首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of endogenous gamma interferon (IFN-gamma) in protective immunity against blood-stage Plasmodium chabaudi AS malaria was studied using IFN-gamma gene knockout (GKO) and wild-type (WT) C57BL/6 mice. Following infection with 10(6) parasitized erythrocytes, GKO mice developed significantly higher parasitemia during acute infection than WT mice and had severe mortality. In infected GKO mice, production of interleukin 12 (IL-12) p70 and tumor necrosis factor alpha in vivo and IL-12 p70 in vitro by splenic macrophages was significantly reduced compared to that in WT mice and the enhanced nitric oxide (NO) production observed in infected WT mice was completely absent. WT and GKO mice had comparable numbers of total nucleated spleen cells and B220(+) and Mac-1(+) spleen cells both before and after infection. Infected WT mice, however, had significantly more F4/80(+), NK1.1(+), and F4/80(+)Ia(+) spleen cells than infected GKO mice; male WT had more CD3(+) cells than male GKO mice. In comparison with those from WT mice, splenocytes from infected GKO mice had significantly higher proliferation in vitro in response to parasite antigen or concanavalin A stimulation and produced significantly higher levels of IL-10 in response to parasite antigen. Infected WT mice produced more parasite-specific immunoglobulin M (IgM), IgG2a, and IgG3 and less IgG1 than GKO mice. Significant gender differences in both GKO and WT mice in peak parasitemia levels, mortality, phenotypes of spleen cells, and proliferation of and cytokine production by splenocytes in vitro were apparent during infection. These results thus provide unequivocal evidence for the central role of endogenous IFN-gamma in the development of protective immunity against blood-stage P. chabaudi AS.  相似文献   

2.
3.
BALB/c interleukin-4 (IL-4(-/-)) or IL-4 receptor-alpha (IL-4ralpha(-/-)) knockout (KO) mice were used to assess the roles of the IL-4 and IL-13 pathways during infections with the blood or liver stages of plasmodium in murine malaria. Intraperitoneal infection with the blood-stage erythrocytes of Plasmodium berghei (ANKA) resulted in 100% mortality within 24 days in BALB/c mice, as well as in the mutant mouse strains. However, when infected intravenously with the sporozoite liver stage, 60 to 80% of IL-4(-/-) and IL-4ralpha(-/-) mice survived, whereas all BALB/c mice succumbed with high parasitemia. Compared to infected BALB/c controls, the surviving KO mice showed increased NK cell numbers and expression of inducible nitric oxide synthase (iNOS) in the liver and were able to eliminate parasites early during infection. In vivo blockade of NO resulted in 100% mortality of sporozoite-infected KO mice. In vivo depletion of NK cells also resulted in 80 to 100% mortality, with a significant reduction in gamma interferon (IFN-gamma) production in the liver. These results suggest that IFN-gamma-producing NK cells are critical in host resistance against the sporozoite liver stage by inducing NO production, an effective killing effector molecule against Plasmodium. The absence of IL-4-mediated functions increases the protective innate immune mechanism identified above, which results in immunity against P. berghei infection in these mice, with no major role for IL-13.  相似文献   

4.
S Waki  S Uehara  K Kanbe  K Ono  M Suzuki    H Nariuchi 《Immunology》1992,75(4):646-651
T-cell-mediated immunity to a virulent strain of Plasmodium berghei NK65 (Pb NK65) and to an attenuated derivative (Pb XAT) of the strain were examined in CBA mice by the administration of monoclonal antibodies against T-cell subsets or interferon-gamma (IFN-gamma). The injection of anti-CD8+ or anti-IFN-gamma delayed the mortality of mice infected with Pb NK65, although it did not affect the parasitaemia. In the late stage of PB NK65 infection, T cells, especially CD8+ T cells, were increased in number in the liver at the expense of splenic CD8+ T cells. These CD8+ T cells released IFN-gamma in culture without antigen stimulation and were thought to induce tumour necrosis factor-alpha (TNF-alpha) production by the cells in the liver. In mice infected with Pb XAT, or mice primed with Pb XAT and then challenged with Pb NK65, CD4+ T cells had a crucial role in preventing parasite growth and in protective immunity. IFN-gamma was again the key molecule in protective immunity. These results suggest that T cells stimulated with malaria antigen play important roles both in protective immunity and pathogenesis depending upon their subsets; CD8+ T cells in pathogenesis, and CD4+ T cells in protective immunity. These apparently contradictory responses may be mediated by the same cytokine, IFN-gamma.  相似文献   

5.
Host resistance to infection by Trypanosoma cruzi is dependent on both natural and acquired immune responses. During the first week of infection in mice, NK cell-derived gamma interferon (IFN-gamma) is involved in controlling intracellular parasite replication, mainly through the induction of NO biosynthesis by activated macrophages. Interleukin-12 (IL-12) has been shown to be a powerful cytokine in inducing IFN-gamma synthesis by NK cells, as well as in mediating resistance to different intracellular protozoa. We have therefore studied the ability of T. cruzi to elicit IL-12 synthesis by macrophages and the role of this cytokine in controlling parasite replication during acute infection in mice. Our results show that macrophages cultured in the presence of live trypomastigote forms (but not epimastigotes) release IL-12 that can induce IFN-gamma production by normal spleen cells. IL-12 was detected in as little as 12 h after the addition of the trypomastigotes, and the level of IL-12 peaked at 48 h after the initial macrophage-parasite incubation. The addition of anti-IL-12 monoclonal antibody to macrophage-trypomastigote supernatants dose-dependently inhibited IFN-gamma production by naive splenocytes. Finally, the in vivo role of IL-12 in resistance to infection by T. cruzi was analyzed. Mice treated with anti-IL-12 monoclonal antibody had significantly increased parasitemia and mortality in comparison with those of control infected mice treated with control antibody. Together, these results suggest that macrophage-derived IL-12 plays a major role in controlling the parasitemia in T. cruzi-infected mice and that the animal's resistance during the acute phase of infection may, at least in part, be a consequence of postinfection levels of IL-12.  相似文献   

6.
Cerebral malaria (CM) is an infrequent but serious complication of Plasmodium falciparum infection in humans. Animal and human studies suggest that the pathogenesis of CM is immune mediated, but the precise mechanisms leading to cerebral pathology are unclear. In mice, infection with Plasmodium berghei ANKA results in CM on day 6 postinoculation (p.i.), while infection with the closely related strain P. berghei K173 does not result in CM. Infection with P. berghei K173 was associated with increased plasma gamma interferon (IFN-gamma) at 24 h p.i. and with increased splenic and hepatic mRNAs for a range of cytokines (IFN-gamma, interleukin-10 [IL-10], and IL-12) as well as the immunoregulatory enzyme indoleamine 2,3-dioxygenase. In contrast, P. berghei ANKA infection was associated with an absence of cytokine production at 24 h p.i. but a surge of IFN-gamma production at 3 to 4 days p.i. When mice were coinfected with both ANKA and K173, they produced an early cytokine response, including a burst of IFN-gamma at 24 h p.i., in a manner similar to animals infected with P. berghei K173 alone. These coinfected mice failed to develop CM. In addition, in a low-dose P. berghei K173 infection model, protection from CM was associated with early production of IFN-gamma. Early IFN-gamma production was present in NK-cell-depleted, gammadelta-cell-depleted, and Jalpha281(-/-) (NKT-cell-deficient) mice but absent from beta2-microglobulin mice that had been infected with P. berghei K173. Taken together, the results suggest that the absence of a regulatory pathway involving IFN-gamma and CD8(+) T cells in P. berghei ANKA infection allows the development of cerebral immunopathology.  相似文献   

7.
WSX-1 is a class I cytokine receptor with homology to the IL-12 receptors and is essential for resistance to Leishmania major infection. In the present study, we demonstrated that WSX-1 was also required for resistance to Trypanosoma cruzi. WSX-1-/- mice exhibited prolonged parasitemia, severe liver injury, and increased mortality over wild-type mice. WSX-1-/- splenocytes produced enhanced levels of Th2 cytokines, which were responsible for the prolonged parasitemia. Massive necroinflammatory lesions were observed in the liver of infected WSX-1-/- mice, and IFN-gamma that was overproduced in WSX-1-/- mice compared with wild-type mice was responsible for the lesions. In addition, vast amounts of various proinflammatory cytokines, including IL-6 and TNF-alpha, were produced by liver mononuclear cells in WSX-1-/- mice. Thus, during T. cruzi infection, WSX-1 suppresses liver injury by regulating production of proinflammatory cytokines, while controlling parasitemia by suppression of Th2 responses, demonstrating its novel role as an inhibitory regulator of cytokine production.  相似文献   

8.
We have previously shown that splenocytes from mice acutely infected with Trypanosoma cruzi exhibit high levels of nitric oxide (NO)-mediated apoptosis. In the present study, we used the gamma interferon (IFN-gamma)-knockout (IFN-gamma(-/-)) mice to investigate the role of IFN-gamma in modulating apoptosis induction and host protection during T. cruzi infection in mice. IFN-gamma(-/-) mice were highly susceptible to infection and exhibited significant reduction of NO production and apoptosis levels in splenocytes but normal lymphoproliferative response compared to the infected wild-type (WT) mice. Furthermore, IFN-gamma modulates an enhancement of Fas and Fas-L expression after infection, since the infected IFN-gamma(-/-) mice showed significantly lower levels of Fas and Fas-L expression. The addition of recombinant murine IFN-gamma to spleen cells cultures from infected IFN-gamma(-/-) mice increased apoptosis levels, Fas expression, and NO production. In the presence of IFN-gamma and absence of NO, although Fas expression was maintained, apoptosis levels were significantly reduced but still higher than those found in splenocytes from uninfected mice, suggesting that Fas-Fas-L interaction could also play a role in apoptosis induction in T. cruzi-infected mice. Moreover, in vivo, the treatment of infected WT mice with the inducible nitric oxide synthase inhibitor aminoguanidine also led to decreased NO and apoptosis levels but not Fas expression, suggesting that IFN-gamma modulates apoptosis induction by two independent and distinct mechanisms: induction of NO production and of Fas and Fas-L expression. We suggest that besides being of crucial importance in mediating resistance to experimental T. cruzi infection, IFN-gamma could participate in the immune response control through apoptosis modulation.  相似文献   

9.
Pregnant women are highly susceptible to malaria infection because of their low immunity and are at increased risk of maternal illness or death, in addition to spontaneous abortion, stillbirth, premature delivery, and low birth weight. However, the detailed pathogenesis of maternal malaria remains unclear. In this study, we evaluated a mouse model that shows similar severe pathological features of pregnant women during Plasmodium falciparum infection and investigated the pathogenesis of maternal malaria. Pregnant mice immunized by infection with an attenuated parasite, Plasmodium berghei XAT, were more susceptible to virulent P. berghei NK65 challenge/infection than were nonpregnant mice and showed high levels of parasitemia and a poor pregnancy outcome associated with placental pathology, such as accumulation of parasitized red blood cells, in the late phase of pregnancy. Notably, the pregnant immune mice challenged/infected with P. berghei NK65 developed liver injury associated with microvesicular fatty infiltration in late pregnancy. The pathological features were similar to acute fatty liver of pregnancy. Higher levels of gamma interferon and nitric oxide (NO) were found in plasma from pregnant immune mice infected with P. berghei NK65 than in plasma from nonpregnant mice. These findings suggest that development of liver injury and placental pathology in pregnant immune mice challenged/infected with P. berghei NK65 is accompanied by enhanced production of proinflammatory cytokines.  相似文献   

10.
To investigate the role of interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) in the resistance to Paracoccidioides brasiliensis (Pb) infection, mice with homologous disruption of the IFN-gamma (GKO) or TNF-alpha receptor p55 (p55KO) were infected with the parasite. GKO and p55KO, but not wild-type (WT) mice, were unable to control the growth of yeast cells and the mice succumbed to infection by days 16 and 90 after infection, respectively. Typical inflammatory granulomas were found only in WT mice. In contrast, knockout mice presented an inflammatory infiltrate composed of a few neutrophils, mononuclear, epithelioid, and multinuclear giant cells forming incipient granulomas in GKO mice and without granuloma formation in p55KO mice. Besides, both groups of knockout mice exhibited elevated numbers of yeast forms in agreement with colony-forming unit counts in organs. Compared with WT, splenocytes from infected GKO mice cultured with the Pb F1 fraction produced lower TNF-alpha levels, whereas leukocytes from infected p55KO mice produced similar amounts of TNF-alpha but higher levels of IFN-gamma. Moreover, splenocytes from infected WT mice produced higher levels of nitric oxide (NO) resulting in a lower T-cell proliferative response to Con A than uninfected WT, or infected p55KO and GKO mice. On the contrary, the addition of IFN-gamma to splenocytes from infected GKO mice resulted in higher NO production and lower T cell proliferation. Taken together, these findings suggests that endogenous TNF-alpha, acting through the p55 receptor, and IFN-gamma mediate resistance to Pb infection and induce NO production that determines marked T cell unresponsiveness.  相似文献   

11.
Protective immunity in mice infected with Toxoplasma gondii is mainly mediated by NK cells, CD4 and CD8 T cells, and type 1 cytokines, such as gamma interferon (IFN-gamma). To clarify the roles of NK cells and IFN-gamma in protection against primary congenital toxoplasmosis, we used recombination activating gene 2 knockout (RAG-2(-/-)) mice, which lack T and B lymphocytes, in comparison with the wild-type BALB/c model. RAG-2(-/-) mice had a significantly lower risk of fetal toxoplasmosis than BALB/c mice (25 versus 63.9%; P = 0.003). This protection was associated with an increased number of maternal NK cells, IFN-gamma secretion by spleen cells, and decreased parasitemia. In the RAG-2(-/-) mice, NK cell depletion increased both the rate of fetal infection, to 56.5% (P = 0.02), and the blood parasite burden. Conversely, in the BALB/c mice, this treatment did not modify maternofetal transmission or the blood parasite burden. Neutralization of IFN-gamma in both infected RAG-2(-/-) and BALB/c mice decreased congenital Toxoplasma transmission, contrasting with an exacerbation of maternal infection. These data suggest that a partially protective immunity against congenital toxoplasmosis is achieved due to the increased number of NK cells in RAG-2(-/-) mice. However, it seems that IFN-gamma enhances, directly or indirectly, the transplacental transmission.  相似文献   

12.
Control of Trypanosoma cruzi infection depends largely upon the production of interferon (IFN)-gamma. During experimental infection this cytokine is produced early, mainly by natural killer (NK) cells and later by T cells. As NK cells have been reported to participate in defence against T. cruzi, it is of importance to study the regulation of NK cell functions during infection with the parasite. Several innate cytokines regulate NK cell activity, among them being interferon (IFN)-alpha and IFN-beta (type 1 IFNs) and interleukin (IL)-12, which have all been reported to be involved in protection against T. cruzi. The role of these cytokines in regulation of NK cell functions and disease outcome were studied by infection of mutant mice lacking the IFN-alpha/beta receptor (IFNalpha/betaR-/-) or IL-12 (IL-12-/-) with T. cruzi. IFNalpha/betaR-/- mice were unable to activate the cytotoxic response but produced IFN-gamma, and were not more susceptible than controls. IL-12-/- mice were extremely susceptible and failed to produce T cell-derived IFN-gamma and nitric oxide (NO), although NK cytotoxicity was induced. The results indicate that IL-12 protects against T. cruzi by initiating T cell-mediated production of IFN-gamma, but that endogenous IFN-alpha/beta and NK cell cytotoxicity are not of major importance in defence.  相似文献   

13.
We examined the role of the cytokines gamma interferon (IFN-gamma) and interleukin-12 (IL-12) in the model of acute babesiosis with the WA1 Babesia. Mice genetically deficient in IFN-gamma-mediated responses (IFNGR2KO mice) and IL-12-mediated responses (Stat4KO mice) were infected with the WA1 Babesia, and observations were made on the course of infection and cytokine responses. Levels of IFN-gamma and IL-12 in serum increased 24 h after parasite inoculation. The augmented susceptibility observed in IFNGR2KO and Stat-4KO mice suggests that the early IL-12- and IFN-gamma-mediated responses are involved in protection against acute babesiosis. Resistance appears to correlate with an increase in nitric oxide (NO) production. In order to assess the contribution of different cell subsets to resistance against the parasite, we also studied mice lacking B cells, CD4+ T cells, NK cells, and macrophages. Mice genetically deficient in B lymphocytes or CD4+ T lymphocytes were able to mount protective responses comparable to those of immunosufficient mice. In contrast, in vivo depletion of macrophages or NK cells resulted in elevated susceptibility to the infection. Our observations suggest that a crucial part of the response that protects from the pathogenic Babesia WA1 is mediated by macrophages and NK cells, probably through early production of IL-12 and IFN-gamma, and induction of macrophage-derived effector molecules like NO.  相似文献   

14.
We have studied the impact of deficiency of the complement system on the progression and control of the erythrocyte stages of the malarial parasite Plasmodium chabaudi chabaudi. C1q-deficient mice and factor B- and C2-deficient mice, deficient in the classical complement pathway and in both the alternative and classical complement activation pathways, respectively, exhibited only a slight delay in the resolution of the acute phase of parasitemia. Complement-deficient mice showed a transiently elevated level of gamma interferon (IFN-gamma) in the plasma at the time of the acute parasitemia compared with that of wild-type mice. Although there was a trend for increased precursor frequencies in CD4(+) T cells from C1q-deficient mice producing IFN-gamma in response to malarial antigens in vitro, intracellular cytokine staining of spleen cells ex vivo showed no difference in the numbers of IFN-gamma(+) splenic CD4(+) and CD8(+) cells. In contrast, C1q-deficient animals were significantly more susceptible to a second challenge with the same parasite. C1q-deficient animals showed a reduced level of anti-malarial immunoglobulin G2a (IgG2a) antibody 100 days after primary infection. However, following a significantly higher parasitemia, C1q-deficient mice had increased levels of IgM and IgG2a anti-malarial antibodies. In summary, this study indicates that while complement plays only a minor role in the control of the acute phase of parasitemia of a primary infection, it does contribute to parasite control in reinfection.  相似文献   

15.
Phagocyte-derived reactive oxygen species have been implicated in the clearance of malaria infections. We investigated the progression of five different strains of murine malaria in gp91(phox-/-) mice, which lack a functional NADPH oxidase and thus the ability to produce phagocyte-derived reactive oxygen species. We found that the absence of functional NADPH oxidase in the gene knockout mice had no effect on the parasitemia or total parasite burden in mice infected with either resolving (Plasmodium yoelii and Plasmodium chabaudi K562) or fatal (Plasmodium berghei ANKA, Plasmodium berghei K173 and Plasmodium vinckei vinckei) strains of malaria. This lack of effect was apparent in both primary and secondary infections with P. yoelii and P. chabaudi. There was also no difference in the presentation of clinical or pathological signs between the gp91(phox-/-) or wild-type strains of mice infected with malaria. Progression of P. berghei ANKA and P. berghei K173 infections was unchanged in glutathione peroxidase-1 gene knockout mice compared to their wild-type counterparts. The rates of parasitemia progression in gp91(phox-/-) mice and wild-type mice were not significantly different when they were treated with l-N(G)-methylarginine, an inhibitor of nitric oxide synthase. These results suggest that phagocyte-derived reactive oxygen species are not crucial for the clearance of malaria parasites, at least in murine models.  相似文献   

16.
We investigated whether gamma interferon (IFN-gamma; a Th1 cytokine), tumor necrosis factor alpha (TNF-alpha), and interleukin-4 (IL-4; a Th2 cytokine) modulate nitric oxide (NO) production in vivo during blood stage infection with Plasmodium chabaudi AS. Treatment of resistant C57BL/6 mice, which resolve infection with P. chabaudi AS and produce increased levels of IFN-gamma, TNF-alpha, and NO early during infection, with anti-IFN- gamma plus anti-TNF-alpha monoclonal antibodies (MAbs) resulted in a reduction of both splenic inducible NO synthase mRNA and serum NO3- levels by 50 and 100%, respectively. Treatment with the anti-TNF-alpha MAb alone reduced only serum NO3- levels by 35%, and treatment with the anti-IFN-gamma MAb alone had no effect on NO production by these mice during infection. Susceptible A/J mice, which succumb to infection with P. chabaudi AS and produce increased levels of IL-4 but low levels of IFN-gamma, TNF-alpha, and NO early during infection, were treated with an anti-IL-4 MAb. The latter treatment had no effect on NO production by this mouse strain during infection. In addition, our results also demonstrate that treatment of resistant C57BL/6 mice with anti-IFN-gamma plus anti-TNF-alpha MAbs affects, in addition to NO production, other traits of resistance to P. chabaudi AS malaria such as the peak level of parasitemia and the development of splenomegaly. Furthermore, the change in spleen weight was shown to be an IFN-gamma-independent effect of TNF-alpha. Treatment of susceptible A/J mice during infection with an anti IL-4 MAb had no effect on these markers of resistance. Thus, these results demonstrate that TNF-alpha and IFN-gamma are critical in the regulation of NO production and other traits of resistance during P. chabaudi AS malaria in C57BL/6 mice. These data also indicate that treatment with an anti-IL-4 antibody alone is not able to induce NO production or confer resistance to A/J mice against P. chabaudi AS malaria.  相似文献   

17.
Intravenous injection of Rhodococcus aurantiacus into mice causes granulomatous inflammation dependent on endogenous interferon-gamma (IFN-gamma). This study investigated the mechanism of granuloma formation with an adoptive transfer system in IFN-gamma knockout (IFN-gamma(-/-)) mice. IFN-gamma(-/-) mice infected with R. aurantiacus did not develop granulomas, and high titres of endogenous interleukin-10 (IL-10) were detected in spleen extracts at 2 weeks after infection. The adoptive transfer of splenocytes from infected wild-type (IFN-gamma(+/+)) mice did not restore granuloma formation, although this treatment diminished IL-10 production in IFN-gamma(-/-) mice. Adoptive transfer of splenocytes from infected IFN-gamma(-/-) mice into infected IFN-gamma(+/+) reduced granuloma formation. These results suggest that splenocytes of IFN-gamma(-/-) mice suppress granuloma formation. On the other hand, although IFN-gamma production induced by R. aurantiacus infection was detected in nude mice, which are deficient in T cells, granuloma formation was not induced in them. However, adoptive transfer of immune splenocytes from either IFN-gamma(+/+) mice or IFN-gamma(-/-) mice could induce granuloma formation. This means that splenocytes of IFN-gamma(-/-) mice have the ability to both induce and suppress granuloma formation. Induction of granuloma is probably dependent on both T cells and IFN-gamma produced by non-T cells. It is suggested that the role of T cells in granuloma formation is not dependent on their IFN-gamma production.  相似文献   

18.
Malaria, a major endemic tropical disease, is caused by the infection of blood cells by Plasmodium protozoa. Most patients control their parasitemia by a not fully understood spleen-dependent mechanism. SDF-1alpha is a chemokine produced by stromal cells such as reticular spleen cells. Nitric oxide (NO) has several immune functions, including killing of intracellular pathogens and its function in malaria is debated. We have previously shown that SDF-1alpha production peaks during the ascending parasitemia in Plasmodium chabaudi infection and its supplementation in lethal models could reduce the parasitemia. In the present study, we analyzed SDF-1 production by spleen cells as related to NO metabolism in the P. chabaudi rodent malaria model using IFN-gamma; TNFR and iNOS-knockout mice or iNOS-blocked, L-NAME- or aminoguanidine-treated mice. Parasitemia and production of SDF-1alpha and SDF-1beta were determined by RT-PCR. In vitro NO production by spleen adherent cells was also tested. The data showed that parasitemia was less intense in both iNOS(-/-) or NO-inhibited mice than in controls, with increased and long-lasting production of SDF-1alpha mRNA. In the absence of cytokines involved in the final regulation of NO production by effector cells, as is the case for TNFR(-/-) and GKO mice, the infection progressed in an uncontrolled manner regardless of SDF-1alpha production, suggesting that these cytokines must be involved in the control of parasitemia after the SDF-1alpha dependent process. The SDF-1beta isoform was constitutive in all experiments, with elevated levels only clearly seen in TNFR(-/-) mice. We conclude that SDF-1 is involved in the promotion of parasitemia control in malaria, and excessive NO could affect its production.  相似文献   

19.
Trypanosoma cruzi (Y strain)-infected interleukin-4(-/-) (IL-4(-/-)) mice of strains 129/J, BALB/c, and C57BL/6 showed no significant difference in parasitemia levels or end point mortality rates compared to wild-type (WT) mice. Higher production of gamma interferon (IFN-gamma) by parasite antigen (Ag)-stimulated splenocytes was observed only for C57BL/6 IL-4(-/-) mice. Treatment of 129/J WT mice with recombinant IL-4 (rIL-4), rIL-10, anti-IL-4, and/or anti-IL-10 monoclonal antibodies (MAbs) did not modify parasitism. However, WT mice treated with rIL-4 and rIL-10 had markedly increased parasitism and suppressed IFN-gamma synthesis by spleen cells stimulated with parasite Ag, concanavalin A, or anti-CD3. Addition of anti-IL-4 MAbs to splenocyte cultures from infected WT 129/J, BALB/c, or C57BL/6 mice failed to modify IFN-gamma synthesis levels; in contrast, IL-10 neutralization increased IFN-gamma production and addition of rIL-4 and/or rIL-10 diminished IFN-gamma synthesis. We conclude that endogenous IL-4 is not a major determinant of susceptibility to Y strain T. cruzi infection but that IL-4 can, in association with IL-10, modulate IFN-gamma production and resistance.  相似文献   

20.
Individuals in areas of intense malaria transmission exhibit resistance (or tolerance) to levels of parasitemia in their blood that would normally be associated with febrile illness in malaria-naive subjects. The resulting level of parasitemia associated with illness (the pyrogenic threshold) is highest in childhood and lowest in adulthood. Clinical parallels between malarial and bacterial endotoxin tolerance have led to the supposition that both share common physiological processes, with nitric oxide (NO) proposed as a candidate mediator. The hypotheses that NO mediates tolerance and blood stage parasite killing in vivo were tested by determining its relationship to age and parasitemia cross-sectionally and longitudinally in a population of 195 children and adults from Papua New Guinea encountering intense malaria exposure. Despite pharmacological clearance of asymptomatic parasitemia, NO production and mononuclear cell NO synthase (NOS) activity were remarkably stable within individuals over time, were not influenced by parasitemia, and varied little with age. These results contrast with previous smaller cross-sectional studies. Baseline NO production and NOS activity did not protect against recurrent parasitemia, consistent with previous data suggesting that NO does not have antiparasitic effects against blood stage infection in vivo. The NO indices studied were markedly higher in specimens from study subjects than in samples from Australian controls, and NOS activity was significantly associated with plasma immunoglobulin E levels, consistent with induction of NO by chronic exposure to other infections and/or host genetic factors. These results suggest that NO is unlikely to mediate killing of blood stage parasites in this setting and is unlikely to be the primary mediator in the acquisition or maintenance of malarial tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号