首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
呼吸幅度对旋转容积调强剂量分布的影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 研究呼吸幅度对旋转容积调强放疗(VMAT)剂量分布的影响。方法 采用呼吸运动模拟模体(QUASAR)模拟人体头脚方向的一维呼吸运动,二维电离室矩阵采集不同呼吸幅度等中心层面的剂量分布。通过Verisoft软件及绝对剂量分析,分析采集数据与计划数据比较的剂量分布、等中心绝对剂量百分误差和射野通过率。结果 呼吸运动对靶区等中心点剂量影响小于剂量允许误差5%(t=-22.614~-10.756,P<0.05),使靶区边缘剂量偏高、靶区内热点少、冷点多,且随着呼吸幅度的增大,对靶区整体剂量分布影响越大。6、8、10 mm整个射野γ通过率与静态相比差异有统计学意义(t=3.095、8.685、14.096,P<0.05)。8、10 mm靶区内射野通过率与静态相比差异有统计学意义(t=6.081、9.841,P<0.05)。结论 呼吸运动可导致VMAT剂量传输误差,且误差随靶区运动幅度的增加而升高,且呼吸运动方向靶区边缘的正常组织实际治疗受照剂量高于计划评价。  相似文献   

2.

Purpose

The aim of this study was to evaluate the effect of contrast agent on dose calculation in volumetric modulated arc therapy (VMAT) in the post-prostatectomy setting.

Methods and material

Ten patients were studied. Each patient received planning computed tomography (CT) images with contrast agent. All of the plans were done on virtually simulated contrast-free CT scans. The plan approved by the radiation oncologist was replicated to the contrast CT series. In both of the plans the same monitor unit was used. The doses calculated from the two plans were compared in regard to target volumes and organs at risk. A paired sample t-test was used to evaluate the differences in cumulative dose volume histogram between the two plans.

Results

We showed that the use of contrast agent may cause significant differences in dose distribution. There was a significant decrease in doses received by planning target volume (PTV70), rectum V65 Gy, rectum V40 Gy, bladder V65 Gy, penile bulb V40 Gy in plans with contrast-enhanced CT sets. The decrease in mean, maximum and minimum doses received by PTV70 also contributed to the significant decrease in conformity index.

Conclusions

Using a contrast agent at the time of CT simulation may cause significant differences in dose distribution. For this reason, the plan should always be carried out on non-contrast CT data sets to avoid additional errors in the treatment planning process.
  相似文献   

3.
目的 设计一种联合深度学习剂量预测和参数迭代优化算法的容积调强放射治疗(VMAT)全自动计划方法。方法 选取2018年6月至2021年1月北京大学肿瘤医院既往165例直肠癌患者的VMAT计划开展研究,其中145例用于训练和验证深度学习模型,该模型用于预测危及器官的剂量,20例用于研究比对自动计划和人工计划的质量。该方法从危及器官的预测剂量分布中提取关键的剂量体积直方图(DVH)值作为初始优化参数(IOPs),利用治疗计划系统可编程接口自动创建VMAT计划,通过设计迭代优化算法自动调节优化参数(OPs)。结果 剂量预测模型训练后能有效预测出20例测试计划危及器官的关键DVH值,与参考值相比差异均无统计学意义(P>0.05)。20例VMAT自动计划均能满足临床处方剂量要求,对于PTV和PGTV的适形性指数(CI),人工计划与自动计划比较差异均无统计学意义(P>0.05);而PGTV的D1和均匀性指数(HI),自动计划均高于人工计划,分别为0.6 Gy和0.01,两者比较差异均有统计学意义(t=-7.05、-6.92,P<0.05)。自动计划比人工计划的膀胱平均V30下降2.7%(t=3.37,P<0.05),股骨头和危及器官辅助结构(Avoidance)的平均V20分别下降8.37%和15.95%(t=5.65、11.24,P<0.05),并且膀胱、股骨头、Avoidance的平均剂量分别降低了1.91、4.01和3.88 Gy(t=9.29、2.80、10.23,P<0.05)。测试的20例直肠癌患者病例的自动计划平均时间为(71.82±25.48)min。结论 本研究利用直肠癌病例验证了一种联合剂量预测和参数迭代优化算法的VMAT自动计划方法的可行性。相比于人工计划,VMAT自动计划无需人工干预,在提高计划设计效率、计划质量和临床资源利用率等方面有很大的应用潜力。  相似文献   

4.
To investigate the feasibility, efficiency, and delivery accuracy of volumetric modulated arc therapy with constant dose rate (VMAT-CDR) for whole-pelvic radiotherapy (WPRT) of endometrial cancer. The nine-field intensity-modulated radiotherapy (IMRT), VMAT with variable dose-rate (VMAT-VDR), and VMAT-CDR plans were created for 9 patients with endometrial cancer undergoing WPRT. The dose distribution of planning target volume (PTV), organs at risk (OARs), and normal tissue (NT) were compared. The monitor units (MUs) and treatment delivery time were also evaluated. For each VMAT-CDR plan, a dry run was performed to assess the dosimetric accuracy with MatriXX from IBA. Compared with IMRT, the VMAT-CDR plans delivered a slightly greater V20 of the bowel, bladder, pelvis bone, and NT, but significantly decreased the dose to the high-dose region of the rectum and pelvis bone. The MUs decreased from 1105 with IMRT to 628 with VMAT-CDR. The delivery time also decreased from 9.5 to 3.2 minutes. The average gamma pass rate was 95.6% at the 3%/3 mm criteria with MatriXX pretreatment verification for 9 patients. VMAT-CDR can achieve comparable plan quality with significant shorter delivery time and smaller number of MUs compared with IMRT for patients with endometrial cancer undergoing WPRT. It can be accurately delivered and be an alternative to IMRT on the linear accelerator without VDR capability.  相似文献   

5.
Due to large doses per fraction, stereotactic ablative radiotherapy of lung or spine can lead to skin tissue toxicity, the amount of which depends on a variety of factors such as target location, beam geometry, and immobilization. The effect of arc length on spreading out entrance and exit doses and the corresponding predictions of skin reactions has not yet been studied for stereotactic body radiotherapy volumetric modulated arc therapy (VMAT) treatments. 58 clinically relevant VMAT stereotactic body radiotherapy spine and lung plans were created for an anthropomorphic phantom utilizing a range of target locations, beam geometries and arc lengths. Skin dose was assessed by considering the National Cancer Institute skin reaction grades adjusted for 3 fraction treatments. While the skin volumes predicted to exhibit low grade reactions decreased with arc length, high grade reactions were found to increase at smaller arcs as well as at full arcs where a superposition of entrance and exit doses would occur. It is possible for skin dose to be effectively optimized by choice of arc length (within clinically relevant boundaries) and thus minimize the skin reaction. High skin doses are often attributed to effects arising from the distance between the planning target volume and patient surface but this study has demonstrated that VMAT arc length is of equal importance. Understanding this relationship will assist in minimizing skin reactions through modification of plan parameters and will provide clinicians more information for patient selection.  相似文献   

6.
We investigated the dynamic positioning accuracy of Agility (Elekta) for volumetric modulated arc therapy (VMAT). The accuracy of the multileaf collimator (MLC) leaf position during VMAT was evaluated using three different tests: (1) a dynamic multileaf collimator (DMLC) output test with various leaf speeds, and gantry angles; (2) a slit-fence test with and without gantry rotation; and (3) a complicated VMAT plans test with dose distributions compared with measurements using gamma analysis. The DMLC output was within 1.5 % under all test conditions. The agreement between the static and VMAT in the slit-fence test was within 0.5 mm. The pass rate of each complicated VMAT test plan was more than 93.9 % ± 0.36 for gamma analysis. We confirmed the dynamic positioning accuracy of Agility, which during VMAT delivery is within VMAT tolerances. The fastest MLC was found to have the potential to offer clinical advantages, such as high-quality rapid VMAT.  相似文献   

7.
目的 探讨在组织不均匀条件下,治疗计划系统(MONACO)中的有限笔形束算法(FSPB)与快速X射线体积元蒙特卡罗算法(XVMC)的调强放射治疗计划计算精度差别,以及对临床治疗的影响和各自的应用范围。方法 在非均匀仿真人体模型中,对两种算法模型计算的规则照射野及调强照射野的剂量精度,利用经过刻度的放射性铬胶片(EBT2胶片),进行剂量测量以及二维平面剂量的分析比对。结果 在非均匀仿真人体模型中,不同能量的X射线规则照射野,XVMC算法在不同介质中的剂量计算与胶片测量的结果偏差均在±2.00%范围内,而FSPB计算的结果与测量结果的偏差除了15 MV射野为10 cm×2 cm情况下肺中的剂量偏差高达6.51%以外,其他条件下的结果偏差都在±3%范围内。调强放疗计划(IMRT)的胶片验证测量结果中,3%/3 mm γ通过率XVMC算法组>90%;FSPB算法组为80%~90%,且4%/4 mm γ通过率>90%。结论 当临床治疗病例的组织密度不均匀性较大、子野数较多时,XVMC算法的剂量计算精度优于FSPB算法,采用XVMC治疗设计胸腹部IMRT治疗计划可以将算法所引起的误差控制在±3%以内,而且可以避免由于算法原因所致的计划靶区剂量缺失。  相似文献   

8.
目的 研究在RayStation 4.7计划系统平台上实现基于预测模型和自动优化算法的宫颈癌容积旋转调强(VMAT)全自动计划设计。方法 选取40例宫颈癌VMAT专家计划进行分析,使用主成分回归分析方法建立危及器官的体积剂量直方图(DVH)预测模型,运用IronPython编程语言在RayStation 4.7计划系统平台上实现基于预测模型的宫颈癌VMAT计划的自动创建和自动优化,并通过与手动计划的比较来评估自动计划的质量和效率。另外选取10例专家计划用于验证模型的准确性和自动计划的可行性。结果 10例宫颈癌VMAT计划测试结果显示预测模型能够很好地预测直肠、膀胱和小肠的剂量体积参数;自动计划与专家计划相当,而与原始手动计划相比,靶区的均匀性和适形性差异无统计学意义(P> 0.05),膀胱平均V40V50下降4.3%和1.6%,(t=2.75、5.26,P< 0.05),直肠平均V30V40V50下降6.8%、5.8%和2.1%(t=2.26、3.55、5.19,P<0.05),左右股骨头平均剂量分别下降380和322 cGy(t=5.55、7.25,P< 0.05),小肠平均剂量差异无统计学意义(P> 0.05)。自动计划和手动计划平均用时分别为36和53 min。结论 RayStation计划系统平台上基于IronPython语言并结合预测模型的自动计划程序能够快速高效地完成高质量的宫颈癌VMAT计划。  相似文献   

9.
《Medical Dosimetry》2022,47(3):280-287
Volumetric Modulated Arc Therapy (VMAT) is an important modality for radical radiotherapy of all major treatment sites. This study aims to compare Analytical Anisotropic Algorithm (AAA) and the two dose-reporting modes of Acuros XB (AXB) algorithm -the dose to medium option (Dm) and the dose to water option (Dw) in Volumetric Modulated Arc Therapy (VMAT) of carcinoma lung and carcinoma prostate. We also compared the measured dose with Treatment Planning System calculated dose for AAA and the two dose reporting options of Acuros XB using Electronic Portal Imaging Device (EPID) and ArcCHECK phantom. Treatment plans of twenty patients each who have already undergone radiotherapy for cancer of lung and cancer of prostate were selected for the study. Three sets of VMAT plans were generated in Eclipse Treatment Planning System (TPS), one with AAA and two plans with Acuros-Dm and Acuros-Dw options. The Dose Volume Histograms (DVHs) were compared and analyzed for Planning Target Volume (PTV) and critical structures for all the plans. Verification plans were created for each plan and measured doses were compared with TPS calculated doses using EPID and ArcCHECK phantom for all the three algorithms. For lung plans, the mean dose to PTV in the AXB-Dw plans was higher by 1.7% and in the AXB-Dm plans by 0.66% when compared to AAA plans. For prostate plans, the mean dose to PTV in the AXB-Dw plans was higher by 3.0% and in the AXB-Dm plans by 1.6% when compared to AAA plans. There was no difference in the Conformity Index (CI) between AAA and AXB-Dm and between AAA and AXB-Dw plans for both sites. But the homogeneity worsened in AXB-Dw and AXB-Dm plans when compared to AAA plans for both sites. AXB-Dw calculated higher dose values for PTV and all the critical structures with significant differences with one or two exceptions. Point dose measurements in ArcCHECK phantom showed that AXB-Dm and AXB-Dw options showed very small deviations with measured dose distributions than AAA for both sites. Results of EPID QA also showed better pass rates for AXB-Dw and AXB-Dm than AAA for both sites when gamma analysis was done for 3%/3 mm and 2%/2 mm criteria. With reference to the results, it is always better to choose Acuros algorithm for dose calculations if it is available in the TPS. AXB-Dw plans showed very high dose values in the PTV when compared to AAA and AXB-Dm in both sites studied. Also, the volume of PTV receiving 107% dose was significantly high in AXB-Dw plans compared to AXB-Dm plans in sites involving high density bones. Considering the results of dosimetric comparison and QA measurements, it is always better to choose AXB-Dm algorithm for dose calculations for all treatment sites especially when high density bony structures and complex treatment techniques are involved. For patient specific QA purposes, choosing AXB-Dm or AXB-Dw does not make any significant difference between calculated and measured dose distributions.  相似文献   

10.
《Medical Dosimetry》2021,46(3):269-273
Generic dose-volume constraints of the rectum/bladder (R/B) are used in inverse planning to reduce doses to these organs for patients undergoing prostate radiotherapy. A retrospective study was undertaken to assess correlations between the overlap of the R/B with the planning target volume (PTV) and the dose received during planning to organs at risk (OARs). Data for 105 prostate cancer patients who had volumetric modulated arc therapy (VMAT) to the intact prostate and proximal seminal vesicles at Nepean Cancer Care Centre from 2011 to 2015 were analyzed. R/B volume, R/B-PTV overlap volume, and R/B-PTV overlap percent metrics were collected with VMAT planning objectives. Characteristics were evaluated for correlation with different planning outcomes. The percentage overlap between the R/B and PTV were highly correlated to the doses to the relevant OAR, with a coefficient of determination (R2) of 0.63 for the rectum volume percentage receiving more than 75 Gy (RV75Gy) and R2 of 0.91 for the bladder volume percentage receiving more than 70 Gy (BV70Gy). We identified a cut-off value of 10.14% (sensitivity 84.62%, specificity 80.43%) as predictive of RV75Gy < 10% and a cut-off of 7.95% (sensitivity 97.62%, specificity 92.06%) as predictive of BV70Gy < 15%. A 95% prediction interval assisted in identifying individualized R/B planning goals. The R/B-PTV percentage overlap has a high reliability in estimating sparing of the R/B. This prediction model can be used to improve planning efficiency and create customised automated OAR planning goals in prostate VMAT plans. By doing this, the radiation doses received by these OARs can be minimized.  相似文献   

11.
目的 比较Monaco和Pinnacle 2套计划系统设计的肺癌容积旋转调强(VMAT)计划的计划质量、治疗效率和剂量验证精度.方法 选取20例肺癌病例,其中左肺癌10例,右肺癌10例,分别利用Monaco 3.0和Pinnacle 9.2两套计划系统设计VMAT计划,比较2种计划的靶区适形度、均匀性、最大剂量(Dmax)、平均剂量(Dmean)与最小剂量(Dmin)及危及器官的受照剂量;比较治疗计划执行时间、机器跳数和剂量验证的准确性.结果 除PTV的Dmin外,Monaco计划靶区的其他各项剂量学指标都明显优于Pinnacle(t=5.927~12.034,P<0.05);2种计划除患侧肺V10、全肺V5外,Monaco计划肺的其他剂量学指标都差于Pinnacle(t=3.545~7.485,P<0.05),Monaco计划对心脏的保护明显优于Pinnacle(t=2.836~4.011,P<0.05),但较差的是Monaco计划执行时间(t=9.780,P<0.05)和MU数量(t=5.304,P<0.05).Monaco计划的Delta4验证结果优于Pinnacle(t=4.937,P<0.05).结论 对于肺癌的VMAT计划,Monaco与 Pinnacle两套计划系统都能满足临床应用要求;Pinnacle在肺的保护与计划执行方面有明显的优势,Monaco在靶区剂量分布和心脏的保护,以及剂量验证方面具有优势.  相似文献   

12.
目的 探讨电子射野影像装置(EPID)位置误差对容积旋转调强放疗(VMAT)三维剂量验证的影响。方法 5枚Suremark SL-20铅点固定于Elekta托盘上,通过采集机架在0~360°旋转中EPID图像,分析各角度下EPID相对于加速器机头的位置偏移,根据该偏移对进行三维剂量重建的EPID图像进行位置误差修正,分析EPID运动误差对剂量重建的影响。分别对16例鼻咽癌患者的VMAT计划的双弧、顺时针弧(弧1)、逆时针弧(弧2)的重建剂量与计划剂量做γ分析,并对修正前后的γ分析结果进行分析。结果 相对于0°,源到探测器距离(SID)在180°时误差最大,为1.20 cm。考虑SID变化后计算的EPID上下(y)方向误差最大为2.28 mm(等中心层面),左右(x)方向误差在±0.5 mm以内。对16例鼻咽癌双弧VMAT治疗计划进行治疗前三维剂量验证,EPID y方向位置误差修正后3D γ通过率明显提高,5%/3 mm标准下的γ通过率提高分别为双弧(4.12±1.67)%(t=-9.86,P<0.05),弧1(3.47±1.64)%(t=-8.46,P<0.05),弧2(5.08±1.30)%(t=-15.63,P<0.05);3%/3 mm标准下,γ通过率提高分别为双弧(7.63±2.24)%(t=-13.63,P<0.05),弧1(6.03±2.07)%(t=-11.66,P<0.05),弧2(9.17±2.23)%(t=-16.41,P<0.05)。y方向修正后,再进行x方向修正,5%/3 mm和3%/3 mm γ通过率的平均值分别提高0.23%和0.24%。结论 EPID沿加速器机架到治疗床方向运动误差明显,对三维剂量重建影响较大。在基于EPID的剂量重建中,应对其进行修正,以重建较准确的患者三维剂量分布。  相似文献   

13.
《Medical Dosimetry》2021,46(4):328-334
To compare the effect of a contrast-enhanced (CE) agent on volumetric-modulated arc therapy plans based on four types of images—virtual monochromatic images (VMIs) captured at 70 and 140 keV (namely VMI70 and VMI140, respectively), water density image (WDI), and virtual non-contrast image (VNC) generated using a dual-energy computed tomography (DECT) system. A tissue characterization phantom and a multi-energy phantom were scanned, and VMI70, VMI140, WDI, and VNC were retrospectively reconstructed. For each image, a lookup table (LUT) was created. For 13 patients with nasopharyngeal cancer, non-CE and CE scans were performed, and volumetric-modulated arc therapy plans were generated on the basis of non-CE VMI70. Subsequently, the doses were re-calculated using the four types of DECT images and their corresponding LUTs. The maximum differences in the physical density estimation were 21.3, 5.2, −3.9, and 0.5% for VMI70, VMI140, WDI, and VNC, respectively. Compared with VMI70, the WDI approach significantly reduced (p < 0.05) the dosimetric difference due to the CE agent for the planning target volume (PTV) (D50%), whereas the difference was significantly increased for D1%. Except for PTV (D1%), the differences were significantly lower (p < 0.05) in the treatment plans based on VMI140 and VNC than that based on VMI70. For the VNC, the mean difference was less than 0.2% for all dosimetric parameters for the PTV. For patients with NPC, treatment plans based on the VNC derived from CE scan showed the best agreement with those based on the non-CE VMI70. Ideally, the effect of CE agent on dose distribution does not appear in treatment planning procedures.  相似文献   

14.
In volumetric modulated arc therapy (VMAT) for prostate cancer, a positional and rotational error correction is performed according to the position and angle of the prostate. The correction often involves body leaning, and there is concern regarding variation in the dose distribution. Our purpose in this study was to evaluate the impact of body pitch rotation on the dose distribution regarding VMAT. Treatment plans were obtained retrospectively from eight patients with prostate cancer. The body in the computed tomography images for the original VMAT plan was shifted to create VMAT plans with virtual pitch angle errors of ±1.5° and ±3°. Dose distributions for the tilted plans were recalculated with use of the same beam arrangement as that used for the original VMAT plan. The mean value of the maximum dose differences in the dose distributions between the original VMAT plan and the tilted plans was 2.98 ± 0.96 %. The value of the homogeneity index for the planning target volume (PTV) had an increasing trend according to the pitch angle error, and the values of the D 95 for the PTV and D 2ml, V 50, V 60, and V 70 for the rectum had decreasing trends (p < 0.05). However, there was no correlation between differences in these indexes and the maximum dose difference. The pitch angle error caused by body leaning had little effect on the dose distribution; in contrast, the pitch angle correction reduced the effects of organ displacement and improved these indexes. Thus, the pitch angle setup error in VMAT for prostate cancer should be corrected.  相似文献   

15.

Purpose

Metallic dental implants cause severe streaking artefacts in computed tomography (CT) data, which inhibit the correct representation of shape and density of the metal and the surrounding tissue. The aim of this study was to investigate the impact of dental implants on the accuracy of dose calculations in radiation therapy planning and the benefit of metal artefact reduction (MAR). A second aim was to determine the treatment technique which is less sensitive to the presence of metallic implants in terms of dose calculation accuracy.

Materials and methods

Phantoms consisting of homogeneous water equivalent material surrounding dental implants were designed. Artefact-containing CT data were corrected using the correct density information. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated on corrected and uncorrected CT data and compared to 2-dimensional dose measurements using GafChromic? EBT2 films.

Results

For all plans the accuracy of dose calculations is significantly higher if performed on corrected CT data (p?=?0.015). The agreement of calculated and measured dose distributions is significantly higher for VMAT than for IMRT plans for calculations on uncorrected CT data (p?=?0.011) as well as on corrected CT data (p?=?0.029).

Conclusion

For IMRT and VMAT the application of metal artefact reduction significantly increases the agreement of dose calculations with film measurements. VMAT was found to provide the highest accuracy on corrected as well as on uncorrected CT data. VMAT is therefore preferable over IMRT for patients with metallic implants, if plan quality is comparable for the two techniques.
  相似文献   

16.
目的 分析不同剂量计算算法和不同射野设置对肺癌容积旋转调强计划(VMAT)的剂量学差异,为临床计划设计提供参考。方法 选择20例肺癌患者,分别设计4组VMAT计划:基于各向异性解析算法(AAA)的2野2弧(2F2A_AAA)、基于外照射光子剂量算法(AXB)射的2野2弧 (2F2A_AXB)、基于蒙特卡罗算法(MC)的2野2弧(2F2A_MC)、基于MC算法的1野2弧(1F2A_MC)。分别对不同算法、不同射野设置的计划,在靶区覆盖、高量控制、剂量均匀性指数(HI)、适形性指数(CI),以及危及器官(OARs)受照剂量进行评估。结果 3组不同算法的2F2A计划靶区结果表明,2F2A_MC在PGTV的D1%V95%(受到95%处方剂量所包绕的靶区相对体积)上均优于2F2A_AAA(D1%:t=-2.44,P=0.03;V95%:z=-2.04,P=0.04)和2F2A_AXB(D1%:t=2.34, P=0.03; z=-3.21,P<0.01)。 2F2A_AXB在PGTV的CI表现上优于2F2A_AAA(z=-3.66,P<0.01),与2F2A_MC相当。就危及器官而言,2F2A_AXB和2F2A_MC全肺的V5 Gy上分别较2F2A_AAA减少了0.68%(z=-2.69,P=0.01)和3.05%(z=-3.52,P<0.01)。2F2A_AXB计划在全肺Dmean为1776.44 cGy,均优于2F2A_MC(t=2.67,P=0.02)和2F2A_AAA(t=8.62,P<0.01)。2F2A_AXB的Body_5mm在V20 Gy相较于2F2A_AAA和2F2A_MC分别减少了1.45%(z=-3.88,P<0.01)和2.01%(z=-3.66, P<0.01)。而不同射野设置的两组计划结果表明,1F2A_MC在PTV1的CI和PTV2的HI上均优于2F2A_MC(CI: t=2.61, P=0.02; HI: z=-2.20, P=0.03)。1F2A_MC在全肺Dmean相对于2F2A_MC增加了26.29 cGy(t=2.28,P=0.04)。结论 在进行肺癌VMAT计划设计时,MC算法适用于靶区优先,AXB算法适用于危及器官优先;而仅有MC算法的情况下,靶区优先时推荐选择1F2A,危及器官优先时推荐选择2F2A。  相似文献   

17.
Volumetric-modulated arc therapy (VMAT) has been previously evaluated for several tumor sites and has been shown to provide significant dosimetric and delivery benefits when compared with intensity-modulated radiation therapy (IMRT). To date, there have been no published full reports on the benefits of VMAT use in pancreatic patients compared with IMRT. Ten patients with pancreatic malignancies treated with either IMRT or VMAT were retrospectively identified. Both a double-arc VMAT and a 7-field IMRT plan were generated for each of the 10 patients using the same defined tumor volumes, organs at risk (OAR) volumes, dose, fractionation, and optimization constraints. The planning tumor volume (PTV) maximum dose (55.8 Gy vs. 54.4 Gy), PTV mean dose (53.9 Gy vs. 52.1 Gy), and conformality index (1.11 vs. 0.99) were statistically similar between the IMRT and VMAT plans, respectively. The VMAT plans had a statistically significant reduction in monitor units compared with the IMRT plans (1109 vs. 498, p < 0.001). In addition, the doses to the liver, small bowel, and spinal cord were comparable between the IMRT and VMAT plans. However, the VMAT plans demonstrated a statistically significant reduction in the mean left kidney V25 (9.4 Gy vs. 2.3 Gy, p = 0.018), mean right kidney V15 (53.4 Gy vs. 45.9 Gy, p = 0.035), V20 (32.2 Gy vs. 25.5 Gy, p = 0.016), and V25 (21.7 Gy vs. 14.9 Gy, p = 0.001). VMAT was investigated in patients with pancreatic malignancies and compared with the current standard of IMRT. VMAT was found to have similar or improved dosimetric parameters for all endpoints considered. Specifically, VMAT provided reduced monitor units and improved bilateral kidney normal tissue dose. The clinical relevance of these benefits in the context of pancreatic cancer patients, however, is currently unclear and requires further investigation.  相似文献   

18.
《Medical Dosimetry》2019,44(2):159-166
Streaking artifacts in computed tomography (CT) scans caused by metallic dental implants (MDIs) can lead to inaccuracies in dose calculations. This study quantifies and compares the effect of MDIs on dose distributions using the collapsed cone convolution superposition (CCCS) and Monte Carlo (MC) algorithms, with and without correcting for the density of the MDIs. Ion chamber measurements were taken to test the ability of the algorithms in Pinnacle3 and Monaco to calculate dose near high-Z materials. Nine previously treated patients with head and neck cancer were included in this study. The MDI and the streaking artifacts on the CT images were carefully contoured. For each patient, a plan was optimized and calculated using the Pinnacle3 treatment planning system (TPS). Two dose calculations were performed for each patient: one with overridden densities of the MDI and CT artifacts and one without overridden densities of the MDI and CT artifacts. The plans were then exported to the Monaco TPS and recalculated for the same number of monitor units (MUs) using its MC dose calculation algorithm. The changes in dose to the planning target volume (PTV) and surrounding healthy tissues were examined between all the plans using VelocityAI. For the ion chamber measurements, when correct density information was used, Monaco was within 3% of the measured values, whereas the doses calculated in Pinnacle3 varied up to 7%. The CCCS algorithm in Pinnacle3 calculated only a significant decrease in PTV coverage for 1 patient when the densities were overridden. The MC algorithm in Monaco was able to calculate a significant change in PTV coverage for five of the patients when the density was overridden. Additionally, when healthy tissues affected by streaking artifacts were assigned the correct density, cumulative (from all the fractions) point doses increased up to 46.2 Gy. Not properly accounting for MDIs can impact both the high-dose regions (PTVs) and surrounding healthy tissues. This study demonstrates that if MDIs and the artifacts are not appropriately accounted for by contouring and assigning to them the correct density, there is a potential risk of compromising the quality of the plan regarding PTV coverage and dose to healthy tissues.  相似文献   

19.
《Medical Dosimetry》2023,48(3):197-201
This study aimed to compare dosimetric parameters for targets and organs at risk (OARs) between volumetric modulated arc therapy (VMAT) and automated VMAT (HyperArc, HA) plans in stereotactic radiotherapy for patients with cervical metastatic spine tumors. VMAT plans were generated for 11 metastases using the simultaneous integrated boost technique to deliver 35 to 40 and 20 to 25 Gy for high dose and elective dose planning target volume (PTVHD and PTVED), respectively. The HA plans were retrospectively generated using 1 coplanar and 2 noncoplanar arcs. Subsequently, the doses to the targets and OARs were compared. The HA plans provided significantly higher (p < 0.05) Dmin (77.4 ± 13.1%), D99% (89.3 ± 8.9%), and D98% (92.5 ± 7.7%) for gross tumor volume (GTV) than those of the VMAT plans (73.4 ± 12.2%, 84.2 ± 9.6 and 87.3 ± 8.8% for Dmin, D99% and D98%, respectively). In addition, D99% and D98% for PTVHD were significantly higher in the HA plans, whereas dosimetric parameters were comparable between the HA and VMAT plans for PTVED. The Dmax values for the brachial plexus, esophagus, and spinal cord were comparable, and no significant difference was observed in the Dmean for the larynx, pharyngeal constrictor, thyroid, parotid grand (left and right), and Submandibular gland (left and right). The HA plans provided significantly higher target coverage of GTV and PTVHD, with a comparable dose for OARs with VMAT plans. The results of this study may contribute to the improvement of local control in clinical practice.  相似文献   

20.
目的 观察 125I 粒子植入时,计算机治疗计划系统(TPS)软件中计算点阵网格大小对剂量计算精度的影响。方法 采用随机数字表法抽取10例粒子植入患者的验证计划,将点阵网格调整为128×128、96×96、64×64、32×32共4组,在粒子数目、位置、活度及靶区大小相同的条件下,应用TPS计算每个计划的剂量,分别得出4组D90V90V100V150,并计算D90的误差。结果 128×128、96×96、64×64、32×32 4组点阵网格D90平均数分别为(7 178.8±2 237.7)、(7 072.7±2 240.8)、(6 889.1±2 305.5)、(6 351.0±2 515.7)cGy;D90误差百分比分别为(0.74±0.6)%、(-0.89±2.2)%、(-3.85±4.7)%、(-10.46±4.8)%,组间差异有统计学意义(F=8.95,P<0.05)。4组点阵网格V90分别为(93.12±0.32)%、(92.75±0.29)%、(91.87±1.28)%、(88.06±5.06)%,组间差异有统计学意义(F=7.85,P<0.05);V100分别为(90.21±0.14)%、(89.67±0.64)%、(88.68±1.80)%、(84.10±6.56)%,组间差异有统计学意义(F=6.64,P<0.05);V150分别为(73.48±3.49)%、(72.66±3.96)%、(71.33±4.83)%、(65.41±9.49)%,组间差异有统计学意义(F=3.90,P<0.05)。结论 计算点阵网格大小明显影响TPS计算剂量的准确性,在保证运算速度同时应尽量应用128×128的计算点阵网格。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号