首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Cyclin-dependent kinase 5 (Cdk5) is a multifunctional neuronal protein kinase that is required for neurite outgrowth and cortical lamination and that plays an important role in dopaminergic signaling in the neostriatum through phosphorylation of Thr-75 of DARPP-32 (dopamine and cAMP-regulated phosphoprotein, molecular mass 32 kDa). Casein kinase 1 (CK1) has been implicated in a variety of cellular functions such as DNA repair, circadian rhythm, and intracellular trafficking. In the neostriatum, CK1 has been found to phosphorylate Ser-137 of DARPP-32. However, first messengers for the regulation of Cdk5 or CK1 have remained unknown. Here we report that both Cdk5 and CK1 are regulated by metabotropic glutamate receptors (mGluRs) in neostriatal neurons. (S)-3,5-dihydroxyphenylglycine (DHPG), an agonist for group I mGluRs, increased Cdk5 and CK1 activities in neostriatal slices, leading to the enhanced phosphorylation of Thr-75 and Ser-137 of DARPP-32, respectively. The effect of DHPG on Thr-75, but not on Ser-137, was blocked by a Cdk5-specific inhibitor, butyrolactone. In contrast, the effects of DHPG on both Thr-75 and Ser-137 were blocked by CK1-7 and IC261, specific inhibitors of CK1, suggesting that activation of Cdk5 by mGluRs requires CK1 activity. In support of this possibility, the DHPG-induced increase in Cdk5 activity, measured in extracts of neostriatal slices, was abolished by CK1-7 and IC261. Treatment of acutely dissociated neurons with DHPG enhanced voltage-dependent Ca(2+) currents. This enhancement was eliminated by either butyrolactone or CK1-7 and was absent in DARPP-32 knockout mice. Together these results indicate that a CK1-Cdk5-DARPP-32 cascade may be involved in the regulation by mGluR agonists of Ca(2+) channels.  相似文献   

6.
ChREBP (Carbohydrate response element binding protein) is considered to mediate the stimulatory effect of glucose on the expression of lipogenic genes. Its activity is stimulated by glucose. Less is known on the control of its expression. This expression could be controlled by nutritional (glucose, fatty acids) and hormonal (insulin) factors. We examined the in vivo nutritional control of ChREBP expression in liver and adipose tissue of Wistar rats. Compared respectively to the fed state and to a high carbohydrate diet, ChREBP mRNA concentrations were not modified by fasting or a high fat diet in rat liver and adipose tissue. FAS and ACC1 mRNA concentrations were on the contrary decreased as expected by fasting and high fat diets and these variations of FAS and ACC1 mRNA were positively related to those of SREBP-1c mRNA and protein, but not of ChREBP mRNA. Therefore i) ChREBP expression appears poorly responsive to modifications of nutritional condition, ii) modifications of the expression of ChREBP do not seem implicated in the physiological control of lipogenesis. To investigate the possible role of ChREBP in pathological situations we measured its mRNA concentrations in the liver and adipose tissue of obese Zucher rats. ChREBP expression was increased in the liver but not the adipose tissue of obese rats compared to their lean littermates. These results support a role of ChREBP in the development of hepatic steatosis and hypertriglyceridemia but not of obesity in this experimental model.  相似文献   

7.
8.
The activity of the kinase Aurora-A (Aur-A) peaks during mitosis and depends on phosphorylation by one or more unknown kinases. Mitotic phosphorylation sites were mapped by mass spec sequencing of recombinant Aur-A protein that had been activated by incubation in extracts of metaphase-arrested Xenopus eggs. Three sites were identified: serine 53 (Ser-53), threonine 295 (Thr-295), and serine 349 (Ser-349), which are equivalent to Ser-51, Thr-288, and Ser-342, respectively, in human Aur-A. To ask how phosphorylation of these residues might affect kinase activity, each was mutated to either alanine or aspartic acid, and the recombinant proteins were then tested for their ability to be activated by M phase extract. Mutation of Thr-295, which resides in the activation loop of the kinase, to either alanine or aspartic acid abolished activity. The S349A mutant had slightly reduced activity, indicating that phosphorylation is not required for activity. The S349D mutation completely blocked activation, suggesting that Ser-349 is important for either the structure or regulation of Aur-A. Finally, like human Aur-A, overexpression of Xenopus Aur-A transformed NIH 3T3 cells and led to tumors in nude mice. These results provide further evidence that Xenopus Aur-A is a functional ortholog of human Aur-A and, along with the recently described crystal structure of human Aur-A, should help in future studies of the mechanisms that regulate Aur-A activity during mitotic progression.  相似文献   

9.
In human type 2 diabetes mellitus, loss of glucose-sensitive insulin secretion is an early pathogenetic event. Glucose is the cardinal physiological stimulator of insulin secretion from the pancreatic beta-cell, but the mechanisms involved in glucose sensing are not fully understood. Specific ser/thr protein phosphatase (PPase) inactivation by okadaic acid promotes Ca(2+) entry and insulin exocytosis in the beta-cell. We now show that glycolytic and Krebs cycle intermediates, whose concentrations increase upon glucose stimulation, not only dose dependently inhibit ser/thr PPase enzymatic activities, but also directly promote insulin exocytosis from permeabilized beta-cells. Thus, fructose-1,6-bisphosphate, phosphoenolpyruvate, 3-phosphoglycerate, citrate, and oxaloacetate inhibit PPases and significantly enhance insulin exocytosis, nonadditive to that of okadaic acid, at micromolar Ca2+ concentrations. In contrast, the effect of GTP is potentiated by okadaic acid, suggesting that the action of GTP does not require PPase inactivation. We conclude that specific glucose metabolites and GTP inhibit beta-cell PPase activities and directly stimulate Ca2+-independent insulin exocytosis. The glucose metabolites, but not GTP, seem to require PPase inactivation for their stimulatory effect on exocytosis. Thus, an increase in phosphorylation state, through inhibition of protein dephosphorylation by metabolic intermediates, may be a novel regulatory mechanism linking glucose sensing to insulin exocytosis in the beta-cell.  相似文献   

10.
The E3 ubiquitin ligase Pellino can be activated by phosphorylation in vitro, catalyzed by IL-1 receptor-associated kinase 1 (IRAK1) or IRAK4. Here, we show that phosphorylation enhances the E3 ligase activity of Pellino 1 similarly with any of several E2-conjugating enzymes (Ubc13-Uev1a, UbcH4, or UbcH5a/5b) and identify 7 amino acid residues in Pellino 1 whose phosphorylation is critical for activation. Five of these sites are clustered between residues 76 and 86 (Ser-76, Ser-78, Thr-80, Ser-82, and Thr-86) and decorate a region of antiparallel β-sheet, termed the “wing,” which is an appendage of the forkhead-associated domain that is thought to interact with IRAK1. The other 2 sites are located at Thr-288 and Ser-293, just N-terminal to the RING-like domain that carries the E3 ligase activity. Unusually, the full activation of Pellino 1 can be achieved by phosphorylating any one of several different sites (Ser-76, Thr-86, Thr-288, or Ser-293) or a combination of other sites (Ser-78, Thr-80, and Ser-82). These observations imply that dephosphorylation of multiple sites is required to inactivate Pellino 1, which could be a device for prolonging Pellino's E3 ubiquitin ligase activity in vivo.  相似文献   

11.
Fluoxetine (Prozac) is the most widely prescribed medication for the treatment of depression. Nevertheless, little is known about the molecular basis of its clinical efficacy, apart from the fact that fluoxetine increases the synaptic availability of serotonin. Here we show that, in vivo, fluoxetine, given either acutely or chronically, regulates the phosphorylation state of dopamine- and cAMP-regulated phosphoprotein of M(r) 32,000 (DARPP-32) at multiple sites in prefrontal cortex, hippocampus, and striatum. Acute administration of fluoxetine increases phosphorylation of DARPP-32 at the protein kinase A site, Thr-34, and at the casein kinase-1 site, Ser-137, and decreases phosphorylation at the cyclin-dependent kinase 5 site, Thr-75. Each of these changes contributes, through distinct signaling pathways, to increased inhibition of protein phosphatase-1, a major serine/threonine protein phosphatase in the brain. Fluoxetine also increases phosphorylation of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1 at Ser-831 and Ser-845. Both the fluoxetine-mediated increase in AMPA receptor phosphorylation at Ser-845-GluR1 and the beneficial responsiveness to fluoxetine in an animal test of antidepressant efficacy were strongly reduced in DARPP-32 knockout mice, indicating a critical role for this phosphoprotein in the antidepressant actions of fluoxetine. Mice chronically treated with fluoxetine had increased levels of DARPP-32 mRNA and protein and a decreased ability to increase phospho-Ser-137-DARPP-32 and phospho-Ser-831-GluR1. These chronic changes may be relevant to the delayed onset of therapeutic efficacy of fluoxetine.  相似文献   

12.
13.
Phospholipase C (PLC)-mediated signal transduction processes in rat hepatocytes are subject to modulation by protein phosphatases (PPases) and protein kinases, including protein kinase A (PKA) and protein kinase C. Ethanol (EtOH) stimulates PLC activity in liver cells in the absence of hormones, and EtOH pretreatment inhibits the subsequent stimulation of PLC by hormonal stimuli. There is evidence that protein kinase activities are involved in these actions of EtOH. We investigated the effects of okadaic acid (OKA), a PPase inhibitor, and 8-(4-chlorophenylthio)adenosine 3':5'-cyclic monophosphate (cpt-cAMP), a cell permeant cAMP analog that activates PKA, on EtOH-induced PLC activation. In addition, we studied the combined effects of cpt-cAMP and EtOH/OKA on vasopressin-induced PLC activation. PLC activation (cytosolic Ca2+ mobilization and inositol trisphosphate accumulation) induced by EtOH and vasopressin was inhibited by treatment with OKA, and was potentiated by cpt-cAMP. OKA treatment prevented the effect of cpt-cAMP. Pretreatment with EtOH caused inhibition of vasopressin-induced PLC activation. EtOH also decreased the enhancing effect of cpt-cAMP on the responses to vasopressin. The susceptibility to enhancement by cpt-cAMP plotted as a function of the initial rate of vasopressin-induced Ca2+ mobilization in EtOH-treated cells was similar to the pattern observed in OKA-treated cells. These data suggest that interactions of OKA and PKA on EtOH-induced PLC activation occurred at the level of G-protein, and indicate that EtOH may act as an inhibitory agent of PPase.  相似文献   

14.
We have examined the role of Thr-286 autophosphorylation in the autoregulation of Ca2+/calmodulin-dependent protein kinase II. Using site-directed mutagenesis, we have substituted alanine or serine for Thr-286, or isoleucine for Arg-283, in the 50-kDa subunit of the kinase and expressed each protein in bacteria. Activation and autophosphorylation of all four enzymes were stringently dependent on Ca2+/calmodulin, indicating that neither Arg-283 nor Thr-286 is an absolute requirement for the pseudosubstrate inhibition of the enzyme. Autophosphorylation of the Ile-283 or Ala-286 enzyme generated little, if any, Ca2+/calmodulin-independent kinase activity, unlike the parent (Thr-286) or Ser-286 enzyme. The enzymes expressed in bacteria are predominantly monomeric, indicating that the generation of Ca2+/calmodulin-independent activity does not require the cooperative interactions of subunits normally present in the brain holoenzyme.  相似文献   

15.
16.
Reversible protein phosphorylation is an important mechanism by which cells transduce external signals into biologic responses. Levels of protein phosphorylation are determined by the balanced actions of both protein kinases and protein phosphatases (PPases). However, compared with protein kinases, regulation of PPases has been relatively neglected. The insulin secretagogue L-arginine, an immediate metabolic precursor to polyamines, causes a rapid and transient decrease in PPase-1 activity in insulin-secreting RINm5F cells. We here show that polyamines dose-dependently suppress PPase-1-like activity when added to RINm5F cell homogenates at physiologic concentrations (spermine > spermidine > putrescine), while having minor and inconsistent effects on PPase-2A-like activity. The IC50 value for spermine on PPase-1-like activity was approximately 4 mM. The inhibitory effect was reproduced and of comparable magnitude on purified PPases types 1 and 2A. On the other hand, when endogenous polyamine pools were exhausted by 4 days of exposure to the specific L-ornithine decarboxylase inhibitor DL-alpha-difluoromethylornithine, there was an increase in PPase-2A-like activity. Quantitative Western analysis revealed that the amount of PPase-2A protein did not change after this treatment. It is concluded that polyamines cause time-and concentration-dependent inhibitory effects on RINm5F cell PPase activities, which may contribute to the increase in phosphorylation state that occurs after secretory stimulation.  相似文献   

17.
18.
Insulin receptor tyrosine kinase is an important step in insulin action. We examined the relationship between diet-induced changes in glucose metabolism and changes in skeletal muscle insulin-sensitive tyrosine kinase activity in 12 nondiabetic subjects. Subjects were fed a traditional, high carbohydrate Pima Indian diet and a modern, high fat western diet for 2 weeks in a randomized cross-over design. At the end of each dietary period, glucose tolerance was assessed, insulin sensitivity (SI) was estimated by Bergman's minimal model method, and insulin receptor concentration and tyrosine kinase activity were determined on lectin-purified extracts from quadriceps femoris muscle. Compared to the traditional diet, the modern diet was associated with a deterioration of glucose tolerance and an increase in glucose-induced plasma insulin levels. As expected, SI changes were associated with opposite changes in plasma insulin levels. However, the changes in maximal tyrosine kinase activity were negatively correlated with changes in SI (r = -0.69; P less than 0.01) and positively correlated with changes in plasma glucose (r = 0.70; P less than 0.01) and insulin response to glucose (r = 0.57; P less than 0.025). These results suggest that the site of diet-induced changes in insulin action is beyond the insulin-sensitive tyrosine kinase. The results further suggest that the kinase activity is modulated by prevailing plasma insulin levels.  相似文献   

19.
碳水化合物反应元件结合蛋白(ChREBP)是调控糖酵解和脂质合成相关酶类基因表达的转录因子,除了在肝脏中促进糖类向脂质转化外,其还在胰岛中表达并参与β细胞增殖、分化等过程.ChREBP可通过促进β细胞增殖、参与分化及糖、脂毒性,在β细胞病理生理过程中起作用,以此为ChREBP介导的糖尿病病理机制以及糖尿病的治疗提供了新思路.  相似文献   

20.
Phosphorylation of Ser-627 is both necessary and sufficient for full activity of the expressed 35-kDa catalytic domain of myosin I heavy chain kinase (MIHCK). Ser-627 lies in the variable loop between highly conserved residues DFG and APE at a position at which a phosphorylated Ser/Thr also occurs in many other Ser/Thr protein kinases. The variable loop of MIHCK contains two other hydroxyamino acids: Thr-631, which is conserved in almost all Ser/Thr kinases, and Thr-632, which is not conserved. We determined the effects on the kinase activity of the expressed catalytic domain of mutating Ser-627, Thr-631, and Thr-632 individually to Ala, Asp, and Glu. The S627A mutant was substantially less active than wild type (wt), with a lower kcat and higher Km for both peptide substrate and ATP, but was more active than unphosphorylated wt. The S627D and S627E mutants were also less active than phosphorylated wt, i.e., acidic amino acids cannot substitute for phospho-Ser-627. The activity of the T631A mutant was as low as that of the S627A mutant, whereas the T632A mutant was as active as phosphorylated wt, indicating that highly conserved Thr-631, although not phosphorylated, is essential for catalytic activity. Asp and Glu substitutions for Thr-631 and Thr-632 were inhibitory to various degrees. Molecular modeling indicated that Thr-631 can hydrogen bond with conserved residue Asp-591 in the catalytic loop and that similar interactions are possible for other kinases whose activities also are regulated by phosphorylation in the variable loop. Thus, this conserved Thr residue may be essential for the activities of other Ser/Thr protein kinases as well as for the activity of MIHCK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号