首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
PURPOSE: To develop a breathhold method for black-blood viability imaging of the heart that may facilitate identifying the endocardial border. MATERIALS AND METHODS: Three stimulated-echo acquisition mode (STEAM) images were obtained almost simultaneously during the same acquisition using three different demodulation values. Two of the three images were used to construct a black-blood image of the heart. The third image was a T(1)-weighted viability image that enabled detection of hyperintense infarcted myocardium after contrast agent administration. The three STEAM images were combined into one composite black-blood viability image of the heart. The composite STEAM images were compared to conventional inversion-recovery (IR) delayed hyperenhanced (DHE) images in nine human subjects studied on a 3T MRI scanner. RESULTS: STEAM images showed black-blood characteristics and a significant improvement in the blood-infarct signal-difference to noise ratio (SDNR) when compared to the IR-DHE images (34 +/- 4.1 vs. 10 +/- 2.9, mean +/- standard deviation (SD), P < 0.002). There was sufficient myocardium-infarct SDNR in the STEAM images to accurately delineate infarcted regions. The extracted infarcts demonstrated good agreement with the IR-DHE images. CONCLUSION: The STEAM black-blood property allows for better delineation of the blood-infarct border, which would enhance the fast and accurate measurement of infarct size.  相似文献   

2.
PURPOSE: To objectively characterize different heart tissues from functional and viability images provided by composite-strain-encoding (C-SENC) MRI. MATERIALS AND METHODS: C-SENC is a new MRI technique for simultaneously acquiring cardiac functional and viability images. In this work, an unsupervised multi-stage fuzzy clustering method is proposed to identify different heart tissues in the C-SENC images. The method is based on sequential application of the fuzzy c-means (FCM) and iterative self-organizing data (ISODATA) clustering algorithms. The proposed method is tested on simulated heart images and on images from nine patients with and without myocardial infarction (MI). The resulting clustered images are compared with MRI delayed-enhancement (DE) viability images for determining MI. Also, Bland-Altman analysis is conducted between the two methods. RESULTS: Normal myocardium, infarcted myocardium, and blood are correctly identified using the proposed method. The clustered images correctly identified 90 +/- 4% of the pixels defined as infarct in the DE images. In addition, 89 +/- 5% of the pixels defined as infarct in the clustered images were also defined as infarct in DE images. The Bland-Altman results show no bias between the two methods in identifying MI. CONCLUSION: The proposed technique allows for objectively identifying divergent heart tissues, which would be potentially important for clinical decision-making in patients with MI.  相似文献   

3.
PURPOSE: To implement real-time myocardial strain-encoding (SENC) imaging in combination with tracking the tissue displacement in the through-plane direction. MATERIALS AND METHODS: SENC imaging was combined with the slice-following technique by implementing three-dimensional (3D) selective excitation. Certain adjustments were implemented to reduce scan time to one heartbeat. A total of 10 volunteers and five pigs were scanned on a 3T MRI scanner. Spatial modulation of magnetization (SPAMM)-tagged images were acquired on planes orthogonal to the SENC planes for comparison. Myocardial infarction (MI) was induced in two pigs and the resulting SENC images were compared to standard delayed-enhancement (DE) images. RESULTS: The strain values computed from SENC imaging with slice-following showed significant difference from those acquired without slice-following, especially during systole (P < 0.01). The strain curves computed from the SENC images with and without slice-following were similar to those computed from the orthogonal SPAMM images, with and without, respectively, tracking the tag line displacement in the strain direction. The resulting SENC images showed good agreement with the DE images in identifying MI in infarcted pigs. CONCLUSION: Correction of through-plane motion in real-time cardiac functional imaging is feasible using slice-following. The strain measurements are more accurate than conventional SENC measurements in humans and animals, as validated with conventional MRI tagging.  相似文献   

4.
A technique for fast imaging of regional myocardial function using a spiral acquisition in combination with strain-encoded (SENC) magnetic resonance imaging (MRI) is presented in this paper. This technique, which is termed fast-SENC, enables scan durations as short as a single heartbeat. A reduced field of view (FOV) without foldover artifacts was achieved by localized SENC, which selectively excited the region around the heart. The two images required for SENC imaging (low- and high-tuning) were acquired in an interleaved fashion throughout the cardiac cycle to further shorten the scan time. Regional circumferential contraction and longitudinal shortening of both the left ventricle (LV) and right ventricle (RV) were examined in long- and short-axis views, respectively. The in vivo results obtained from five human subjects and five infarcted dogs are presented. The results of the fast-SENC technique in a single heartbeat acquisition were comparable to those obtained by conventional SENC in a long acquisition time. Therefore, fast-SENC may prove useful for imaging during stress or arrhythmia.  相似文献   

5.
Attempts to use a stimulated echo acquisition mode (STEAM) in cardiac imaging are impeded by imaging artifacts that result in signal attenuation and nulling of the cardiac tissue. In this work, we present a method to reduce this artifact by acquiring two sets of stimulated echo images with two different demodulations. The resulting two images are combined to recover the signal loss and weighted to compensate for possible deformation-dependent intensity variation. Numerical simulations were used to validate the theory. Also, the proposed correction method was applied to in vivo imaging of normal volunteers (n = 6) and animal models with induced infarction (n = 3). The results show the ability of the method to recover the lost myocardial signal and generate artifact-free black-blood cardiac images.  相似文献   

6.
This study investigated the utility of optional thallium-201 (201Tl) imaging for detecting myocardial viability in the stress 99Tcm-tetrofosmin/rest 201Tl dual-isotope protocol. Seventy-nine patients with old myocardial infarction and 25 patients with acute myocardial infarction underwent acquisition of three consecutive 201Tl images (early, intermediate and delayed) using the dual-isotope protocol. A polar map was created and defect scores (extent and severity) were determined by comparison with normal control data. Fluorodeoxyglucose positron emission tomography was also performed in 16 patients with old myocardial infarction. In patients with old infarction, the severity score decreased significantly from the early to the intermediate images, and decreased further on the delayed images. In patients with acute infarction, the score increased from the early to the intermediate images, but not on the delayed images. Regional uptake on the delayed images showed a better correlation with the fluorodeoxyglucose images than that on the early images. Redistribution on the delayed images was exclusively observed in the myocardial segments with less uptake than that estimated by fluorodeoxyglucose. In conclusion, addition of delayed 201Tl imaging to the dual-isotope protocol could improve the sensitivity for detecting myocardial viability.  相似文献   

7.

Objectives

Although dual-energy (DE) acquisition with conventional 201Tl myocardial perfusion SPECT has several advantages such as improved attenuation of the inferior wall and increased acquisition counts, the characteristics of IQ-SPECT have not been fully evaluated. We evaluate the difference of characteristics between single-energy (SE) and dual-energy (DE) imaging using 201Tl myocardial IQ-SPECT.

Methods

Two myocardial phantoms were created simulating normal myocardium and infarction of the inferior wall. Energy windows were set at 70 keV ± 10% for SE, and an additional 167 keV ± 7.5% for DE. SPECT images were reconstructed using the ordered subset conjugates gradient minimizer (OSCGM) method. We visually and quantitatively compared short-axis images of correction for no (NC), for attenuation (AC) or for both AC and scatter (ACSC) images.

Results

The average counts of SE and DE projection data were 17.5 and 20.3 counts/pixel, respectively. The DE data increased acquisition counts by approximately 16% compared with the SE data. The average visual score of normal myocardium did not differ significantly between the SE and DE images. However, the DE image of defective myocardium showed a significantly lower score in AC than SE images. The % uptake values of DE image with both NC and AC were significantly higher than those of SE images. The DE images of the inferior defective areas (segments 4 and 10) showed approximately 5–10% higher uptake compared with the SE images.

Conclusion

The DE image with NC improved attenuation of the inferior wall. However, DE image with AC showed low defect detectability. Thus, AC should be used with SE rather than DE. Furthermore, while the SE image with ACSC can be used to detect perfusion defects, it must be interpreted carefully including the possibility of artificial inhomogeneity even in the normal myocardium.
  相似文献   

8.
A method has been developed to match corresponding heart regions from functional echocardiographic (Echo) and metabolic fluorine-l8-fluoro-2-deoxy-d-glucose ([18F]FDG) positron emission tomography (PET) studies in individual patients. Echo and PET images are spatially correlated by determining homologous anatomical landmarks (the two papillary muscles and the inferior junction of the right ventricle), identifiable in images obtained by both acquisition modalities. Echo-PET image registration is first performed in the plane identified by the three landmarks, using a rigid rotate-translate scale model. The registration parameters are then used to transform the whole PET volume. This allows a consistent Echo-PET regional analysis, according to a segmental subdivision of the heart. The technique was tested on patients. The overlay of Echo and PET registered images proved the reliability of realignment of the three markers and a good spatial correlation of myocardial walls. This approach to image registration could be applied to other acquisition modalities (such as magnetic resonance imaging and single-photon emission tomography), provided that the three anatomical landmarks are visualized.  相似文献   

9.

Objectives

To investigate whether subendocardial and transmural myocardial infarction can be identified and differentiated using the peak circumferential and longitudinal strains measured by fast strain-encoded (SENC).

Methods

Nineteen patients with ischemic heart diseases underwent imaging with fast SENC and late gadolinium enhancement (LGE) MRI at 3?T. Fast SENC measurements were performed in three short-axis slices (basal, mid-ventricular and apical levels) and one long-axis view (four-chamber) to assess peak longitudinal and circumferential systolic strains.

Results

All patients showed myocardial infarction with an average of 7 positive LGE segments. A total of 304 segments for longitudinal strains (LS) and 114 segments for circumferential strains (CS) could be analysed. Positive LGE segments showed lower peak CS and LS compared with the no LGE segments (P?P?P?=?0.03), but no significant difference in LS between them (P?=?0.64).

Conclusions

Fast SENC can identify old myocardial infarction and differentiate subendocardial from transmural infarction.  相似文献   

10.
PURPOSE: To evaluate and compare findings for thoracic aortic disease with three black-blood magnetic resonance (MR) pulse sequences: half-Fourier rapid acquisition with relaxation enhancement (RARE), with and without electrocardiographic (ECG) triggering, and ECG-triggered turbo spin echo (SE). MATERIALS AND METHODS: Axial black-blood MR images of the chest acquired at 1.5 T with a phased-array coil were obtained in 38 consecutive patients referred for evaluation of thoracic aortic disease. ECG-triggered and nontriggered half-Fourier RARE images were compared with T1-weighted ECG-triggered turbo SE images. Two readers independently scored images for each of the following parameters: ghosting artifacts; clarity of the mediastinum, cardiac chambers, and aortic wall; conspicuity of abnormality; intraluminal signal void uniformity; and overall image quality. RESULTS: Both half-Fourier RARE sequences outperformed the turbo SE sequence for all measured parameters. Scores for the ECG-triggered half-Fourier RARE sequence were significantly (P < .05) higher than those for the nontriggered version for clarity of the mediastinum and aortic wall, conspicuity of any abnormality other than aortic dissection, and overall image quality. Mean acquisition times for the ECG-triggered (48 seconds) and nontriggered (30 seconds) sequences were significantly shorter than that for the turbo SE sequence (2 minutes 20 seconds). CONCLUSION: Rapid black-blood half-Fourier RARE sequences, with or without ECG triggering, can replace ECG-triggered turbo SE sequences for evaluation of thoracic aortic disease.  相似文献   

11.
Myocardial viability can be assessed with rest/24 h redistribution (201)Tl myocardial single photon emission computed tomography (SPECT). The intravenous injection of vasodilators induces an early redistribution of (201)Tl and shortens the total examination time. The aim of this study was to compare the images after injection of linsidomin with the 24 h images. We studied 51 consecutive patients (38 males, 13 females), aged 66+/-11 years, referred for assessment of myocardial viability after acute myocardial infarction. SPECT acquisition at rest (30 projections over 180 degrees, 30 s per projection) was performed 20 min after injection of (201)Tl. A second acquisition (same parameters) was performed 2 min after intravenous injection of linsidomin (2 mg). A delayed acquisition was performed on the following day (50 s per step). Myocardial perfusion at rest was normal in 111 of 255 segments. For the 144 other segments, 24 h images were similar to the images acquired after the injection of linsidomin in 94% of cases (136 of 144 segments). The 24 h images showed partial redistribution that was not present after linsidomin in only eight segments (6%). Injection of linsidomin after rest acquisition can provide a reliable and more rapid assessment of myocardial viability. This very simple protocol (rest/linsidomin (201)Tl myocardial SPECT) can be performed in less than 1 h.  相似文献   

12.
Dual isotope simultaneous acquisition single photon emission computed tomography (DISA SPECT) offers the advantage of obtaining information on myocardial perfusion using Tc-sestamibi ( Tc-MIBI) and metabolism using F-fluorodeoxyglucose ( F-FDG) in a single study. The prerequisite is that the Tc-MIBI images are not degraded by scattered 511 keV photons or poor count statistics due to the lower efficiency of the extra high energy (EHE) collimator. Therefore, we compared the registered Tc-MIBI uptake and image quality of DISA and single isotope acquisition. Furthermore, we investigated whether DISA yields additional information for the assessment of myocardial viability in comparison with rest-stress Tc-MIBI. Nineteen patients with known coronary artery disease and irreversible perfusion defects on previous rest-stress MIBI test studies were investigated. After oral glucose loading and simultaneous injection of 600 MBq of Tc-MIBI and 185 MBq of F-FDG at rest, DISA was performed using energy windows of 140 (+/-15%), 170 (+/-20%) and 511 keV (+/-15%). Planar 140 keV images were corrected for scatter by subtraction using the 170 keV window. The single and dual isotope Tc-MIBI images were both displayed in a polar map with 128 segments normalized to maximum counts. F-FDG and Tc-MIBI images were visually scored for a perfusion-metabolism mismatch pattern using nine regions per heart. There was an excellent correlation (r =0.93, P<0.0001) between the Tc-MIBI uptake detected in the single and dual isotope acquisition. The average difference between the dual and single isotope Tc-MIBI uptake was -1.2% (not significantly different from zero) and the coefficient of variation of the difference was 8.7%. Of the 79 regions with irreversible perfusion defects on previous rest-stress Tc-MIBI, six regions in five patients showed a perfusion-metabolism mismatch pattern. We conclude that DISA does not affect the quality of the Tc-MIBI images. Furthermore, F-FDG- Tc-MIBI DISA may show viability in a small but significant (7.6%, P<0.0034) number of regions with irreversible perfusion defects on rest-stress Tc-MIBI.  相似文献   

13.
Delayed-enhancement magnetic resonance imaging (DE-MRI) can be used to visualize myocardial infarction (MI). DE-MRI is conventionally acquired with an inversion-recovery gradient-echo (IR-GRE) pulse sequence that yields a single bright-blood image. IR-GRE imaging requires an accurate estimate of the inversion time (TI) to null the signal from the myocardium, and a separate cine acquisition is required to visualize myocardial wall motion. Simulations were performed to examine the effects of a steady-state free precession (SSFP) readout after an inversion pulse in the setting of DE-MRI. Using these simulations, a segmented IR-SSFP sequence was optimized for infarct visualization. This sequence yields both viability and wall motion images over the cardiac cycle in a single breath-hold. Viability images at multiple effective TIs are produced, providing a range of image contrasts. In a study of 11 patients, IR-SSFP yielded infarct sizes and left ventricular ejection fractions (LVEFs) similar to those obtained by IR-GRE and standard SSFP, respectively. IR-SSFP images yielded improved visualization of the infarct-blood border because of the simultaneous nulling of healthy myocardium and blood. T(1) (*) recovery curves were extracted from IR-SSFP images and showed excellent qualitative agreement with theoretical simulations.  相似文献   

14.
PURPOSE: To compare the effectiveness and reproducibility of a new black-blood sequence vs. a conventional bright-blood gradient-echo T2* sequence for myocardial iron overload measurement in thalassemia. MATERIALS AND METHODS: Twenty thalassemia patients were studied. Black-blood sequence images were acquired in diastole after a double inversion recovery (DIR) preparation pulse. Bright-blood sequence images were acquired in both early systole and late diastole. The data were randomized and the T2* analysis was performed blindly by two independent observers. RESULTS: The T2* values from the black-blood sequence were comparable to those of the conventional bright-blood sequence (25.7 +/- 12.9 msec vs. 26.4 +/- 14.2 msec in early systole, P = 0.44; and 25.2 +/- 13.1 msec in late diastole, P = 0.41). The coefficient of variation (CV) for black-blood image T2* analysis was 4.1% compared with 8.9% (early systole P = 0.03) and 7.8% (late diastole P = 0.05) for bright-blood image analysis. CONCLUSION: The black-blood T2* technique yields high-contrast myocardial images, provides clearly depicted myocardial borders, and avoids blood signal contamination of the myocardium while yielding improvements in interobserver variability.  相似文献   

15.
MRI after a constant infusion (CI) of Gd-DTPA has been used to identify the extent of myocardial infarction (MI). However, Gd-DTPA-enhanced "viability" imaging is more commonly performed with a bolus (for "delayed-enhancement" (DE) imaging). This study sought to determine how image delay time and time postinfarction influence the assessment of necrosis by DE. Both infusion and DE imaging was performed in dogs with reperfused (N = 6) or unreperfused (N = 4) MI. Estimates of the partition-coefficient of Gd-DTPA (lambda) with DE were compared with those calculated after 60 min of infusion, and the comparisons were repeated until 4 (reperfused) or 8 (unreperfused) weeks postinfarction. In reperfused animals, the concordance (Rc) between DE and infusion estimates of lambda was > 0.90 for most image delays > 8 min postinjection, for day 0 through week 3, with Rc at day 0 greater than at week 4 (P = 0.022). In unreperfused animals, there was an interaction between image delay time and time postinfarction (P < 0.001): Rc > 0.90 corresponded to longer image delays at week 1 than at weeks 4-8. Therefore, when image delays are selected appropriately, DE images can strongly reflect lambda and identify irreversibly injured myocardium.  相似文献   

16.
PURPOSE: To propose and to evaluate a novel method for the automatic segmentation of the heart's two ventricles from dynamic ("cine") short-axis "steady state free precession" (SSFP) MR images. This segmentation task is of significant clinical importance. Previously published automated methods have various disadvantages for routine clinical use. MATERIALS AND METHODS: The proposed method is primarily image-driven: it exploits the spatiotemporal information provided by modern 3D+time SSFP cardiac MRI, and makes only few and plausible assumptions about the image acquisition and about the imaged heart. Specifically, the method does not require previously trained statistical shape models or gray-level appearance models, as often used by other methods. RESULTS: The performance of the segmentation method was demonstrated through a qualitative visual validation on 32 clinical exams: no gross failures for the left-ventricle (right-ventricle) on 31 (29) of the exams were found. A validation of resulting quantitative cardiac functional parameters showed good agreement with a manual quantification of 19 clinical exams. CONCLUSION: The proposed method is feasible, fast, and robust against anatomical variability and image contrast variations.  相似文献   

17.
PURPOSE: To evaluate acute myocardial infarction by using first-pass enhancement (FPE) and delayed enhancement (DE) magnetic resonance (MR) imaging compared with thallium 201 ((201)Tl) single photon emission computed tomography (SPECT). MATERIALS AND METHODS: Contrast material-enhanced FPE MR, inversion-recovery DE MR, and rest-redistribution (201)Tl SPECT images were obtained in 60 consecutive patients (53 men, seven women; mean age [+/- SD], 56 years +/- 13; range, 30-78 years) at 6 days +/- 3 after reperfused first myocardial infarction. Presence of microvascular obstruction was determined on FPE MR images. Infarct size was defined on DE MR images as percentage of left ventricular (LV) area and compared with uptake defect on redistribution (201)Tl SPECT images. Differences in continuous data were analyzed with Student t test. Linear regression and Bland-Altman analysis were used to compare measurements of infarct size. RESULTS: Mean infarct size was not significantly different between DE MR imaging (20.7% +/- 11.5% of LV area) and (201)Tl SPECT (19.4% +/- 14.3% of LV area; P =.26); good correlation (r = 0.73; P <.001) and agreement were found, with a mean difference of +1.3% +/- 9.8% of LV area. (201)Tl SPECT failed to depict infarct in six (20%) of 30 patients with inferior myocardial infarction (mean size, 6.4% +/- 5.7% of LV area on DE MR images), whereas DE MR images showed the infarct in all patients (P <.01). FPE MR images depicted microvascular obstruction in 23 (38%) of 60 patients; these patients had larger infarctions at DE MR imaging than did patients without microvascular obstruction (30.4% +/- 9.0% vs 15.1% +/- 8.4% of LV area, P <.001). (201)Tl SPECT showed larger infarcts in patients with microvascular obstruction (26.7% +/- 16.2% vs 15.0% +/- 11.2% of LV area, P <.01). CONCLUSION: Good correlation and agreement with (201)Tl SPECT indicate DE MR imaging may be used to estimate infarct size 6 days after reperfused acute myocardial infarction. DE MR imaging is more sensitive for detection of inferior infarction than is (201)Tl SPECT. Patients with microvascular obstruction on FPE MR images have larger infarcts.  相似文献   

18.
The aim of this study was to elucidate the clinical usefulness of scatter correction with an artificial neural network (ANN) in 99mTc and 123I dual-isotope SPECT. METHODS: Two algorithms for ANN scatter correction were tested: ANN-10 and ANN-3 employing 10 and 3 energy windows for data acquisition, respectively. Three patients underwent myocardial or brain SPECT with one of the following combinations of radiopharmaceuticals administered: 99mTc-tetrofosmin and 123I-metaiodobenzylguanidine (MIBG), 99mTc-methoxyisobutylisonitrile (MIBI) and 123I-beta-methyl-paraiodophenyl-pentadecanoic acid (BMIPP), or 99mTc-ethyl-cistainate dimmer (ECD) and 123I-iomazenil. The patients were also referred for single-isotope imaging incorporating conventional triple-energy window (TEW) scatter correction. Crosstalk- and scatter-corrected 99mTc- and 123I-SPECT images in dual-isotope acquisition with ANN were compared with those in single-isotope acquisition. RESULTS: The ANN method well separated 123I and 99mTc primary photons. Although ANN-10 yielded images of poor quality, ANN-3 offered comparable image quality with the single-isotope scan without significant increase of acquisition time. CONCLUSION: The proposed method is clinically useful because it provides various combinations of information without anatomical misregistration with one acquisition.  相似文献   

19.
Simultaneous acquisition of complementary functional hemodynamic indices reflecting different aspects of brain activity would be a valuable tool for functional brain-imaging studies offering enhanced detection power and improved data interpretation. As such, a new MRI technique is presented that is able to achieve concurrent acquisition of three hemodynamic images based primarily on the changes of cerebral blood volume, blood flow, and blood oxygenation, respectively, associated with brain activation. Specifically, an inversion recovery pulse sequence has been designed to measure VASO (vascular space occupancy), ASL (arterial spin labeling) perfusion, and BOLD (blood-oxygenation-level-dependent) signals in a single scan. The MR signal characteristics in this sequence were analyzed, and image parameters were optimized for the simultaneous acquisition of these functional images. The feasibility and efficacy of the new technique were assessed by brain activation experiments with visual stimulation paradigms. Experiments on healthy volunteers showed that this technique provided efficient image acquisition, and thus higher contrast-to-noise ratio per unit time, compared with conventional techniques collecting these functional images separately. In addition, it was demonstrated that the proposed technique was able to be utilized in event-related functional MRI experiments, with potential advantages of obtaining accurate transient information of the activation-induced hemodynamic responses.  相似文献   

20.
The radial trajectory has found applications in cardiac imaging because of its resilience to undersampling and motion artifacts. Recent work has shown that interleaved and weighted radial imaging can produce images with multiple contrasts from a single data set. This feature was investigated for inversion recovery imaging of scar using a radial technique. The 2D radial imaging method was modified to acquire quadruply interleaved projection sets within each acquisition window of the cardiac cycle. These data were reconstructed using k-space weightings that used a smaller segment of the acquisition window for the central k-space data, the determinant of image contrast. This method generates four images with different T1 weightings. The novel approach was compared with noninterleaved radial imaging, interleaved radial without weightings, and Cartesian imaging in simulations, phantoms, and seven subjects with clinical myocardial infarction. The results show that during a typical acquisition window after an inversion pulse, magnetization changes rapidly. The interleaved acquisition provided better image quality than the noninterleaved radial acquisition. Interleaving with weighting provided better quality when the inversion time (TI) was shorter than optimal; otherwise, interleaving without weighting was superior. These methods enable a radial trajectory to be employed in conjunction with preparation pulses for viability imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号