.
目的 检测肠道病毒(EV)在中枢神经系统感染中的致病情况,探讨检测EV感染的方法。方法 就用逆转录-聚合酶链反应(RT-PCR0和病毒培技术检测46例无菌性脑膜炎及脑炎病人脑脊液(CSF)标本。结果 RT-PCR方法敏感特异;46例无菌性脑膜炎和脑炎急性期CSF标本中,31例EV阳性(67.4%),14例病毒培养阳性(26.1%)。统计结果显示,RT-PCR敏感性明显高于病毒培养。结论 EV是引起无菌性脑膜炎和脑炎的重要病原;RT-PCR快速敏感特异,简单易行,易于推广,是诊断EV感染的有效方法。  相似文献   

8.
9.
The combination of nucleic acid sequence-based amplification and electrochemiluminescence detection was used to develop an internally controlled, highly sensitive and specific assay for the detection of enterovirus (EV) RNA in cerebrospinal fluid (CSF). The analytical performance of the assay was determined using both in vitro-transcribed EV RNAs and viral culture isolates. The sensitivity of the assay was 10 EV RNA copies per amplification reaction. The assay detected all enteroviral isolates tested with no cross-reactivity to 21 nonenteroviral species, including rhinovirus and parechovirus. The clinical performance of the assay was evaluated by testing 992 CSF specimens collected from adult and pediatric patients. NucliSens EV results from a subset of 327 CSF samples were compared to viral culture of nasopharyngeal specimens and rectal swabs (n = 195) and/or CSF (n = 212). Of the 212 CSF samples, 96 samples were positive by either the NucliSens EV assay (94/96; 97.9%) or culture (63/96; 65.6%), and 61/96 (63.5%) were positive by both methods. The inclusion of an EV-specific internal control monitored the entire process, including the efficiency of nucleic acid extraction, amplification, and detection. In total, only five blood-clotted CSF samples (0.5%) were inhibited. The NucliSens EV assay demonstrated superior sensitivity over viral culture (P < 0.001), excellent specificity, clear delineation of positive samples, and minimal amplification inhibition.  相似文献   

10.
11.
12.
Isothermal nucleic acid sequence-based amplification (NASBA) was applied to the detection of Mycoplasma pneumoniae. M. pneumoniae RNA prepared from a plasmid construct was used to assess the sensitivity of the assay, and an internal control for the detection of inhibitors was constructed. The sensitivity of the NASBA assay was 10 molecules of wild-type M. pneumoniae RNA generated in vitro and 5 color-changing units (CCU) of M. pneumoniae. An appropriate specimen preparation procedure was developed: after protease treatment of the respiratory specimens, guanidine thiocyanate lysis solution (4.7 M guanidine thiocyanate [Sigma-Aldrich NV], 46 mM Tris-HCl [Merck, Darmstadt, Germany], 20 mM EDTA [Sigma-Aldrich NV], 1.2% [wt/vol] Triton X-100 [Sigma-Aldrich NV], pH 6.2.) was added. With spiked throats, nasopharyngeal aspirates, bronchoalveolar lavage specimens, and sputum specimens, the sensitivity of the NASBA assay in the presence of the internal control was 2 x 10(4) molecules of in vitro-generated RNA or 5 CCU of M. pneumoniae. The sensitivity of the NASBA assay was comparable to that of a PCR targeted to the P1 adhesin gene. Fifteen clinical specimens positive for M. pneumoniae by PCR were also positive by NASBA. These results indicate that the sensitivity of detection of M. pneumoniae in spiked respiratory samples by NASBA is high. Together with the use of the internal control, the assay merits evaluation as a diagnostic tool.  相似文献   

13.
Faster techniques are needed for the early diagnosis of dengue fever and dengue hemorrhagic fever during the acute viremic phase of infection. An isothermal nucleic acid sequence-based amplification (NASBA) assay was optimized to amplify viral RNA of all four dengue virus serotypes by a set of universal primers and to type the amplified products by serotype-specific capture probes. The NASBA assay involved the use of silica to extract viral nucleic acid, which was amplified without thermocycling. The amplified product was detected by a probe-hybridization method that utilized electrochemiluminescence. Using normal human plasma spiked with dengue viruses, the NASBA assay had a detection threshold of 1 to 10 PFU/ml. The sensitivity and specificity of the assay were determined by testing 67 dengue virus-positive and 21 dengue virus-negative human serum or plasma samples. The "gold standard" used for comparison and evaluation was the mosquito C6/36 cell culture assay followed by an immunofluorescent assay. Viral infectivity titers in test samples were also determined by a direct plaque assay in Vero cells. The NASBA assay was able to detect dengue viral RNA in the clinical samples at plaque titers below 25 PFU/ml (the detection limit of the plaque assay). Of the 67 samples found positive by the C6/36 assay, 66 were found positive by the NASBA assay, for a sensitivity of 98.5%. The NASBA assay had a specificity of 100% based on the negative test results for the 21 normal human serum or plasma samples. These results indicate that the NASBA assay is a promising assay for the early diagnosis of dengue infections.  相似文献   

14.
15.
AIM: To investigate the value of RNA detection by nucleic acid sequence based amplification (NASBA) for the monitoring of Chlamydia trachomatis infections after antibiotic treatment. METHODS: Cervical smears (n = 97) and urine specimens (n = 61) from 25 C trachomatis positive female patients were analysed for the presence of C trachomatis 16S ribosomal RNA (rRNA) by NASBA and C trachomatis plasmid DNA by the polymerase chain reaction (PCR) before and up to five weeks after antibiotic treatment. RESULTS: Chlamydia trachomatis RNA was found in all cervical smears taken before antibiotic treatment (n = 24) and in two smears taken one week after antibiotic treatment; no C trachomatis RNA was detected after two weeks or more. In contrast, C trachomatis DNA was found in all such specimens before treatment, and 21 of 25, six of 21, and five of 20 smears were found to be positive at one, two, and three weeks after treatment, respectively. After four weeks, only one of six smears was positive, and this smear had been negative in the two preceding weeks. Of the 61 urine samples investigated, C trachomatis DNA and C trachomatis RNA were found in all before treatment (n = 15), whereas one week after treatment four of 15 were C trachomatis DNA positive and C trachomatis RNA was detected in one sample only. CONCLUSIONS: These data show that RNA detection by NASBA can be used successfully to monitor C trachomatis infections after antibiotic treatment. Furthermore, it might be possible to use urine specimens as a test of cure because neither C. trachomatis DNA or RNA could be detected two weeks or more after treatment.  相似文献   

16.
Real-time isothermal nucleic acid sequence-based amplification (RT-NASBA) was applied to the detection of Mycoplasma pneumoniae. In vitro-generated M. pneumoniae RNA was used to assess the sensitivity of the assay. The 95% hit rate was 148 molecules of M. pneumoniae RNA in the amplification and 10(4) molecules of in vitro-generated RNA after nucleic acid extraction. The sensitivity of the RT-NASBA and the conventional NASBA assays corresponded to 5 color-changing units (CCU) of M. pneumoniae. In spiked throat swabs, nasopharyngeal aspirates, bronchoalveolar lavages, and sputum, the sensitivity of both NASBA assays corresponded to 5 to 50 CCU of M. pneumoniae. A total of 17 clinical specimens positive for M. pneumoniae by PCR were also positive by conventional NASBA, but one specimen was negative by RT-NASBA. These results indicate that the sensitivity of detection of M. pneumoniae by RT-NASBA in respiratory samples might be slightly reduced compared to that by conventional NASBA. However, the real-time assay is superior in speed and ease of handling.  相似文献   

17.
BACKGROUND: Rapid, sensitive and economical detection and identification of human herpesviruses as causative agents of central nervous system (CNS) infections are of clinical importance. The traditional methods for the detection of herpesviruses in CNS infections all suffer from limitations. PCR has a potential to overcome each of them. OBJECTIVES: The aims of this study were reducing the number of primers in multiplex PCR and increasing the sensitivity of the assay by nested PCR. STUDY DESIGN: A multiplex nested consensus PCR (MNC-PCR) was developed for the simultaneous detection of major human herpesviruses. A pair of conserved primers was designed for detection of HSV-1, HSV-2, CMV and EBV and another pair of conserved primers for nested PCR. For VZV, a different pair of primers was designed and another pair of primers for nested PCR. A reduction in the number of designed primer pairs (from five pairs to two in both stages of PCR) is an advantage in this assay. One hundred forty-seven cerebral spinal fluid (CSF) samples from patients that showed clinical manifestation of CNS infections were tested. Results of MNC-PCR in CSF samples were compared with those of single PCR assay for each individual DNA virus. Sensitivity of the assay was determined with a plasmid containing VZV DNA binding protein gene and another plasmid for HSV-1 DNA polymerase gene. False negative results (due to the presence of inhibitor of DNA amplification in CSF samples) were avoided by the inclusion of beta2-microglobulin primers in the MNC-PCR assay as an internal control. RESULTS: Positive results were obtained in 20 CSF samples (8 HSV-1, 2 HSV-2, 4 CMV, 3 VZV, 3 HSV-1/CMV, CMV/VZV and HSV-1/EBV coinfections). The comparison between single PCR and MNC-PCR showed a marked increase in sensitivity of MNC-PCR test, since six negative samples in single PCR proved positive in MNC-PCR (P<0.005). Sensitivity was determined 1-5 plasmid copies for VZV and 50-100 plasmid copies for HSV-1. CONCLUSIONS: The MNC-PCR assay presented in this study can provide a rapid, sensitive and economical method for detection of viral infections and is applicable to small volumes of CSF samples.  相似文献   

18.
Control RNA for RT-PCR applications was amplified by nucleic acid sequence based amplification (NASBA) using the NucliSens Basic Kit. This method was used to construct positive control RNA for enterovirus, insulin, and G-protein RT-PCR, and for interferon-alpha real-time RT-PCR. The primers were designed to amplify identical RNA from RNA templates, which differs from the usual NASBA procedure, where opposite strand RNA is amplified from the target. This "inverse NASBA" method is easy to use and it does not require any expensive special equipment. The amplification reaction is done using a water bath and detection of amplified product by agarose gel electrophoresis. Generated RNA fragments were 195-714 bases long, of positive polarity and the amount of RNA was sufficient for thousands of RT-PCR reactions depending on the sensitivity of the RT-PCR.  相似文献   

19.
BackgroundAFRIMS longitudinal dengue surveillance in Thailand depends on the nested RT-PCR and the dengue IgM/IgG ELISA.ObjectiveTo examine and improve the sensitivity of the nested RT-PCR using a panel of archived samples collected during dengue surveillance.Study designA retrospective analysis of 16,454 dengue IgM/IgG ELISA positive cases collected between 2000 and 2013 was done to investigate the sensitivity of the nested RT-PCR. From these cases, 318 acute serum specimens or extracted RNA, previously found to be negative by the nested RT-PCR, were tested using TaqMan real-time RT-PCR (TaqMan rRT-PCR). To improve the sensitivity of nested RT-PCR, we designed a new primer based on nucleotide sequences from contemporary strains found to be positive by the TaqMan rRT-PCR. Sensitivity of the new nested PCR was calculated using a panel of 87 samples collected during 2011–2013.Results and conclusionThe percentage of dengue IgM/IgG ELISA positive cases that were negative by the nested RT-PCR varied from 17% to 42% for all serotypes depending on the year. Using TaqMan rRT-PCR, dengue RNA was detected in 194 (61%) of the 318 acute sera or extracted RNA previously found to be negative by the nested RT-PCR. The newly designed DENV-1 specific primer increased the sensitivity of DENV-1 detection by the nested RT-PCR from 48% to 88%, and of all 4 serotypes from 73% to 87%. These findings demonstrate the impact of genetic diversity and signal erosion on the sensitivity of PCR-based methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号