首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transplantation of human neural stem cells into the dentate gyrus or ventricle of rodents has been reportedly to enhance neurogenesis. In this study, we examined endogenous stem cell proliferation and angiogenesis in the ischemic rat brain after the transplantation of human neural stem cells. Focal cerebral ischemia in the rat brain was induced by middle cerebral artery occlusion. Human neural stem cells were transplanted into the subventricular zone. The behavioral performance of human neural stem cells-treated ischemic rats was significantly improved and cerebral infarct volumes were reduced compared to those in untreated animals. Numerous transplanted human neural stem cells were alive and preferentially localized to the ipsilateral ischemic hemisphere. Furthermore, 5-bromo-2′-deoxyuridine-labeled endogenous neural stem cells were observed in the subventricular zone and hippocampus, where they differentiated into cells immunoreactive for the neural markers doublecortin, neuronal nuclear antigen Neu N, and astrocyte marker glial fibrillary acidic protein in human neural stem cells-treated rats, but not in the untreated ischemic animals. The number of 5-bromo-2′-deoxyuridine-positive ? anti-von Willebrand factor-positive proliferating endothelial cells was higher in the ischemic boundary zone of human neural stem cells-treated rats than in controls. Finally, transplantation of human neural stem cells in the brains of rats with focal cerebral ischemia promoted the proliferation of endogenous neural stem cells and their differentiation into mature neural-like cells, and enhanced angiogenesis. This study provides valuable insights into the effect of human neural stem cell transplantation on focal cerebral ischemia, which can be applied to the development of an effective therapy for stroke.  相似文献   

2.
X-box-binding protein 1-transfected neural stem cells were transplanted into the right lateral ventricles of rats with rotenone-induced Parkinson’s disease. The survival capacities and differentiation rates of cells expressing the dopaminergic marker tyrosine hydroxylase were higher in X-box-binding protein 1-transfected neural stem cells compared to non-transfected cells. Moreover, dopamine and 3,4-dihydroxyphenylacetic acid levels in the substantia nigra were significantly increased, α-synuclein expression was decreased, and neurological behaviors were significantly ameliorated in rats following transplantation of X-box-binding protein 1-transfected neural stem cells. These results indicate that transplantation of X-box-binding protein 1-transfected neural stem cells can promote stem cell survival and differentiation into dopaminergic neurons, increase dopamine and 3,4-dihydroxyphenylacetic acid levels, reduce α-synuclein aggregation in the substantia nigra, and improve the symptoms of Parkinson’s disease in rats.  相似文献   

3.
Human insulin-like growth factor 1-transfected umbilical cord blood neural stem cells were transplanted into a hypoxic-ischemic neonatal rat model via the tail vein. BrdU-positive cells at day 7 post-transplantation, as well as nestin- and neuron specific enolase-positive cells at day 14 were increased compared with those of the single neural stem cell transplantation group. In addition, the proportion of neuronal differentiation was enhanced. The genetically modified cell-transplanted rats exhibited enhanced performance in correctly crossing a Y-maze and climbing an angled slope compared with those of the single neural stem cell transplantation group. These results showed that human insulin-like growth factor 1-transfected neural stem cell transplantation promotes the recovery of the learning, memory and motor functions in hypoxic-ischemic rats.  相似文献   

4.
5.
In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone.  相似文献   

6.
BACKGROUND: It has been previously demonstrated that the neural cell microenvironment has the ability to induce differentiation of bone marrow mesenchymal stem cells (BMSCs) into the neural cells. OBJECTIVE: To establish a co-culture system of human BMSCs and neural cells, and to observe effects of this co-culture system on differentiation of human BMSCs into neural cells. DESIGN, TIME AND SETTING: A comparative observation experiment, performed at the Center Labora-tory of the Affiliated Hospital of Medical College Qingdao University from October 2006 to December 2007. MATERIALS: Neural cells were obtained from human fetal brain tissue. BMSCs were harvested from fe-male patients that underwent autonomous stem cell transplantation. METHODS: BMSCs in the co-culture group consisted of BMSCs and third passage neural cells. BMSCs in the control group were solely cultured in vitro. MAIN OUTCOME MEASURES: Morphological changes of BMSCs were observed, and expression of the neuronal specific marker, neuron-specific enolase (NSE), was analyzed by immunofluorescence staining after 4–5-day co-culture. RESULTS: The number of neural cells in the co-culture group increased and the cells spread on the culture bottle surface. Radial dendrite formed and connected with each other. NSE-immunoreactive cells were also detected. The positive ratio of NSE-positive cells reached (32.7±11.5)%, with morphological characteristics similar to neuronal cells. Human BMSCs did not express NSE in the control group. CONCLUSION: The microenvironment provided by neurons induced differentiation of BMSCs into neu-ronal-like cells. Key Words: bone marrow mesenchymal stem cells; stem cell transplantation; cell differentiation; neurons  相似文献   

7.
BACKGROUND: It has been previously demonstrated that the neural cell microenvironment has the ability to induce differentiation of bone marrow mesenchymal stem cells (BMSCs) into the neural cells. OBJECTIVE: To establish a co-culture system of human BMSCs and neural cells, and to observe effects of this co-culture system on differentiation of human BMSCs into neural cells. DESIGN, TIME AND SETTING: A comparative observation experiment, performed at the Center Labora-tory of the Affiliated Hospital of Medical College Qingdao University from October 2006 to December 2007. MATERIALS: Neural cells were obtained from human fetal brain tissue. BMSCs were harvested from fe-male patients that underwent autonomous stem cell transplantation. METHODS: BMSCs in the co-culture group consisted of BMSCs and third passage neural cells. BMSCs in the control group were solely cultured in vitro. MAIN OUTCOME MEASURES: Morphological changes of BMSCs were observed, and expression of the neuronal specific marker, neuron-specific enolase (NSE), was analyzed by immunofluorescence staining after 4–5-day co-culture. RESULTS: The number of neural cells in the co-culture group increased and the cells spread on the culture bottle surface. Radial dendrite formed and connected with each other. NSE-immunoreactive cells were also detected. The positive ratio of NSE-positive cells reached (32.7±11.5)%, with morphological characteristics similar to neuronal cells. Human BMSCs did not express NSE in the control group. CONCLUSION: The microenvironment provided by neurons induced differentiation of BMSCs into neu-ronal-like cells. Key Words: bone marrow mesenchymal stem cells; stem cell transplantation; cell differentiation; neurons  相似文献   

8.
9.
Overexpression of receptor-interacting protein 140 (RIP140) promotes neuronal differentiation of N2a cells via extracellular regulated kinase 1/2 (ERK1/2) signaling. However, involvement of RIP140 in human neural differentiation remains unclear. We found both RIP140 and ERK1/2 expression increased during neural differentiation of H1 human embryonic stem cells. Moreover, RIP140 negatively correlat-ed with stem cell markers Oct4 and Sox2 during early stages of neural differentiation, and positively correlated with the neural stem cell marker Nestin during later stages. hTus, ERK1/2 signaling may provide the molecular mechanism by which RIP140 takes part in neural differentiation to eventually affect the number of neurons produced.  相似文献   

10.
BACKGROUND:Dopaminergic neurons differentiated from neural stem cells have been successfully used in the treatment of rat models of Parkinson's disease;however,the survival rate of transplanted cells has been low.Most cells die by apoptosis as a result of overloaded intracellular calcium and the formation of oxygen free radicals.OBJECTIVE:To observe whether survival of transplanted cells,transplantation efficacy.and dopaminergic differentiation from neural stem cells is altered by Panax notoginseng saponins(PNS) in a rat model of Parkinson's disease.DESIGN,TIME AND SETTING:Cellular and molecular biology experiments with randomized group design.The experiment was performed at the Animal Experimental Center,First Hospital of Sun Yat-sen University from April to October 2007.MATERIALS:Thirty-two adult,healthy,male Sprague Dawley rats,and four healthy Sprague Dawley rat embryos at gestational days 14-15 were selected.The right ventral mesenceDhalon was injected with 6-hydroxydopamine to establish a model of Parkinson's disease.6-hydroxydopamine and apomorphine were purchased from Sigma.USA.METHODS:Neural stem cells derived from the mesencephalon of embryonic rats were cultivated and passaged in serum-free culture medium.Lesioned animals were randomly divided into four groups(n=8):dopaminergic neuron,dopaminergic neuron PNS,PNS,and control.The dopaminergic neuron group was iniected with 3 μ L cell suspension containing dopaminergic neurons difierentiated from neural stem cells.The dopaminergic neurons PNS group received 3 μ L dopaminergic cell suspension combined with PNS (250 mg/L).The PNS group received 3 μL PNS(250 mg/L),and the control group received 3 μL DMEM/F12 culture medium.MAIN OUTCOME MEASURES:The rats were transcardially perfused with 4% paraformaldehyde at 60 days post-grafting for immunohistochemistry.The rats were intraperitoneally injected with apomorphine (0.5 mg/kg)to induce rotational behavior.RESULTS:Cell counts of tyrosine hydroxylase-positive neurons in the dopaminergic neuron PNS group were(732±82.6)cells/400-fold field.This was significantly greater than the dopaminergic neuron group [(326±34.8)cells/400-fold field,P<0.01].Compared to the control group,the rotational asymmetry of rats that received dopaminergic neuron transplants was significantly decreased,beginning at 20 days after operation(P<0.0 1).Rotational asymmetry was fugher reduced between 10~60 days post-surgery in the dopaminergic neuron PNS group,compared to the dopaminergic neuron group(P<0.01).CONCLUSION:Panax notoginseng saponins can increase survival and effectiveness of dopaminergic neurons differentiated from neural stem cells for transplantation in a rat model of Parkinson's disease.  相似文献   

11.
Uric acid is an important, naturally occurring serum antioxidant. The present study investigates the use of uric acid for promoting proliferation and neuronal differentiation of mesenchymal stem cells derived from human placenta tissue. Human placenta-derived mesenchymal stem cells were pre-induced in the presence of either 0, 0.2, 0.4 or 0.8 mM uric acid in combination with 1 mM β-mercaptoethanol for 24 hours, followed by exposure to identical uric acid concentrations and 5 mM β-mercaptoethanol for 6 and 10 hours. Cells developed a neuronal-like morphology, with formation of interconnected process extensions, typical of neural cells. Immunocytochemistry and immunofluorescence staining showed neuron specific enolase positive cells were present in each group except the control group. A greater number of neuron specific enolase positive cells were observed in 0.8 mM uric acid in combination with 5 mM β-mercaptoethanol at 10 hours. After 24 hours of induction, Nissl bodies were detected in the cytoplasm of all differentiated cell groups except the control group and Nissl body numbers were greatest in human placenta-derived mesenchymal stem cells grown in the presence of 0.8 mM uric acid and 5 mM β-mercaptoethanol. These results suggest uric acid accelerates differentiation of human placenta-derived mesenchymal stem cells into neuronal-like cells in a time-and concentration-dependent manner.  相似文献   

12.
Cytoskeletal proteins are involved in neuronal survival.Brain-derived neurotrophic factor can increase expression of cytoskeletal proteins during regeneration after axonal injury.However,the effect of neural stem cells genetically modified by brain-derived neurotrophic factor transplantation on neuronal survival in the injury site still remains unclear.To examine this,we established a rat model of traumatic brain injury by controlled cortical impact.At 72 hours after injury,2 × 10~7 cells/m L neural stem cells overexpressing brain-derived neurotrophic factor or naive neural stem cells(3 m L) were injected into the injured cortex.At 1–3 weeks after transplantation,expression of neurofilament 200,microtubule-associated protein 2,actin,calmodulin,and beta-catenin were remarkably increased in the injury sites.These findings confirm that brain-derived neurotrophic factor-transfected neural stem cells contribute to neuronal survival,growth,and differentiation in the injury sites.The underlying mechanisms may be associated with increased expression of cytoskeletal proteins and the Wnt/β-catenin signaling pathway.  相似文献   

13.
Previous studies showed that tyrosine hydroxylase or neurturin gene-modified cells transplanted into rats with Parkinson’s disease significantly improved behavior and increased striatal dopamine content. In the present study, we transplanted tyrosine hydroxylase and neurturin gene-modified bone marrow-derived mesenchymal stem cells into the damaged striatum of Parkinson’s disease model rats. Several weeks after cell transplantation, in addition to an improvement of motor function, tyrosine hydroxylase and neurturin proteins were up-regulated in the injured striatum, and importantly, levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid increased significantly. Furthermore, the density of the D2 dopamine receptor in the postsynaptic membranes of dopaminergic neurons was decreased. These results indicate that transplantation of tyrosine hydroxylase and neurturin gene-modified bone marrow-derived mesenchymal stem cells increases dopamine synthesis and significantly improves the behavior of rats with Parkinson’s disease.  相似文献   

14.
Excessive noise, ototoxic drugs, infections, autoimmune diseases, and aging can cause loss of spiral gangli-on neurons, leading to permanent sensorineural hearing loss in mammals. Stem cells have been conifrmed to be able to differentiate into spiral ganglion neurons. Little has been reported on adipose tissue-derived stem cells (ADSCs) for repair of injured spiral ganglion neurons. In this study, we hypothesized that trans-plantation of neural induced-human ADSCs (NI-hADSCs) can repair the injured spiral ganglion neurons in guinea pigs with neomycin-induced sensorineural hearing loss. NI-hADSCs were induced with culture medium containing basic ifbroblast growth factor and forskolin and then injected to the injured cochleae. Guinea pigs that received injection of Hanks’ balanced salt solution into the cochleae were used as controls. Hematoxylin-eosin staining showed that at 8 weeks after cell transplantation, the number of surviving spiral ganglion neurons in the cell transplantation group was significantly increased than that in the control group. Also at 8 weeks after cell transplantation, immunohistochemical staining showed that a greater number of NI-hADSCs in the spiral ganglions were detected in the cell transplantation group than in the control group, and these NI-hADSCs expressed neuronal markers neuroiflament protein and microtubule-associated protein 2. Within 8 weeks after cell transplantation, the guinea pigs in the cell transplantation group had a gradually decreased auditory brainstem response threshold, while those in the control group had almost no response to 80 dB of clicks or pure tone burst. These ifndings suggest that a large amount of NI-hADSCs migrated to the spiral ganglions, survived for a period of time, re-paired the injured spiral ganglion cells, and thereby contributed to the recovery of sensorineural hearing loss in guinea pigs.  相似文献   

15.
Amyotrophic lateral sclerosis is a motor neuron degenerative disease that is also known as Lou Gehrig’s disease in the United States,Charcot’s disease in France,and motor neuron disease in the UK.The loss of motor neurons causes muscle wasting,paralysis,and eventually death,which is commonly related to respiratory failure,within 3-5 years after onset of the disease.Although there are a limited number of drugs approved for amyotrophic lateral sclerosis,they have had little success at treating the associated symptoms,and they cannot reverse the course of motor neuron degeneration.Thus,there is still a lack of effective treatment for this debilitating neurodegenerative disorder.Stem cell therapy for amyotrophic lateral sclerosis is a very attractive strategy for both basic and clinical researchers,particularly as transplanted stem cells and stem cell-derived neural progenitor/precursor cells can protect endogenous motor neurons and directly replace the lost or dying motor neurons.Stem cell therapies may also be able to re-establish the motor control of voluntary muscles.Here,we review the recent progress in the use of neural stem cells and neural progenitor cells for the treatment of amyotrophic lateral sclerosis.We focus on MN progenitor cells derived from fetal central nervous system tissue,embryonic stem cells,and induced pluripotent stem cells.In our recent studies,we found that transplanted human induced pluripotent stem cell-derived motor neuron progenitors survive well,differentiate into motor neurons,and extend axons into the host white matter,not only in the rostrocaudal direction,but also along motor axon tracts towards the ventral roots in the immunodeficient rat spinal cord.Furthermore,the significant motor axonal extension after neural progenitor cell transplantation in amyotrophic lateral sclerosis models demonstrates that motor neuron replacement therapy could be a promising therapeutic strategy for amyotrophic lateral sclerosis,particularly as a variety of stem cell derivatives,including induced pluripotent stem cells,are being considered for clinical trials for various diseases.  相似文献   

16.
Human umbilical cord mesenchymal stem cells,incorporated into an amnion carrier tubes,were assessed for nerve regeneration potential in a rat nerve defect model.Damaged nerves were exposed to human amnion carriers containing either human umbilical cord mesenchymal stem cell (cell transplantation group)or saline(control group).At 8,12,16 and 20 weeks after cell implantation,the sciatic functional index was higher in the cell transplantation group compared with the control group.Furthermore,electrophysiological examination showed that threshold stimulus and maximum stimulus intensity gradually decreased while compound action potential amplitude gradually increased.Hematoxylin-eosin staining showed that regenerating nerve fibers were arranged in nerve tracts in the cell transplantation group and connective tissue between nerve tracts and amnion tissue reduced over time.Gastrocnemius muscle cell diameter,wet weight and restoration ratio were increased.These data indicate that transplanted human umbilical cord mesenchymal stem cells,using the amnion tube connection method,promote restoration of damaged sciatic nerves in rats.  相似文献   

17.
Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 × 10 6 ) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchymal stem cells promote the functional recovery of crush-injured sciatic nerves.  相似文献   

18.
Direct reprogramming of somatic cells into neurons or neural stem cells is one of the most important fron-tier ifelds in current neuroscience research. Without undergoing the pluripotency stage, induced neurons or induced neural stem cells are a safer and timelier manner resource in comparison to those derived from induced pluripotent stem cells. In this prospective, we review the recent advances in generation of induced neurons and induced neural stem cellsin vitro andin vivo and their potential treatments of neurological disorders.  相似文献   

19.
Parkinson's disease (PD) is a neurodegenerative condition which causes a characteristic movement disorder secondary to loss of dopaminergic neurons in the substanitia nigra. The motor disorder responds well to dopamine-replacement therapies, though these result in significant adverse effects due to non-physiolog-ical release of dopamine in the striatum, and off-target effects. Cell-based regenerative treatments offer a potential means for targeted replacement of dopamine, in a physiological manner. Dopaminergic neurons for cell-based therapies can be obtained from several sources. Fetal ventral mesencephalon tissue contains dopaminergic neuron progenitors, and has been transplanted into the striatum of PD patients with good results in a number of cases. However, the ethical implications and logistical challenges of using fetal tissue mean that fetal ventral mesencephalon is unlikely to be used in a widespread clinical setting. Induced plu-ripotent stem cells can be used to generate dopaminergic neurons for transplantation, providing a source of autologous tissue for grafting. This approach means that challenges associated with allografts, such as the potential for immune rejection, can be circumvented. However, the associated cost and difficulty in producing a standardized product from different cell lines means that, at present, this approach is not com-mercially viable as a cell-based therapy. Dopaminergic neurons derived from embryonic stem cells offer the most promising basis for a cell-based therapy for Parkinson's disease, with trials due to commence in the next few years. Though there are ethical considerations to take into account when using embryonic tissue, the possibility of producing a standardized, optimized cell product means that this approach can be both effective, and commercially viable.  相似文献   

20.
Kainic acid can simulate excitatory amino acids in vitro.Neural stem cells,isolated from newborn Wistar rats,were cultured in vitro and exposed to 100-4 000 μM kainic acid for 7 days to induce neuronal cell differentiation,causing the number of astrocytes to be significantly increased.Treatment with a combination of 0.5 mg/L gastrodin and kainic acid also caused the number of differentiated neurons to be significantly increased compared with treatment with kainic acid alone.Experimental findings suggest that gastrodin reduces the excitability of kainic acid and induces neural stem cell differentiation into neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号