首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Defects in mitochondrial function have been shown to participate in the induction of neuronal cell injury. The effect of econazole against the cytotoxicity of 1-methyl-4-phenylpyridinium (MPP(+)) in differentiated PC12 cells was assessed in relation to the mitochondrial membrane permeability changes. Treatment of PC12 cells with MPP(+) resulted in the nuclear damage, decrease in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species (ROS) and depletion of GSH. Econazole (0.25-2.5 microM) inhibited the cytotoxicity of MPP(+) or rotenone. The addition of econazole (0.5 microM) significantly attenuated the MPP(+)-induced mitochondrial damage, elevation of intracellular Ca(2+) level and cell death. However, because of the cytotoxicity, econazole at 5 microM did not attenuate the toxicity of MPP(+). The results show that econazole at the low concentrations may reduce the MPP(+)-induced viability loss in PC12 cells by suppressing the mitochondrial permeability transition, leading to activation of caspase-3 and the elevation of intracellular Ca(2+) levels, which are associated with the increased formation of ROS and depletion of GSH.  相似文献   

2.
The present study investigated the effect of 5-hydroxydecanoate, a selective mitochondrial K(ATP) channel blocker, on the cytotoxicity of neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)) in differentiated PC12 cells. 5-Hydroxydecanoate and glibenclamide (a cell surface and mitochondrial K(ATP) channel inhibitor) reduced the MPP(+)-induced cell death and GSH depletion and showed a maximal inhibitory effect at 5 and 10 microM, respectively. Addition of 5-hydroxydecanoate attenuated the MPP(+)-induced nuclear damage, changes in the mitochondrial membrane permeability and increase in the reactive oxygen species formation in PC12 cells. The results show that 5-hydroxydecanote may prevent the MPP(+)-induced viability loss in PC12 cells by suppressing formation of the mitochondrial permeability transition, leading to the cytochrome c release and caspase-3 activation. This effect appears to be accomplished by the inhibitory action on the formation of reactive oxygen species and the depletion of GSH. The blockade of mitochondrial K(ATP) channels seems to prevent the MPP(+)-induced neuronal cell damage.  相似文献   

3.
1-Methyl-4-phenylpyridinium (MPP+), the neurotoxic metabolite of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), induces apoptosis in dopaminergic neurons; however, the cellular mechanisms underlying the degenerative process are not well understood. In the present study, we demonstrate that caspase-3 mediated proteolytic activation of protein kinase C delta (PKC delta) is critical in MPP+-induced oxidative stress and apoptosis. MPP+ exposure in rat dopaminergic neuronal cells resulted in time-dependent increases in reactive oxygen species generation, cytochrome c release, and caspase-9 and caspase-3 activation. Interestingly, MPP+ induced proteolytic cleavage of PKC delta (72-74 kDa) into a 41-kDa catalytic and a 38-kDa regulatory subunit, resulting in persistently increased kinase activity. The caspase-3 inhibitor Z-DEVD-fmk effectively blocked MPP+-induced PKC delta cleavage and kinase activity, suggesting that the proteolytic activation is caspase-3 mediated. Similar results were seen in MPP+-treated rat midbrain slices. Z-DEVD-fmk and the PKC delta specific inhibitor rottlerin almost completely blocked MPP+-induced DNA fragmentation. The superoxide dismutase mimetic, MnTBAP also effectively attenuated MPP+-induced caspase-3 activation, PKC delta cleavage, and DNA fragmentation. Furthermore, rottlerin attenuated MPP+-induced caspase-3 activity without affecting basal activity, suggesting positive feedback activation of caspase-3 by PKC delta. Intracellular delivery of catalytically active recombinant PKC delta significantly increased caspase-3 activity, further indicating that PKC delta regulates caspase-3 activity. Finally, over-expression of a kinase inactive PKC delta K376R mutant prevented MPP+-induced caspase activation and DNA fragmentation, confirming the pro-apoptotic function of PKC delta in dopaminergic cell death. Together, we demonstrate for the first time that MPP+-induced oxidative stress proteolytically activates PKC delta in a caspase-3-dependent manner to induce apoptosis and up-regulate the caspase cascade in dopaminergic neuronal cells.  相似文献   

4.
Apoptotic cell death is induced in SH-SY5Y neuroblastoma cells following exposure to the protein kinase inhibitors staurosporine (100 nM) and 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine: H-7 (100 microM). This is associated with reduced levels of PARP 117 kDa and with the concomitant formation of PARP-cleaved products of 89 kDa that result from caspase-3 activation. The process is inhibited with DEVD-fmk, a potent caspase-3 (and caspase-8) inhibitor, thus indicating that staurosporine- and H-7-induced cell death in SH-SY5Y is mediated by caspase activation. Increased caspase-2- and caspase-3-like activities, but not caspase-9-like activity, were demonstrated by monitoring proteolysis of the corresponding colorimetric substrates. Caspase-2 activity peaked at 6 h, whereas caspase-3 peaked at 12 h in parallel with the maximal loss of cell viability. No modifications in the expression levels of Fas and Fas-L were observed by Western blotting. Furthermore, no activation of caspase-8 was elicited by colorimetric assays through the process of apoptosis of neuroblastoma cells. These findings indicate that the Fas/Fas-L-caspase-8 pathway of cell death signaling is not involved in staurosporine- and H-7-induced apoptosis in SH-SY5Y neuroblastoma cells.  相似文献   

5.
Xiao AY  Wang XQ  Yang A  Yu SP 《Brain research》2002,955(1-2):253-259
Dysfunction of the Na(+),K(+)-ATPase (Na(+),K(+)-pump), due to reduced energy supply or increased endogenous ouabain-like inhibitors, likely occurs under pathological conditions in the central nervous system. In cultured mouse cortical neurons, we examined the hypothesis that a mild non-toxic inhibition of the Na(+),K(+)-ATPase could synergistically sensitize the vulnerability of neurons to normally non-lethal apoptotic signals. Ouabain at a low concentration of 0.1 microM slightly lessened the Na(+),K(+)-pump activity measured as an ouabain-sensitive current, yet did not affect K(+) homeostasis and viability of cortical neurons. Co-exposure to 0.1 microM ouabain plus non-lethal C(2)-ceramide (5 microM) or beta-amyloid 1-42 (5 microM), however, induced marked intracellular K(+) loss, caspase-3 cleavage, DNA laddering, and synergistically triggered neuronal death. The caspase inhibitor Z-Val-Ala-Asp(OMe)-fluoromethyl ketone (Z-VAD-FMK) predominantly blocked the caspase activation and neuronal death. These results suggest that slight impairment of Na(+),K(+)-pump activity may amplify the disruption of K(+) homeostasis in the presence of a non-lethal apoptotic insult, leading to activation of apoptotic cascade and substantial neuronal injury.  相似文献   

6.
Cell models of neurodegenerative diseases (NDD) can involve expression of mutant nuclear genes associated with Mendelian forms of the diseases or effects of toxins believed to replicate essential disease features. Death produced by exposing neural cells to methylpyridinium ion (MPP(+)) or neurotoxic beta amyloid (BA) peptides is frequently used to study features of the sporadic, most prevalent forms of Parkinson's disease (PD) and Alzheimer's disease (AD), respectively. We examined in replicating SH-SY5Y human neuroblastoma cells the release of cytochrome C into cytoplasm, activation of caspases 9 and 3, and loss of calcein retention as markers of the "mitochondrial" pathway of cell death. Exposure to 5 mM MPP(+), which induces apoptotic cell death within 18-24 hr, released cytochrome C within 4 hr, activated caspases 9 and 3, and reduced calcein accumulation. BA 25-35 peptide produced more rapid and greater elevations of caspase 3 activity; no effects were observed with the nontoxic BA 35-25 reverse sequence. The dependence on mitochondrial transition pore (MTP) activity of MPP(+)-induced caspase activations was demonstrated by preincubation with bongkreckic acid, which blocked elevations of caspases 9 and 3. Stereoisomers of pramipexole (PPX), a free radical scavenger and inhibitor of MTP opening, inhibited caspase activation (MPP(+) and BA) and restored calcein accumulation (MPP(+)). Our results demonstrate that MPP(+) and BA can induce cell death through MTP-dependent activation of caspase cascades. PPX stereoisomers interfere with activation of these cell death pathways and may be useful clinically as neuroprotectants in PD and AD and related diseases.  相似文献   

7.
Defects in proteasome function have been suggested to be involved in the pathogenesis of neurodegenerative diseases. We examined the effect of calmodulin antagonists on proteasome inhibitor-induced mitochondrial dysfunction and cell viability loss in undifferentiated PC12 cells. Caspase inhibitors (z-IETD.fmk, z-LEHD.fmk and z-DQMD.fmk) and antioxidants attenuated cell death and decrease in GSH contents in PC12 cells treated with 20 microM MG132, a proteasome inhibitor. Calmodulin antagonists (trifluoperazine, W-7 and calmidazolium) had a differential inhibitory effect on the MG132-induced cell death and GSH depletion depending on concentration with a maximal inhibitory effect at 0.5-1 microM. Addition of trifluoperazine and W-7 reduced the MG132-induced nuclear damage, loss of the mitochondrial transmembrane potential followed by cytochrome c release, formation of reactive oxygen species and elevation of intracellular Ca(2+) levels in PC12 cells. Calmodulin antagonists at 5 microM exhibited a cytotoxic effect on PC12 cells but attenuated the cytotoxicity of MG132. The results suggest that the toxicity of MG132 on PC12 cells is mediated by activation of caspase-8, -9 and -3. Trifluoperazine and W-7 at the concentrations of 0.5-1 microM may attenuate the MG132-induced viability loss in PC12 cells by suppressing change in the mitochondrial membrane permeability and by lowering of the intracellular Ca(2+) levels as well as calmodulin inhibition.  相似文献   

8.
1-Methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity has previously been attributed to either caspase-dependent apoptosis or caspase-independent cell death. In the current study, we found that MPP(+) induces a unique, non-apoptotic nuclear morphology coupled with a caspase-independent but calpain-dependent mechanism of cell death in primary cultures of rat cerebellar granule neurons (CGNs). Using a terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay in CGNs exposed to MPP(+), we observed that these neurons are essentially devoid of caspase-dependent DNA fragments indicative of apoptosis. Moreover, proteolysis of a well recognized caspase-3 substrate, poly (ADP ribose) polymerase (PARP), was not observed in CGNs exposed to MPP(+). In contrast, calpain-dependent proteolysis of fodrin and pro-caspases-9 and -3 occurred in this model coupled with inhibition of caspase-3/-7 activities. Notably, several key members of the Bcl-2 protein family appear to be prominent calpain targets in MPP(+)-treated CGNs. Bid and Bax were proteolyzed to truncated forms thought to have greater pro-death activity at mitochondria. Moreover, the pro-survival Bcl-2 protein was degraded to a form predicted to be inactive at mitochondria. Cyclin E was also cleaved by calpain to an active low MW fragment capable of facilitating cell cycle re-entry. Finally, MPP(+)-induced neurotoxicity in CGNs was significantly attenuated by a cocktail of calpain and caspase inhibitors in combination with the antioxidant glutathione. Collectively, these results demonstrate that caspases do not play a central role in CGN toxicity induced by exposure to MPP(+), whereas calpain cleavage of key protein targets, coupled with oxidative stress, plays a critical role in MPP(+)-induced neurotoxicity. Our findings underscore the complexity of MPP(+)-induced neurotoxicity and suggest that calpain may play a fundamental role in causing neuronal death downstream of mitochondrial oxidative stress and dysfunction.  相似文献   

9.
The mitochondrial inhibitor 1-methyl-4-phenylpyridinium (MPP(+)) is the toxicologically relevant metabolite of 1-methyl-4-phenyltetrahydropyridine (MPTP), which causes relatively selective degeneration of dopaminergic neurons in the substantia nigra. Dopaminergic LUHMES cells were used to investigate whether ATP-depletion can be uncoupled from cell death as a downstream event in these fully post-mitotic human neurons. Biochemical assays indicated that in the homogeneously differentiated cell cultures, MPP(+) was taken up by the dopamine transporter (DAT). MPP(+) then triggered oxidative stress and caspase activation, as well as ATP-depletion followed by cell death. Enhanced survival of the neurons in the presence of agents interfering with mitochondrial pathology, such as the fission inhibitor Mdivi-1 or a Bax channel blocker suggested a pivotal role of mitochondria in this model. However, these compounds did not prevent cellular ATP-depletion. To further investigate whether cells could be rescued despite respiratory chain inhibition by MPP(+), we have chosen a diverse set of pharmacological inhibitors well-known to interfere with MPP(+) toxicity. The antioxidant ascorbate, the iron chelator desferoxamine, the stress kinase inhibitor CEP1347, and different caspase inhibitors reduced cell death, but allowed ATP-depletion in protected cells. None of these compounds interfered with MPP(+) accumulation in the cells. These findings suggest that ATP-depletion, as the initial mitochondrial effect of MPP(+), requires further downstream processes to result in neuronal death. These processes may form self-enhancing signaling loops, that aggravate an initial energetic impairment and eventually determine cell fate.  相似文献   

10.
Focal ischemia by middle cerebral artery occlusion (MCAO) results in necrosis at the infarct core and activation of complex signal pathways for cell death and cell survival in the penumbra. Recent studies have shown activation of the extrinsic and intrinsic pathways of caspase-mediated cell death, as well as activation of the caspase-independent signaling pathway of apoptosis in several paradigms of focal cerebral ischemia by transient MCAO to adult rats and mice. The extrinsic pathway (cell-death receptor pathway) is initiated by activation of the Fas receptor after binding to the Fas ligand (Fas-L); increased Fas and Fas-L expression has been shown following focal ischemia. Moreover, focal ischemia is greatly reduced in mice expressing mutated (nonfunctional) Fas. Increased expression of caspase-1, -3, -8, and -9, and of cleaved caspase-8, has been observed in the penumbra. Activation of the intrinsic (mitochondrial) pathway following focal ischemia is triggered by Bax translocation to and competition with Bcl-2 and other members of the Bcl-2 family in the mitochondria membrane that is followed by cytochrome c release to the cytosol. Bcl-2 over-expression reduces infarct size. Cytochrome c binds to Apaf-1 and dATP and recruits and cleaves pro-caspase-9 in the apoptosome. Both caspase-8 and caspase-9 activate caspase-3, among other caspases, which in turn cleave several crucial substrates, including the DNA-repairing enzyme poly(ADP-ribose) polymerase (PARP), into fragments of 89 and 28 kDa. Inhibition of caspase-3 reduces the infarct size, further supporting caspase-3 activation following transient MCAO. In addition, caspase-8 cleaves Bid, the truncated form of which has the capacity to translocate to the mitochondria and induce cytochrome c release. The volume of brain infarct is greatly reduced in Bid-deficient mice, thus indicating activation of the mitochondrial pathway by cell-death receptors following focal ischemia. Recent studies have shown the mitochondrial release of other factors; Smac/DIABLO (Smac: second mitochondrial activator of caspases: DIABLO: direct IAP binding protein with low pI) binds to and neutralizes the effects of the X-linked inhibitor of apoptosis (XIAP). Finally, apoptosis-inducing factor (AIF) translocates to the mitochondria and the nucleus following focal ischemia and produces peripheral chromatin condensation and large-scale DNA strands, thus leading to the caspase-independent cell death pathway of apoptosis. Delineation of the pro-apoptotic and pro-survival signals in the penumbra may not only increase understanding of the process but also help to rationalize strategies geared to reducing brain damage targeted at the periphery of the infarct core.  相似文献   

11.
The nitroimidazole radiosensitizer CI-1010 ((R)-alpha-[[(2-bromoethyl)-amino]methyl]-2-nitro-1H-imidazole-1-ethanol monohydrobromide) causes selective, irreversible, retinal photoreceptor apoptosis in vivo. The mouse 661 W photoreceptor cell line was used as a neuronotypic model of CI-1010-mediated retinal degeneration. Exposure to CI-1010 for 24 h induced apoptosis in 661 W cells, as determined by ultrastructural analysis, agarose electrophoresis and analysis of TUNEL-positive nuclei. CI-1010 caused a loss of viability in 661 W cells, as measured by the reduction of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). A clear link was established between the onset of apoptosis and activity of caspase-3 and caspase-8, prior to poly[ADP-ribose]polymerase (PARP) cleavage. Pretreatment with caspase inhibitors, ZVAD.fmk or DEVD-CHO, prevented morphological changes in most CI-1010-treated cells. Evaluation of mitochondrial inner membrane potential (Deltapsi(m)) in live 661 W cells using the fluorescent dye, tetramethylrhodamine methyl ester revealed retention of (Deltapsi(m)) until after caspase activation. Absence of cytochrome c in the cytoplasm in treated cells further supports the hypothesis of a mitochondrial-independent mechanism of cell death. Significant increase in DNA crosslinks observed in 661 W cells correlates with induction and phosphorylation of p53 at multiple serine sites. Cell cycle analysis of 661 W cells reveals a G(2) arrest in response to CI-1010-induced DNA damage and neuronal cell death. Increased protein expression of Bax, Fas, and FasL, concomitant to the loss of Bcl-xL in treated 661 W cells may be modulated by p53. This study evaluates in vitro mechanisms of CI-1010-induced cell death in photoreceptors and provides evidence in support of a p53-linked activation of caspase-3 in response to DNA damage caused by CI-1010.  相似文献   

12.
Previously we reported that 1-methyl-4-phenylpyridinium ion (MPP(+)), a dopaminergic neurotoxin, induced apoptosis of GH3 cells established from rat anterior pituitary. In the present study, the role of MPP(+) along with that of other apoptotic factors such as Ca(2+) and H(2)O(2) in cell death was examined. Ionomycin induced DNA fragmentation and lactate dehydrogenase (LDH) leakage in GH3 cells. H(2)O(2) also induced LDH leakage. Co-addition of MPP(+), in conditions where MPP(+) had no effect by itself, enhanced ionomycin- and H(2)O(2)-induced cell death. Because the stimulation of phospholipase A(2) (PLA(2)) causing arachidonic acid (AA) release has been proposed to be involved in neuronal cell death, the effect of MPP(+) on AA release in GH3 cells was investigated. MPP(+) treatment for 8 h enhanced ionomycin- and H(2)O(2)-stimulated AA release mediated by activation of cytosolic PLA(2) in a concentration-dependent manner, although MPP(+) by itself had no effect on AA release. An inhibitor of cytosolic PLA(2) inhibited MPP(+)-induced cell death. These findings suggest a synergistic effect of MPP(+) on Ca(2+)- and H(2)O(2)-induced cell death, and the involvement of cytosolic PLA(2) activation in MPP(+)-induced cell death in GH3 cells. Pretreatment with a caspase inhibitor or EGF did not modify the ionomycin- or H(2)O(2)-induced AA release, or enhancement by MPP(+), but the pretreatment inhibited the cell death in the presence and absence of MPP(+). The involvement of caspase(s) on activation of PLA(2) by MPP(+) was excluded, and EGF inhibited MPP(+)-induced cell death downstream of the AA release.  相似文献   

13.
To further characterize MPP(+)-induced cell death and to explore the role of Bcl-2-related proteins in this death paradigm, we utilized a mesencephalon-derived dopaminergic neuronal cell line (MN9D) stably transfected with human bcl-2 (MN9D/Bcl-2), its C-terminal deletion mutant (MN9D/Bcl-2Delta22), murine bax (MN9D/Bax), or a control vector (MN9D/Neo). As determined by electron microscopy and TUNEL assay, MN9D/Neo cells exposed to MPP(+) underwent a cell death that was characterized by mitochondrial swelling and irregularly scattered heterochromatin without accompanying DNA fragmentation. However, cell swelling typically seen in necrosis did not appear. To examine the biochemical events associated with MPP(+)-induced cell death, various analyses were conducted. Addition of a broad-spectrum caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (50-400 microM) or Boc-aspartyl(OMe)-fluoromethylketone (50-200 microM) did not attenuate MPP(+)-induced cell death while the same treatment protected MN9D/Neo cells against staurosporine-induced apoptotic cell death. Concurrent treatment with an inhibitor of macromolecule synthesis such as cycloheximide, emetine, or actinomycin D blocked MPP(+)-induced cell death, suggesting that new protein synthesis is required as demonstrated in many apoptotic cell death. The level of cytosolic calcium in MN9D/Neo cells was unchanged over 24 h following MPP(+) treatment, as monitored by means of the fluorescent probe Fura-2. Western blot analysis indicated that expression level of proapoptotic protein, Bax was not significantly altered after MPP(+) treatment. In this death paradigm, overexpression of Bcl-2 but not its C-terminal deletion mutant attenuated MPP(+)-induced cell death whereas overexpression of Bax had no effect. Taken together, these data indicate that (i) MPP(+) induces a distinct form of cell death which resembles both apoptosis and necrosis; and (ii) full-length Bcl-2 counters MPP(+)-induced morphological changes and cell death via a mechanism that is dependent on de novo protein synthesis but independent of cytosolic calcium changes, Bax expression, and/or activation of caspase(s) in MN9D cells.  相似文献   

14.
目的 研究14—3—3蛋白过表达对1-甲基-4苯基吡啶离子(MPP^+诱导的PC12细胞死亡的影响作用及其可能的机制。方法 构建pcDNA3.1(+)-14—3—3真核表达质粒,用脂质体2000转染PCI2细胞;Westernn blot技术检测PC12细胞中14—3—3蛋白、Bcl-2蛋白,和BAD蛋白的表达;然后分别用MTT法、酶标仪及流式细胞仪检测PC12细胞的活力、caspase的活性及PC12细胞的凋亡率。结果 (1)将pcDNA3.1(+)-14—3—3质粒转染PCI2细胞3周后,14—3—3蛋白的表达显著增加;(2)MPP^+诱导PC12细胞存活率的下降是剂量依赖性的,当MPP^+的浓度达100μmol/L时,PC12细胞的存活率丧失约50%;(3)caspase的活性随着MPP^+浓度的增加而增高,当MPP^+浓度到达100μmol/L时caspase的活性也到达最大值,而当MPP^+浓度超过100μmol/L时,caspase的活性急剧下降;(4)用100μmol/L的MPP^+处理PC12细胞24h后,PC12细胞的凋亡率为26.5%,14—3—3蛋白的过表达使PC12细胞的凋亡率下降到8.6%;(5)用100μmol/LMPP^+处理PC12细胞后,Bcl-2蛋白的表达趋于下调而BAD蛋白的表达上调,14—3-3蛋白的过表达能显著的增加Bcl-2蛋白的表达而使BAD蛋白的表达下调。结论 14—3—3蛋白过表达通过上调Bcl-2蛋白的表达并下调BAD蛋白的表达,减少了MPP^+诱导的PC12细胞的凋亡,从而发挥对PC12细胞的保护作用。这些结果可能为PD的治疗提供新的药物靶点。  相似文献   

15.
16.
Growth arrest DNA damage-inducible 153 (GADD153) expression was increased in 1-methyl-4-phenyl-pyridinium (MPP(+))-treated human SH-SY5Y neuroblastoma cells as determined by gene microarray analysis. GADD153 expression increased after 24 hr of MPP(+) (1 mM) exposure and preceded activation of caspase 3. Comparison of GADD153 expression among cultures treated with other toxins whose primary mode of action is either via mitochondrial impairment (rotenone) or via oxidative stress (6-hydroxydopamine or hydrogen peroxide) showed that GADD153 was uniquely up-regulated by MPP(+). Together these data suggest that a cellular mechanism distinct from mitochondrial impairment or oxidative stress contributes significantly to the up-regulation of GADD153 by MPP(+) and that GADD153 may function as an inducer of apoptosis following MPP(+) exposure. Published 2002 Wiley-Liss, Inc.  相似文献   

17.
Autophagy is a mechanism whereby cells digest themselves from within and so may be used in lieu of apoptosis to execute cell death. Little is known about its role in neurons. In newly isolated sympathetic neurons, two independent apoptotic stimuli, NGF-deprivation or cytosine arabinoside added in the presence of NGF, caused a 30-fold increase in autophagic particle numbers, many autophagosomes appearing before any signs of DNA-fragmentation. The anti-autophagic drug 3-methyladenine also delayed apoptosis, its neuroprotection correlating with inhibition of cytochrome c release from mitochondria and prevention of caspase activation. In contrast, autophagic activity remained elevated in neurons treated with the pan-caspase inhibitor Boc-Asp(OMe)fmk, which inhibited morphological apoptosis but did not inhibit cytochrome c release nor prevent cell death. We propose that the same apoptotic signals that cause mitochondrial dysfunction also activate autophagy. Once activated, autophagy may mediate caspase-independent neuronal death.  相似文献   

18.
The endogenous neurotoxin 1-methyl-6,7-dihydroxy-1,2,3, 4-tetrahydroisoquinoline (salsolinol), which is structurally similar to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), has been reported to inhibit mitochondrial complex I (NADH-Q reductase) activity as does the MPTP metabolite 1-methyl-4-phenylpyridinium ion (MPP(+)). However, the mechanism of salsolinol leading to neuronal cell death is still unknown. Thus, we correlated indices of cellular energy production and cell viability in human dopaminergic neuroblastoma SH-SY5Y cells after exposure to salsolinol and compared these results with data obtained with MPP(+). Both toxins induce time and dose-dependent decrease in cell survival with IC(50) values of 34 microM and 94 microM after 72 h for salsolinol and MPP(+), respectively. Furthermore, salsolinol and MPP(+) produce a decrease of intracellular net ATP content with IC(50) values of 62 microM and 66 microM after 48 h, respectively. In contrast to MPP(+), salsolinol does not induce an increase of intracellular net NADH content. In addition, enhancing glycolysis by adding D-glucose to the culture medium protects the cells against MPP(+) but not salsolinol induced cellular ATP depletion and cytotoxicity. These results suggest that cell death induced by salsolinol is due to impairment of cellular energy supply, caused in particular by inhibition of mitochondrial complex II (succinate-Q reductase), but not complex I.  相似文献   

19.
Dopamine (DA)-induced neurotoxicity is potentiated when cellular metabolism is compromised. Since cyanide is a neurotoxin that produces mitochondrial dysfunction and stimulates intracellular generation of reactive oxygen species (ROS), KCN was used to study DA-induced apoptosis in primary cultured mesencephalon cells. Treatment of neurons with DA (300 microM) for 24h produced apoptosis as determined by TUNEL staining, DNA fragmentation and increased caspase activity. Pretreatment with KCN (100 microM) 30min prior to DA increased the number of cells undergoing apoptosis. When added to the cells alone, this concentration of KCN did not induce apoptosis. DA stimulated intracellular generation of ROS, and treatment with KCN enhanced ROS generation. Treatment of cells with glutathione or uric acid (antioxidants/scavengers) attenuated both the increase in ROS generation and the apoptosis, demonstrating that ROS are initiators of the cytotoxicity. Studies on the sequence of events mediating the response showed that DA-induced depolarization of the mitochondrial membrane was dependent on ROS generation and KCN enhanced this action of DA. Following changes in mitochondrial membrane potential, cytochrome c was released from mitochondria, leading to caspase activation and eventually cell death. These results demonstrate that oxidative stress and mitochondrial dysfunction are initiators of DA-induced apoptosis. Subsequent cytochrome c release activates the caspase effector component of apoptosis. Cyanide potentiates the neurotoxicity of DA by enhancing the generation of ROS and impairing mitochondrial function.  相似文献   

20.
It is traditionally thought that excitotoxic necrosis is a passive mechanism that does not require the activation of a cell death program. In this study, we examined the contribution of the cytochrome c‐dependent mitochondrial death pathway to excitotoxic neuronal necrosis, induced by exposing cultured cortical neurons to 1 mM glutamate for 6 hr and blocked by the NMDA antagonist, dizocilpine. Glutamate treatment induced early cytochrome c release, followed by activation of caspase‐9 and caspase‐3. Preincubation with the caspase‐9 inhibitor z‐LEHD‐fmk, the caspase‐3 inhibitor z‐DEVD‐fmk, or the specific pan‐caspase inhibitor Q‐VD‐oph decreased the percentage of propidium iodide‐positive neurons (52.5% ± 3.1%, 39.4% ± 3.5%, 44.6% ± 3%, respectively, vs. 65% ± 3% in glutamate + vehicle). EM studies showed mitochondrial release of cytochrome c in neurons in the early stages of necrosis and cleaved caspase‐3 immunoreactivity in morphologically necrotic neurons. These results suggest that an active mechanism contributes to the demise of a subpopulation of excitotoxic necrotic neurons. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号