首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Seminars in immunology》2014,26(5):380-388
The CB1 cannabinoid receptor is a G protein coupled receptor that is widely expressed throughout the brain. The endogenous ligands for the CB1 receptor (endocannabinoids) are N-arachidonylethanolamine and 2-arachidonoylglycerol; together the endocannabinoids and CB1R subserve activity dependent, retrograde inhibition of neurotransmitter release in the brain. Deficiency of CB1 receptor signaling is associated with anhedonia, anxiety, and persistence of negative memories. CB1 receptor-endocannabinoid signaling is activated by stress and functions to buffer or dampen the behavioral and endocrine effects of acute stress. Its role in regulation of neuronal responses is more complex. Chronic variable stress exposure reduces endocannabinoid-CB1 receptor signaling and it is hypothesized that the resultant deficiency in endocannabinoid signaling contributes to the negative consequences of chronic stress. On the other hand, repeated exposure to the same stress can sensitize CB1 receptor signaling, resulting in dampening of the stress response. Data are reviewed that support the hypothesis that CB1 receptor signaling is stress responsive and that maintaining robust endocannabinoid/CB1 receptor signaling provides resilience against the development of stress-related pathologies.  相似文献   

2.
CB(1) receptor antagonists were among the most promising drug targets in the last decade. They have been explored and found to be effective as therapeutic agents for obesity and related cardiometabolic problems; however, use of rimonabant, the first marketed CB(1) receptor antagonist, has been suspended because of its anxiogenic and depressogenic side effects. Because some other antiobesity drugs, like dexfenfluramine or sibutramine, were also suspended, the unmet need for drugs that reduce body weight became enormous. One approach that emerged was the use of CB(1) receptor antagonists that poorly cross the blood brain barrier, the second, the development of neutral antagonists instead of inverse agonists, and the third, use of personalized medicine, namely the selection of the patient population without psychiatric side effects. In this review, we dissect the peripheral and central mechanisms involved in the effects of CB(1) receptor antagonists and argue that central mechanisms are more or less involved in most cardiometabolic therapeutic effects and thus, among patients with unsatisfactory therapeutic response to compounds with peripheral action, centrally acting antagonists may be needed. An analysis of pharmacogenetic factors may help to identify persons who are at no or low risk for psychiatric adverse effects. Here, we present the models and identify molecular mechanisms and receptors involved in the effects of stress-, anxiety- and depression-related neurocircuitries sensitive to CB(1) receptor antagonists, like the serotonergic, noradrenergic and dopaminergic systems, which are not only regulated by CB(1) receptors, but also regulate the synthesis of the endocannabinoid 2-arachidonoyl-glycerol.  相似文献   

3.
The CB1 inverse agonist/antagonist SR141716A recently has been introduced for the management of obesity (rimonabant; Acomplia) and appears to have beneficial effects. However, its utility may be hampered in some individuals by adverse effects including nausea or emesis or by mood depression. The recent development of biochemically 'neutral' antagonists such as AM4113 (Sink et al., 2007) has allowed an initial evaluation of the proposition that adverse effects of SR141716A are associated with its inverse agonist activity. Thus far, data comparing SR141716A and AM4113 across several species indicate that both drugs produce dose-related direct effects on operant behavior within the same range of doses that serve to antagonize the behavioral and hypothermic effects of a CB1 agonist. However, initial observations suggest that AM4113 may not produce preclinical indications of nausea or emesis. Further studies with AM4113 and other novel CB1 antagonists differing in efficacy should amplify our understanding of the relationship between the pharmacological activity of CB1 antagonists and their behavioral effects.  相似文献   

4.
《Seminars in immunology》2014,26(5):369-379
It has been well appreciated that the endocannabinoid system can regulate immune responses via the cannabinoid receptor 2 (CB2), which is primarily expressed by cells of the hematopoietic system. The endocannabinoid system is composed of receptors, ligands and enzymes controlling the synthesis and degradation of endocannabinoids. Along with endocannabinoids, both plant-derived and synthetic cannabinoids have been shown to bind to and signal through CB2 via G proteins leading to both inhibitory and stimulatory signals depending on the biological process. Because no cannabinoid ligand has been identified that only binds to CB2, the generation of mice deficient in CB2 has greatly expanded our knowledge of how CB2 contributes to immune cell development and function in health and disease. In regards to humans, genetic studies have associated CB2 with a variety of human diseases. Here, we review the endocannabinoid system with an emphasis on CB2 and its role in the immune system.  相似文献   

5.
Numerous investigations have recently demonstrated the important roles of the endocannabinoid system in the gastrointestinal (GI) tract under physiological and pathophysiological conditions. In the GI tract, cannabinoid type 1 (CB1) receptors are present in neurons of the enteric nervous system and in sensory terminals of vagal and spinal neurons, while cannabinoid type 2 receptors are located in immune cells. Activation of CB1 receptors was shown to modulate several functions in the GI tract, including gastric secretion, gastric emptying and intestinal motility. Under pathophysiological conditions induced experimentally in rodents, the endocannabinoid system conveys protection to the GI tract (e.g. from inflammation and abnormally high gastric and enteric secretions). Such protective activities are largely in agreement with anecdotal reports from folk medicine on the use of Cannabis sativa extracts by subjects suffering from various GI disorders. Thus, the endocannabinoid system may serve as a potentially promising therapeutic target against different GI disorders, including frankly inflammatory bowel diseases (e.g. Crohns disease), functional bowel diseases (e.g. irritable bowel syndrome) and secretion- and motility-related disorders. As stimulation of this modulatory system by CB1 receptor agonists can lead to unwanted psychotropic side effects, an alternative and promising avenue for therapeutic applications resides in the treatment with CB1 receptor agonists that are unable to cross the blood–brain barrier, or with compounds that inhibit the degradation of endogenous ligands (endocannabinoids) of CB1 receptors, hence prolonging the activity of the endocannabinoid system.  相似文献   

6.
Status epilepticus (SE) is a major medical emergency associated with a significant morbidity and mortality. Little is known about the mechanisms that terminate seizure activity and prevent the development of status epilepticus. Cannabinoids possess anticonvulsant properties and the endocannabinoid system has been implicated in regulating seizure duration and frequency. Endocannabinoids regulate synaptic transmission and dampen seizure activity via activation of the presynaptic cannabinoid receptor 1 (CB1). This study was initiated to evaluate the role of CB1 receptor-dependent endocannabinoid synaptic transmission towards preventing the development of status epilepticus-like activity in the well-characterized hippocampal neuronal culture model of acquired epilepsy using patch clamp electrophysiology. Application of the CB1 receptor antagonists SR141716A (1 microM) or AM251 (1 microM) to "epileptic" neurons caused the development of continuous epileptiform activity, resembling electrographic status epilepticus. The induction of status epilepticus-like activity by CB1 receptor antagonists was reversible and could be overcome by maximal concentrations of CB1 agonists. Similar treatment of control neurons with CB1 receptor antagonists did not produce status epilepticus or hyperexcitability. These findings suggest that CB1 receptor-dependent endocannabinoid endogenous tone plays an important role in modulating seizure frequency and duration and preventing the development of status epilepticus-like activity in populations of epileptic neurons. The regulation of seizure activity and prevention of status epilepticus by the endocannabinoid system offers an important insight into understanding the basic mechanisms that control the development of continuous epileptiform discharges.  相似文献   

7.
The cannabinoid system comprises specific G protein-coupled receptors (CB1 and CB2), exogenous (marijuana-derived cannabinoids) and endogenous (endocannabinoids) ligands, and a machinery dedicated to endocannabinoid synthesis and degradation. Studies over two decades have extensively documented the crucial role of the cannabinoid system in the regulation of a variety of pathophysiological conditions. However, its role in liver pathology has only been recently unravelled, probably given the low expression of CB1 and CB2 in the normal liver. We have recently demonstrated that CB1 and CB2 receptors display opposite effects in the regulation of liver fibrogenesis during chronic liver injury. Indeed, both receptors are up-regulated in the liver of cirrhotic patients, and expressed in liver fibrogenic cells. Moreover, CB1 receptors are profibrogenic and accordingly, the CB1 antagonist rimonabant reduces fibrosis progression in three experimental models. In keeping with these results, daily cannabis smoking is a risk factor for fibrosis progression in patients with chronic hepatitis C. In contrast, CB2 display antifibrogenic effects, by a mechanism involving reduction of liver fibrogenic cell accumulation. These results may offer new perspectives for the treatment of liver fibrosis, combining CB2 agonist and CB1 antagonist therapy.  相似文献   

8.
Retrograde synaptic signaling by endogenous cannabinoids (endocannabinoids) is a recently discovered form of neuromodulation in various brain regions. In hippocampus, it is well known that endocannabinoids suppress presynaptic inhibitory neurotransmitter release in CA1 region. However, endocannabinoid signaling in CA3 region remains to be examined. Here we investigated whether presynaptic inhibition can be caused by activation of postsynaptic group I metabotropic glutamate receptors (mGluRs) and following presynaptic cannabinoid receptor type 1 (CB1 receptor) using mechanically dissociated rat hippocampal CA3 pyramidal neurons with adherent functional synaptic boutons. Application of group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) reversibly suppressed spontaneous inhibitory postsynaptic currents (IPSCs). In the presence of tetrodotoxin (TTX), frequency of miniature IPSCs was significantly reduced by DHPG, while there were no significant changes in minimum quantal size and sensitivity of postsynaptic GABAA receptors to the GABAA receptor agonist muscimol, indicating that this suppression was caused by a decrease in GABA release from presynaptic nerve terminals. Application of CB1 synthetic agonist WIN55212-2 (mesylate(R)-(+)-[2,3-dihydro-5-methyl-3-[4-morpholino)methyl]pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl](1-naphthyl)methanone) or endocannabinoid 2-arachidonoylglycerol also suppressed the spontaneous IPSC. The inhibitory effect of DHPG on spontaneous IPSCs was abolished by SR-141716 (5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide), a CB1 receptor antagonist. Furthermore, postsynaptic application of GDP-βS blocked the DHPG-induced inhibition of spontaneous IPSCs, indicating the involvement of endcannabinoid-mediated retrograde synaptic signaling. These results provide solid evidence for retrograde signaling from postsynaptic group I mGluRs to presynaptic CB1 receptors, which induces presynaptic inhibition of GABA release in rat hippocampal CA3 region.  相似文献   

9.
Endocannabinoid control of food intake and energy balance   总被引:10,自引:0,他引:10  
Marijuana and its major psychotropic component, Delta(9)-tetrahydrocannabinol, stimulate appetite and increase body weight in wasting syndromes, suggesting that the CB(1) cannabinoid receptor and its endogenous ligands, the endocannabinoids, are involved in controlling energy balance. The endocannabinoid system controls food intake via both central and peripheral mechanisms, and it may also stimulate lipogenesis and fat accumulation. Here we discuss the multifaceted regulation of energy homeostasis by endocannabinoids, together with its applications to the treatment of eating disorders and metabolic syndromes.  相似文献   

10.
Recent work in our laboratories has demonstrated that an opioid-independent form of stress-induced analgesia (SIA) is mediated by endogenous ligands for cannabinoid receptors-anandamide and 2-arachidonoylglycerol (2-AG) [A.G. Hohmann, R.L. Suplita, N.M. Bolton, M.H. Neely, D. Fegley, R. Mangieri, J.F. Krey, J.M. Walker, P.V. Holmes, J.D. Crystal, A. Duranti, A. Tontini, M. Mor, G. Tarzia, D. Piomelli, An endocannabinoid mechanism for stress-induced analgesia, Nature 435 (2005) 1108-1112]. The present study was conducted to examine the contribution of cannabinoid CB1 receptors in the basolateral nucleus of the amygdala (BLA) and central nucleus of the amygdala (CeA) to nonopioid SIA. SIA was induced by continuous footshock (3 min 0.9 mA) and quantified behaviorally using the tail-flick test. Microinjection of the CB1 antagonist/inverse agonist rimonabant (SR141716A) into the BLA, a limbic forebrain region with high densities of CB1 receptors, suppressed SIA relative to control conditions. By contrast, the same dose administered into the CeA, where CB1 immunoreactivity is largely absent, or outside the amygdala did not alter SIA. To examine the contribution of endocannabinoids in the BLA to SIA, we used selective pharmacological inhibitors of the anandamide-degrading enzyme fatty-acid amide hydrolase (FAAH) and the 2-arachidonoylglycerol-degrading enzyme monoacylglycerol lipase (MGL). The FAAH inhibitor URB597 and MGL inhibitor URB602, at doses that enhanced SIA following microinjection in the midbrain periaqueductal gray, did not alter SIA relative to control conditions. Our findings suggest that CB1 receptors in the BLA but not the CeA contribute to SIA, but pharmacological inhibition of endocannabinoid degradation at these sites does not affect the expression of stress antinociception.  相似文献   

11.
Studies of the endocannabinoid system in the CNS have been mostly focused on endocannabinoid receptors and inactivating mechanisms. Until recently, very little was known about the role of biosynthetic enzymes in endocannabinoid signaling. New data from the recent development of pharmacological and genetic tools for the study of these enzymes point to their fundamental role in determining where and when endocannabinoids function, and raise the possibility of new intriguing and previously unsuspected concepts in the general strategy of endocannabinoid signaling. However, even with these new tools, the cross-talk between anandamide and 2-arachidonoylglycerol biosynthesis makes it difficult to dissect one from the other, and data will need to be interpreted with this in mind.  相似文献   

12.
Role of endogenous cannabinoids in synaptic signaling   总被引:32,自引:0,他引:32  
Research of cannabinoid actions was boosted in the 1990s by remarkable discoveries including identification of endogenous compounds with cannabimimetic activity (endocannabinoids) and the cloning of their molecular targets, the CB1 and CB2 receptors. Although the existence of an endogenous cannabinoid signaling system has been established for a decade, its physiological roles have just begun to unfold. In addition, the behavioral effects of exogenous cannabinoids such as delta-9-tetrahydrocannabinol, the major active compound of hashish and marijuana, await explanation at the cellular and network levels. Recent physiological, pharmacological, and high-resolution anatomical studies provided evidence that the major physiological effect of cannabinoids is the regulation of neurotransmitter release via activation of presynaptic CB1 receptors located on distinct types of axon terminals throughout the brain. Subsequent discoveries shed light on the functional consequences of this localization by demonstrating the involvement of endocannabinoids in retrograde signaling at GABAergic and glutamatergic synapses. In this review, we aim to synthesize recent progress in our understanding of the physiological roles of endocannabinoids in the brain. First, the synthetic pathways of endocannabinoids are discussed, along with the putative mechanisms of their release, uptake, and degradation. The fine-grain anatomical distribution of the neuronal cannabinoid receptor CB1 is described in most brain areas, emphasizing its general presynaptic localization and role in controlling neurotransmitter release. Finally, the possible functions of endocannabinoids as retrograde synaptic signal molecules are discussed in relation to synaptic plasticity and network activity patterns.  相似文献   

13.
Furset G  Fløisand Y  Sioud M 《Immunology》2008,125(2):263-271
The endogenous cannabinoid system plays an important role in regulating the immune system. Modulation of endogenous cannabinoids represents an attractive alternative for the treatment of inflammatory disorders. This study investigated the effects of URB597, a selective inhibitor of fatty acid amide hydrolase (FAAH), the enzyme catalysing degradation of the endogenous cannabinoid anandamide, and AM404, an inhibitor of anandamide transport, on lipopolysaccharide (LPS)-induced increases in plasma cytokine levels in rats. Both URB597 and AM404 potentiated the LPS-induced increase in plasma tumour necrosis factor-alpha (TNF-alpha) levels. The peroxisome proliferator-activated receptor gamma (PPARgamma) antagonist, GW9662, attenuated the AM404-induced augmentation of TNF-alpha levels. Furthermore, the selective cannabinoid CB1 and CB2 receptor antagonists, AM251 and AM630 respectively, and the transient receptor potential vanilloid receptor-1 (TRPV1) antagonist, SB366791, reduced LPS-induced TNF-alpha plasma levels both alone and in combination with AM404. In contrast, AM404 inhibited LPS-induced increases in circulating interleukin-1beta (IL-1beta) and IL-6. AM251 attenuated the immunosuppressive effect of AM404 on IL-1beta. None of the antagonists altered the effect of AM404 on LPS-induced IL-6. Moreover, AM251, AM630 and SB366791, administered alone, inhibited LPS-induced increases in plasma IL-1beta and IL-6 levels. In conclusion, inhibition of endocannabinoid degradation or transport in vivo potentiates LPS-induced increases in circulating TNF-alpha levels, an effect which may be mediated by PPARgamma and is also reduced by pharmacological blockade of CB1, CB2 and TRPV1. The immunosuppressive effect of AM404 on IL-1beta levels is mediated by the cannabinoid CB1 receptor. Improved understanding of endocannabinoid-mediated regulation of immune function has fundamental physiological and potential therapeutic significance.  相似文献   

14.
Yanovsky Y  Mades S  Misgeld U 《Neuroscience》2003,122(2):317-328
Both endocannabinoids through cannabinoid receptor type I (CB1) receptors and dopamine through dopamine receptor type D1 receptors modulate postsynaptic inhibition in substantia nigra by changing GABA release from striatonigral terminals. By recording from visually identified pars compacta and pars reticulata neurons we searched for a possible co-release and interaction of endocannabinoids and dopamine. Depolarization of a neuron in pars reticulata or in pars compacta transiently suppressed evoked synaptic currents which were blocked by GABA(A) receptor antagonists (inhibitory postsynaptic currents [IPSCs]). This depolarization-induced suppression of inhibition (DSI) was abrogated by the cannabinoid CB1 receptor antagonist AM251 (1 microM). A correlation existed between the degree of DSI and the degree of reduction of evoked IPSCs by the CB1 receptor agonist WIN55,212-2 (1 microM). The cholinergic receptor agonist carbachol (0.5-5 microM) enhanced DSI, but suppression of spontaneous IPSCs was barely detectable pointing to the existence of GABA release sites without CB1 receptors. In dopamine, but not in GABAergic neurons DSI was enhanced by the dopamine D1 receptor antagonist SCH23390 (3-10 microM). Both the antagonist for CB1 receptors and the antagonist for dopamine D1 receptors enhanced or reduced, respectively, the amplitudes of evoked IPSCs. This tonic influence persisted if the receptor for the other ligand was blocked. We conclude that endocannabinoids and dopamine can be co-released. Retrograde signaling through endocannabinoids and dopamine changes inhibition independently from each other. Activation of dopamine D1 receptors emphasizes extrinsic inhibition and activation of CB1 receptors promotes intrinsic inhibition.  相似文献   

15.

Objective

Angiogenesis depends on a complex interaction between cellular networks and mediators. The endocannabinoid system and its receptors have been shown to play a role in models of inflammation. Here, we investigated whether blockade of cannabinoid receptors may interfere with inflammatory angiogenesis.

Materials and methods

Polyester-polyurethane sponges were implanted in C57Bl/6j mice. Animals received doses (3 and 10 mg/kg/daily, s.c.) of the cannabinoid receptor antagonists SR141716A (CB1) or SR144528 (CB2). Implants were collected at days 7 and 14 for cytokines, hemoglobin, myeloperoxidase, and N-acetylglucosaminidase measurements, as indices of inflammation, angiogenesis, neutrophil and macrophage accumulation, respectively. Histological and morphometric analysis were also performed.

Results

Cannabinoid receptors expression in implants was detected from day 4 after implantation. Treatment with CB1 or CB2 receptor antagonists reduced cellular influx into sponges at days 7 and 14 after implantation, although CB1 receptor antagonist were more effective at blocking leukocyte accumulation. There was a reduction in TNF-α, VEGF, CXCL1/KC, CCL2/JE, and CCL3/MIP-1α levels, with increase in CCL5/RANTES. Both treatments reduced neovascularization. Dual blockade of cannabinoid receptors resulted in maximum inhibition of inflammatory angiogenesis.

Conclusions

Blockade of cannabinoid receptors reduced leukocyte accumulation, inflammation and neovascularization, suggesting an important role of endocannabinoids in sponge-induced inflammatory angiogenesis both via CB1 and CB2 receptors.  相似文献   

16.
The endocannabinoid system is involved in the pathogenesis of liver fibrosis. Although many substances have been proved to reduce fibrosis in experimental models of chronic liver injury, most of them appear to be effective only if given as a prophylactic or early treatment. This study aimed to explore the effect of pharmacological antagonism of the endocannabinoid cannabinoid type 1 (CB1) receptor started after the stage of full-blown cirrhosis had been reached. Wistar-Han rats with carbon tetrachloride (CCl(4))-induced cirrhosis were randomized to receive the CB1 receptor antagonist Rimonabant (10?mg/kg/day) or the vehicle for 2 weeks. Age-matched healthy rats served as controls. Liver fibrosis was assessed using Sirius red staining, hydroxyproline concentration and α-smooth muscle actin expression. Hepatic gene expression of mediators of fibrogenesis and inflammation were evaluated by real-time PCR. We also assessed the hepatic expression of CB1 and CB2 receptors and that of the enzymes implicated in the endocannabinoid metabolism. Fibrosis was significantly reduced in rats treated with Rimonabant compared with rats receiving the vehicle. CB1 receptor antagonism limited the gene upregulation of fibrogenic and inflammatory mediators occurring in untreated cirrhotic rats. CB1 and CB2 receptor expression was increased in cirrhotic animals. Interestingly, pharmacological CB1 receptor antagonism was associated with a further induction of the CB2 receptor expression. Regression of fibrosis can be achieved by pharmacological blockade of the CB1 receptor even when started in an advanced stage of the disease. This effect is associated with the suppression of pro-fibrogenic and inflammatory mediators and may have been indirectly favoured by the induction of CB2 receptor expression.  相似文献   

17.
Endocannabinoids are endogenous bioactive lipid mediators present both in the brain and various peripheral tissues, which exert their biological effects via interaction with specific G-protein-coupled cannabinoid receptors, the CB1 and CB2. Pathological overactivation of the endocannabinoid system (ECS) in various forms of shock and heart failure may contribute to the underlying pathology and cardiodepressive state by the activation of the cardiovascular CB1 receptors. Furthermore, tonic activation of CB1 receptors by endocannabinoids has also been implicated in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes, such as plasma lipid alterations, abdominal obesity, hepatic steatosis, inflammation, and insulin and leptin resistance. In contrast, activation of CB2 receptors in immune cells exerts various immunomodulatory effects, and the CB2 receptors in endothelial and inflammatory cells appear to limit the endothelial inflammatory response, chemotaxis, and inflammatory cell adhesion and activation in atherosclerosis and reperfusion injury. Here, we will overview the cardiovascular actions of endocannabinoids and the growing body of evidence implicating the dysregulation of the ECS in a variety of cardiovascular diseases. We will also discuss the therapeutic potential of the modulation of the ECS by selective agonists/antagonists in various cardiovascular disorders associated with inflammation and tissue injury, ranging from myocardial infarction and heart failure to atherosclerosis and cardiometabolic disorders.  相似文献   

18.
In hippocampal pyramidal cells, a rise in Ca(2+) releases endocannabinoids that activate the presynaptic cannabinoid receptor (CB1R) and transiently reduce GABAergic transmission-a process called depolarization-induced suppression of inhibition (DSI). The mechanism that limits the duration of endocannabinoid action in intact cells is unknown. Here we show that inhibition of cyclooxygenase-2 (COX-2), not fatty acid amide hydrolase (FAAH), prolongs DSI, suggesting that COX-2 limits endocannabinoid action.  相似文献   

19.
The cannabinoid receptors, CB1 and CB2, are expressed in the heart, but their role under pathological conditions remains controversial. This study examined the effect of CB1 receptor blockade on cardiovascular functions after experimental MI and in experimental metabolic syndrome. MI was induced in Wistar rats by permanent ligation of the left coronary artery. Treatment with the CB1 receptor antagonist rimonabant (10 mg/kg i.p. daily) started 7 days before or 6 h after MI and continued for 6 weeks. Haemodynamic parameters were measured via echocardiography and intracardiac Samba catheter. CB1 blockade improved systolic and diastolic heart function, decreased cardiac collagen and hydroxyproline content and down-regulated TGF-β1. Additionally, rimonabant decreased arterial stiffness, normalised QRS complex duration and reduced brain natriuretic peptide levels in serum. In primary cardiac fibroblasts, rimonabant decreased MMP-9 activity and TGF-β1 expression. Furthermore, rimonabant improved depressed systolic function of spontaneously hypertensive obese rats and reduced weight gain. Blocking of CB1 receptor with rimonabant improves cardiac functions in the early and late stages after MI, decreases arterial stiffness and reduces cardiac remodelling. Rimonabant also has cardioprotective actions in rats characterised by the metabolic syndrome. Inhibition of proteolysis and TGF-β1 expression and reduced collagen content by rimonabant may attenuate destruction of the extracellular matrix and decrease fibrosis after MI.  相似文献   

20.
Immune system responsiveness results from numerous factors, including endogenous cannabinoid signaling in immunocytes termed the "immunocannabinoid" system. This system can be an important signaling pathway for immune modulation. To assess the immunomodulating role of the cannabinoid 2 (CB2) receptor, we sought polymorphisms in the human gene, identified a common dinucleotide polymorphism, and investigated its effect on endocannabinoid-induced inhibition of T lymphocyte proliferation. The CB2 cDNA 188-189 GG/GG polymorphism predicts the substitution of glutamine at amino acid position 63 by arginine. T lymphocytes from CB2 188-189 GG/GG homozygotes had approximately twofold reduction of endocannabinoid-induced inhibition of proliferation compared with cells from CB2 188-189 AA/AA homozygotes. In GG/GG subjects, the reduced endocannabinoid inhibitory response was highly significant for N-arachidonylglycine and nearly significant for 2-arachidonylglycerol, and a specific CB2 receptor antagonist partially blocked these effects. Also, patients with autoimmune diseases had an increased prevalence of the homozygous GG/GG genotype. Collectively, these results demonstrate reduced endogenous fatty acid amide immunomodulatory responses in individuals with the CB2 188-189 GG/GG genotype and suggest that this CB2 gene variation may be a risk factor for autoimmunity. The results also support the proposition that the CB2 receptor may represent a novel pharmacological target for selective agonists designed to suppress autoreactive immune responses while avoiding CB1 receptor-mediated cannabinoid adverse effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号