首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Xie Z  Lau K  Eby B  Lozano P  He C  Pennington B  Li H  Rathi S  Dong Y  Tian R  Kem D  Zou MH 《Diabetes》2011,60(6):1770-1778

OBJECTIVE

Autophagy is a critical cellular system for removal of aggregated proteins and damaged organelles. Although dysregulated autophagy is implicated in the development of heart failure, the role of autophagy in the development of diabetic cardiomyopathy has not been studied. We investigated whether chronic activation of the AMP-activated protein kinase (AMPK) by metformin restores cardiac function and cardiomyocyte autophagy in OVE26 diabetic mice.

RESEARCH DESIGN AND METHODS

OVE26 mice and cardiac-specific AMPK dominant negative transgenic (DN)-AMPK diabetic mice were treated with metformin or vehicle for 4 months, and cardiac autophagy, cardiac functions, and cardiomyocyte apoptosis were monitored.

RESULTS

Compared with control mice, diabetic OVE26 mice exhibited a significant reduction of AMPK activity in parallel with reduced cardiomyocyte autophagy and cardiac dysfunction in vivo and in isolated hearts. Furthermore, diabetic OVE26 mouse hearts exhibited aggregation of chaotically distributed mitochondria between poorly organized myofibrils and increased polyubiquitinated protein and apoptosis. Inhibition of AMPK by overexpression of a cardiac-specific DN-AMPK gene reduced cardiomyocyte autophagy, exacerbated cardiac dysfunctions, and increased mortality in diabetic mice. Finally, chronic metformin therapy significantly enhanced autophagic activity and preserved cardiac functions in diabetic OVE26 mice but not in DN-AMPK diabetic mice.

CONCLUSIONS

Decreased AMPK activity and subsequent reduction in cardiac autophagy are important events in the development of diabetic cardiomyopathy. Chronic AMPK activation by metformin prevents cardiomyopathy by upregulating autophagy activity in diabetic OVE26 mice. Thus, stimulation of AMPK may represent a novel approach to treat diabetic cardiomyopathy.Autophagy is a physiologic process whereby cytoplasmic components, including long-lived proteins and organelles, are engulfed by a double-membrane structure and targeted for destruction in lysosomes (1). It selectively removes damaged mitochondria as a cytoprotective mechanism for limiting mitochondria-derived oxidative stress and preventing apoptosis (2,3). A low level of constitutive autophagy is important in the heart for maintaining normal cellular function and the quality of proteins and organelles. Defects in this process cause cardiac dysfunction and heart failure, particularly when cellular stress is increased (4). Although autophagy is implicated in various pathologic conditions, including cardiac hypertrophy, cardiomyopathy, and heart failure, there is little information on the pathophysiologic roles of autophagy in the pathogenesis of diabetic cardiomyopathy.Metformin, one of the most commonly prescribed antidiabetic drugs, improves cardiac function and reduces the incidence of myocardial infarction in type 2 diabetic patients (5,6). The UK Prospective Diabetes Study reported that metformin was more effective than sulfonylureas or insulin in reducing all-cause mortality and diabetes-related end points in diabetic patients, even though these agents decreased HbA1c by comparable magnitudes. These findings suggest that metformin provides cardiovascular protection independent of its hypoglycemic effects (7).Indeed, metformin ameliorates cardiac dysfunctions induced by global ischemia, without affecting blood glucose in nondiabetic animals (8,9), by activating the AMP-activated protein kinase (AMPK) (10,11). AMPK acts as a sensor of cellular energy status and controls several cellular functions in the cardiovascular system, including protein synthesis (12,13), apoptosis (1416), and autophagy (17,18) in physiologic and pathologic conditions, such as hemodynamic stress (12,13), myocardial ischemia, and reperfusion injury (16,19,20). However, the roles and molecular mechanisms by which AMPK regulates diabetic cardiomyopathy remain to be established.Diabetic cardiomyopathy, which develops in diabetic patients in the absence of coronary artery disease or hypertension (2124), is a major cause of heart failure in diabetic patients. It is characterized by reduced cardiomyocyte contractility, cardiac apoptosis, mitochondrial pathology, and dysfunction (25,26). Despite the importance of this complication, the underlying mechanisms of diabetic cardiomyopathy are still poorly understood. Thus, this study was designed to test whether decreased autophagy is associated with the development of cardiomyopathy in diabetic OVE26 mice and to evaluate whether metformin improves cardiac function by modulating autophagic activity in diabetes.  相似文献   

3.
Amelioration of diabetic nephropathy in SPARC-null mice   总被引:5,自引:0,他引:5  
SPARC (Secreted Protein, Acidic and Rich in Cysteine) is a matricellular protein that inhibits mesangial cell proliferation and also affects production of extracellular matrix (ECM) by regulating transforming growth factor-beta1 (TGF-beta1) and type I collagen in mesangial cells. This study is an investigation of the role of SPARC in streptozotocin (STZ)-induced diabetic nephropathy (DN) of 6-mo duration in wild type (WT) and SPARC-null mice. SPARC expression was evaluated by immunohistochemistry (IHC) and by in situ hybridization (ISH). Deposition of type I and IV collagen and laminin was evaluated by IHC, and TGF-beta 1 mRNA was assessed by ISH. Renal function studies revealed no significant difference in BUN between diabetic SPARC-null mice and diabetic WT mice, whereas a significant increase in albumin excretion was detected in diabetic WT relative to diabetic SPARC-null mice. Diabetic WT animals exhibited increased levels of SPARC mRNA and protein in glomerular epithelial cells and in interstitial cells, in comparison with nondiabetic WT mice. Neither SPARC mRNA nor protein was detected in SPARC-null mice. Morphometry revealed a significant increase in the percentage of the glomerular tufts occupied by ECM in diabetic WT compared with nondiabetic WT mice, although there was no difference in the mean glomerular tuft area among groups. In contrast, diabetic SPARC-null mice did not show a significant difference in the percentage of the glomerular tufts occupied by ECM relative to nondiabetic null mice. Tubulointerstitial fibrosis was ameliorated in diabetic SPARC-null mice compared with diabetic WT animals. Further characterization of diabetic SPARC-null mice revealed diminished glomerular deposition of type IV collagen and laminin, and diminished interstitial deposition of type I and type IV collagen correlated with decreases in TGF-beta 1 mRNA compared with WT diabetic mice. These observations suggest that SPARC contributes to glomerulosclerosis and tubulointerstitial damage in response to hyperglycemia through increasing TGF-beta 1 expression in this model of chronic DN.  相似文献   

4.
Imatinib attenuates diabetic nephropathy in apolipoprotein E-knockout mice   总被引:5,自引:0,他引:5  
In the diabetic kidney, clinical as well as experimental observations have shown an upregulation of growth factors such as PDGF. These studies, however, were not designed to address whether upregulation of PDGF is merely a manifestation of diabetic renal injury or whether PDGF plays an active role in the pathophysiology of diabetic nephropathy. The objectives of this study were first to assess whether PDGF-dependent pathways are involved in the development of diabetic nephropathy and second to determine the effects of PDGF receptor antagonism on this disorder and associated molecular and cellular processes. This study used the diabetic apolipoprotein E-knockout (apoE-KO) mouse, a recently described model of accelerated diabetic nephropathy. Diabetes was induced by injection of streptozotocin in 6-wk-old apoE-KO mice. Diabetic animals received treatment with a tyrosine kinase inhibitor that inhibits PDGF action, imatinib (STI-571, 10 mg/kg per d orally) or no treatment for 20 wk. Nondiabetic apoE-KO mice served as controls. This model of accelerated renal disease with albuminuria as well as glomerular and tubulointerstitial injury was associated with increased renal expression of PDGF-B, proliferating cells, and alpha-smooth muscle actin-positive cells. Furthermore, there was increased accumulation of type I and type IV collagen as well as macrophage infiltration. Imatinib treatment ameliorated both renal functional and structural parameters of diabetes as well as overexpression of a number of growth factors, collagens, proliferating cells, alpha-smooth muscle actin-positive cells, and macrophage infiltration within the kidney. Tyrosine kinase inhibition with imatinib seems to retard the development of experimental diabetic nephropathy.  相似文献   

5.
Although diabetic nephropathy occurs only in a minority of diabetic patients (approximately 30%), it is the major single cause of end-stage renal disease in the United States. Hyperglycemia and hypertension are important factors predisposing patients to nephropathy, however, accumulating evidence points to critical genetic factors that predispose only a subset of diabetic patients to nephropathy. Defining the genes responsible for nephropathy risk in human populations has proven challenging. Comparative genomics using the robust genetic reagents available in the laboratory mouse should provide a complementary approach to defining genes that may predispose to diabetic nephropathy in mice and human beings. In this article we review studies that have started to identify genetic risk factors for diabetic nephropathy in mice and the multiple approaches that may be used to elucidate the genetic pathogenesis of this disorder.  相似文献   

6.
7.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a member of the ligand-activated nuclear receptor superfamily, and plays an important role in lipid metabolism and glucose homeostasis. The purpose of this study is to determine whether the activation of PPARalpha by fenofbrate would improve diabetes and its renal complications in type II diabetes mellitus. Male C57 BLKS db/db mice and db/m controls at 8 weeks of age were divided to receive either a regular diet chow (db/db, n=8; db/m, n=6) or a diet containing fenofibrate (db/db, n=8; db/m, n=7). Mice were followed for 8 weeks. Fenofibrate treatment dramatically reduced fasting blood glucose (P<0.001) and HbA1c levels (P<0.001), and was associated with decreased food intake (P<0.01) and slightly reduced body weight. Fenofibrate also ameliorated insulin resistance (P<0.001) and reduced plasma insulin levels (P<0.05) in db/db mice. Hypertrophy of pancreatic islets was decreased and insulin content markedly increased (P<0.05) in fenofibrate-treated diabetic animals. In addition, fenofibrate treatment significantly reduced urinary albumin excretion (P<0.001). This was accompanied by dramatically reduced glomerular hypertrophy and mesangial matrix expansion. Furthermore, the addition of fenofibrate to cultured mesangial cells, which possess functional active PPARalpha, decreased type I collagen production. Taken together, the PPARalpha agonist fenofibrate dramatically improves hyperglycemia, insulin resistance, albuminuria, and glomerular lesions in db/db mice. The activation of PPARalpha by fenofibrate in mesangial cells may partially contribute to its renal protection. Thus, fenofibrate may serve as a therapeutic agent for type II diabetes and diabetic nephropathy.  相似文献   

8.
Peroxisome proliferator-activated receptor (PPAR)alpha, a member of the ligand-activated nuclear receptor superfamily, plays an important role in lipid metabolism and glucose homeostasis and is highly expressed in the kidney. The present studies were aimed at determining the role of PPARalpha in the pathogenesis of diabetic nephropathy using PPARalpha-knockout mice and cultured murine mesangial cells. Diabetes was induced using a low-dose streptozotocin protocol in 8-week-old male 129 SvJ PPARalpha-knockout and wild-type mice. Diabetic PPARalpha-knockout and wild-type mice developed elevated fasting blood glucose (P < 0.001) and HbA1c levels (P < 0.001). Renal functional and histopathological changes in diabetic and nondiabetic PPARalpha-knockout and wild-type mice were evaluated after 16 weeks of hyperglycemia. PPARalpha immunostaining of the cortical tubules of diabetic wild-type mice was elevated by hyperglycemia. In diabetic PPARalpha-knockout mice, renal disease with accompanying albuminuria, glomerular sclerosis, and mesangial area expansion was more severe than in diabetic wild-type mice (P < 0.05) and was accompanied by increased levels of serum free fatty acids and triglycerides (P < 0.01). Furthermore, they exhibited increased renal immunostaining for type IV collagen and osteopontin, which was associated with increased macrophage infiltration and glomerular apoptosis. There were no significant differences in these indexes of renal disease between nondiabetic PPARalpha-knockout and wild-type mice and diabetic PPARalpha wild-type mice. In vitro studies demonstrated that high glucose levels markedly increased the expression of type IV collagen, transforming growth factor-beta1, and the number of leukocytes adherent to cultured mesangial cells. Adherence of leukocytes was inhibited by the PPARalpha agonist fenofibrate. Taken together, PPARalpha deficiency appears to aggravate the severity of diabetic nephropathy through an increase in extracellular matrix formation, inflammation, and circulating free fatty acid and triglyceride concentrations. PPARalpha agonists may serve as useful therapeutic agents for type 1 diabetic nephropathy.  相似文献   

9.
Functionally significant polymorphisms in endothelial nitric oxide synthase (eNOS) and reduced vascular eNOS activity have been associated with increased human diabetic nephropathy (DN), but the pathogenic role of eNOS deficiency in the development of DN has not yet been confirmed. This study characterizes the severity of DN in eNOS(-/-) mice that were backcrossed to C57BLKS/J db/db mice. Although the severity of hyperglycemia was similar to C57BLKS/J db/db mice, by 26 wk, eNOS(-/-) C57BLKS/J db/db mice exhibited dramatic albuminuria, arteriolar hyalinosis, increased glomerular basement membrane thickness, mesangial expansion, mesangiolysis, and focal segmental and early nodular glomerulosclerosis. Even more remarkable, eNOS(-/-) C57BLKS db/db exhibited decreases in GFR to levels <50% of that in eNOS(+/+) C57BLKS db/db, as confirmed by increased serum creatinine. In summary, eNOS(-/-) db/db mice provide the most robust model of type II DN that has been described to date and support a role for deficient eNOS-derived NO production in the pathogenesis of DN.  相似文献   

10.
《Transplant immunology》2010,23(3-4):184-190
Treatment with autologous bone marrow transplantation (ABMT) can change the natural history of diabetes in patients with new-onset Type 1 diabetes (T1D). Effects of syngeneic bone marrow transplantation (syn-BMT) on diabetic nephropathy were studied in streptozotocin-induced diabetic mice. Diabetic mice received sibling's bone marrow on days 3, 10, 20, or 40 after T1D onset, respectively. Renal pathology, levels of oxidative stress, and the expressions of angiotensinogen (AGT), monocyte chemoattractant protein-1 (MCP-1) and transforming growth factor beta 1 (Tgf-β1) mRNA were investigated. Treatment with syn-BMT when disease was early-onset reduced mesangial area expansion and kidney enlargement; besides, if it is given on day 10, syn-BMT attenuated glomerular hypertrophy. Oxidative stress factors such as catalase (CAT) and superoxide radical anion O2− (O2−) were markedly maintained by syn-BMT compared to mice without treatment. In diabetic mice without treatment, renal AGT and MCP-1 mRNA were increased, while they were effectively suppressed by syn-BMT. But it showed no changes or even increment in Tgf-β1 mRNA after syn-BMT. Syn-BMT, if applied when disease was early-onset, ameliorated diabetic renal injury. These preventive effects could be partly via maintaining oxidative stress and expression of AGT and MCP-1 in kidney in streptozotocin-diabetic mice.  相似文献   

11.
Angiotensin-converting enzyme 2 (ACE2) degrades angiotensin II to angiotensin-(1-7) and is expressed in podocytes. Here we overexpressed ACE2 in podocytes in experimental diabetic nephropathy using transgenic methods where a nephrin promoter drove the expression of human ACE2. Glomeruli from these mice had significantly increased mRNA, protein, and activity of ACE2 compared to wild-type mice. Male mice were treated with streptozotocin to induce diabetes. After 16 weeks, there was no significant difference in plasma glucose levels between wild-type and transgenic diabetic mice. Urinary albumin was significantly increased in wild-type diabetic mice at 4 weeks, whereas albuminuria in transgenic diabetic mice did not differ from wild-type nondiabetic mice. However, this effect was transient and by 16 weeks both transgenic and nontransgenic diabetic mice had similar rates of proteinuria. Compared to wild-type diabetic mice, transgenic diabetic mice had an attenuated increase in mesangial area, decreased glomerular area, and a blunted decrease in nephrin expression. Podocyte numbers decreased in wild-type diabetic mice at 16 weeks, but were unaffected in transgenic diabetic mice. At 8 weeks, kidney cortical expression of transforming growth factor-β1 was significantly inhibited in transgenic diabetic mice as compared to wild-type diabetic mice. Thus, the podocyte-specific overexpression of human ACE2 transiently attenuates the development of diabetic nephropathy.  相似文献   

12.
Diabetic nephropathy is characterized by progressive loss of renal function, persistent proteinuria, and relentless accumulation of extracellular matrix leading to glomerulosclerosis and interstitial fibrosis. This study investigated the potential effects of long-term expression of exogenous hepatocyte growth factor (HGF) on normal and diabetic kidneys. Intravenous injection of human HGF gene via naked plasmid vector resulted in abundant HGF protein specifically localized in renal glomeruli, despite an extremely low level of transgene mRNA in the kidney. In uninephrectomized mice made diabetic with streptozotocin, delivery of exogenous HGF gene ameliorated the progression of diabetic nephropathy. HGF attenuated urine albumin and total protein excretion in diabetic mice. Exogenous HGF also mitigated glomerular mesangial expansion, reduced fibronectin and type I collagen deposition, and prevented interstitial myofibroblast activation. In addition, HGF prevented kidney cells from apoptotic death in the glomeruli and tubulointerstitium. Moreover, expression of HGF inhibited renal expression of TGF-beta1 and reduced urine level of TGF-beta1 protein. Therefore, despite the effects of HGF on diabetic nephropathy being controversial, these observations suggest that supplementation of HGF is beneficial in ameliorating diabetic renal insufficiency in mice.  相似文献   

13.
14.
Connective tissue growth factor (CTGF) is a potent inducer of extracellular matrix accumulation. In diabetic nephropathy, CTGF expression is markedly upregulated both in podocytes and mesangial cells, and this may play an important role in its pathogenesis. We established podocyte-specific CTGF-transgenic mice, which were indistinguishable at baseline from their wild-type littermates. Twelve weeks after streptozotocin-induced diabetes, these transgenic mice showed a more severe proteinuria, mesangial expansion, and a decrease in matrix metalloproteinase-2 activity compared to diabetic wild-type mice. Furthermore, diabetic transgenic mice exhibited less podocin expression and a decreased number of diffusely vacuolated podocytes compared to diabetic wild-type mice. Importantly, induction of diabetes in CTGF-transgenic mice resulted in a further elevation of endogenous CTGF mRNA expression and protein in the glomerular mesangium. Our findings suggest that overexpression of CTGF in podocytes is sufficient to exacerbate proteinuria and mesangial expansion through a functional impairment and loss of podocytes.  相似文献   

15.
Angiogenesis, the formation of new blood vessels from pre-existing vasculature, plays a key role in both physiologic and pathologic events, including wound healing, cancer, and diabetes. Neovascularization has been implicated in the genesis of diverse diabetic complications such as retinopathy, impaired wound healing, neuropathy, and, most recently, diabetic nephropathy. Diabetic nephropathy is one of the major microvascular-associated complications in diabetes and is the leading cause of end-stage renal disease worldwide. In this review we describe the major factors involved in the pathologic glomerular microvascular alterations in response to hyperglycemia and the possible use of anti-angiogenic therapies for the treatment of diabetic nephropathy.  相似文献   

16.
17.
18.
BACKGROUND: Oxidative stress has been suggested to play an important role in the pathogenesis of diabetic nephropathy. In the present study, the effects of thioredoxin1 (TRX1) overexpression, a small protein with antioxidant property, on the development of diabetic nephropathy in streptozotocin-induced diabetic animals were investigated using TRX1 transgenic mice (TRX1-Tg). METHODS: Eight-week-old male TRX1-Tg and wild-type mice littermates (WT) mice were treated either with streptozotocin (200 mg/kg) or vehicle alone. After 24 weeks of treatment, diabetic nephropathy and oxidative stress were assessed in these four groups of mice, by biochemical analyses of blood and urine, as well as by histological analyses of the kidneys. RESULTS: Haemoglobin A1c (HbA1c) levels of diabetic TRX1-Tg were not significantly different from those of the diabetic WT. Nevertheless, an augmented urinary albumin excretion observed in diabetic WT was significantly diminished in diabetic TRX1-Tg. Histological study revealed that pathological changes such as mesangial matrix expansion and tubular injury were significantly prevented in diabetic TRX1-Tg accompanied by a reduced tendency of expression of transforming growth factor-beta as compared with diabetic WT. In parallel, urinary excretion of 8-hydroxy-2'-deoxyguanosine and acrolein adduct and the immunostaining intensities of these markers in the kidney were significantly higher in diabetic WT compared with non-diabetic mice. The markers were significantly suppressed in diabetic TRX1-Tg, an indication of systemic and renal oxidative stress attenuation by TRX1 overexpression. CONCLUSION: These findings indicated the significant role of oxidative stress in the development of diabetic nephropathy and a potential inhibition of progression of nephropathy by TRX1.  相似文献   

19.
Background One characteristic histologic change in diabetic glomerulopathy is nodular and diffuse mesangial expansion, which resembles the alterations seen in renal amyloidosis. We addressed the questions of whether the morphologic changes seen in renal amyloidosis are related to the biochemical amyloid type, and whether there is a histologic analogy in diabetic glomerulopathy. Methods We examined kidney specimens obtained from autopsies on 30 patients with systemic amyloidosis and 34 with diabetes mellitus. Results The mean age at death of the patients with amyloidosis was 60.6±10.9 years. All samples were positively stained by Congored and direct fast scarlet stains. All nonnephrotic patients showed minimal diffuse or nodular lesions. Most of the lesions found in the patients with nephrosis were severe. We also assessed the histologic glomerular changes in 34 cases of diabetes mellitus. The mean age at death of the patients in this group was 62.3±12.3 years. In diabetic nephropathy, severe nodular lesions did not appear until there was progression of diffuse lesions. By contrast, in the amyloid kidney, nodular mesangial expansion could be seen in glomeruli even when the diffuse mesangial expansion was slight. Conclusions There is no significant relationship between histologic amyloid deposition patterns and biochemical amyloid types. Although, in both diabetic nephropathy and renal amyloidosis, the histologic alterations of the kidneys include diffuse and nodular mesangial expansion. these alterations progress separately in amyloidosis, while in diabetic nephropathy, the nodular lesions appear after progression of diffuse mesangial thickening.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号