首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
ObjectivesTo assess the humoral and cell-mediated response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) elicited by the mRNA BNT162b2 vaccine in SARS-CoV-2-experienced and -naive subjects against a reference strain and SARS-CoV-2 variants.MethodsThe humoral response (including neutralizing antibodies) and T-cell-mediated response elicited by BNT162b2 vaccine in 145 healthcare workers (both naive and positive for previous SARS-CoV-2 infection) were evaluated. In a subset of subjects, the effect of SARS-CoV-2 variants on antibody level and cell-mediated response was also investigated.ResultsOverall, 125/127 naive subjects (98.4%) developed both neutralizing antibodies and specific T cells after the second dose of vaccine. Moreover, the antibody and T-cell responses were effective against viral variants since SARS-CoV-2 NT Abs were still detectable in 55/68 (80.9%) and 25/29 (86.2%) naive subjects when sera were challenged against β and δ variants, respectively. T-cell response was less affected, with no significant difference in the frequency of responders (p 0.369). Of note, two doses of vaccine were able to elicit sustained neutralizing antibody activity against all the SARS-CoV-2 variants tested in SARS-CoV-2-experienced subjects.ConclusionsBNT162b2 vaccine elicited a sustained humoral and cell-mediated response in immunocompetent subjects after two-dose administration of the vaccine, and the response seemed to be less affected by SARS-CoV-2 variants, the only exceptions being the β and δ variants. Increased immunogenicity, also against SARS-CoV-2 variant strains, was observed in SARS-CoV-2-experienced subjects. These results suggest that triple exposure to SARS-CoV-2 antigens might be proposed as valuable strategy for vaccination campaigns.  相似文献   

2.
PurposeWe analyzed the SARS-CoV-2 genome using our integrated genome analysis system and present the concept of a comprehensive approach to monitoring and surveillance of emerging variants.Material/methodsA total of 69 SARS-CoV-2 positive samples (with Ct value ​≤ ​28) were tested. Samples included in this study were selected from 7 areas of eastern Poland. All samples were sequenced on an Illumina MiSeq platform using a 300-cycle MiSeq Reagent Kit v2. BWA was used for reads mapping on the reference SARS-CoV-2 sequence. SAMTools were used for post-processing of reads to genome assembly. Pango lineage and Nexstrain were used to identify variants and amino acid mutations. Statistical analysis was performed with R 4.0.2.ResultsThis study shows the first confirmed case of SARS-CoV-2 in Poland with the lineage B.1.351 (known as 501Y.V2 South African variant), as well as another 18 cases with epidemiologically relevant lineage B.1.1.7, known as British variant. Supplementary analysis of SARS-CoV-2 sequences deposited in GISAID shows that the share of a new variant can change rapidly within one month. In addition, we show a complete, integrated concept of a networked system for analyzing the variability of the SARS-CoV-2 genome, which, used in the present study, generated data and a variant report within 6 days.ConclusionThe analyzed viral genomes showed considerable variability with simultaneous clear distinction of local clusters of genomes showing high similarity. Implementing real-time monitoring of new SARS-CoV-2 variants in Poland is urgently needed, and our developed system is available to be implemented on a large scale.  相似文献   

3.
《Clinical microbiology and infection》2020,26(11):1560.e1-1560.e4
ObjectivesStudies are needed to better understand the genomic evolution of the recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study aimed to describe genomic diversity of SARS-CoV-2 by next-generation sequencing (NGS) in a patient with longitudinal follow-up for SARS-CoV-2 infection.MethodsSequential samples collected between January 29th and February 4th, 2020, from a patient infected by SARS-CoV-2 were used to perform amplification of two genome fragments—including genes encoding spike, envelope, membrane and nucleocapsid proteins—and NGS was carried out with Illumina® technology. Phylogenetic analysis was performed with PhyML and viral variant identification with VarScan.ResultsMajority consensus sequences were identical in most of the samples (5/7) and differed in one synonymous mutation from the Wuhan reference sequence. We identified 233 variants; each sample harboured in median 38 different minority variants, and only four were shared by different samples. The frequency of mutation was similar between genes and correlated with the length of the gene (r = 0.93, p = 0.0002). Most of mutations were substitution variations (n = 217, 93.1%) and about 50% had moderate or high impact on gene expression. Viral variants also differed between lower and upper respiratory tract samples collected on the same day, suggesting independent sites of replication of SARS-CoV-2.ConclusionsWe report for the first time minority viral populations representing up to 1% during the course of SARS-CoV-2 infection. Quasispecies were different from one day to the next, as well as between anatomical sites, suggesting that in vivo this new coronavirus appears as a complex and dynamic distributions of variants.  相似文献   

4.
ObjectivesTo evaluate the impact of neutralizing monoclonal antibody (mAb) treatment and to determine whether the selective pressure of mAbs could facilitate the proliferation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with spike protein mutations that might attenuate mAb effectiveness.Patients and methodsWe evaluated the impact of mAbs on the nasopharyngeal (NP) viral load and virus quasispecies of mAb-treated patients using single-molecule real-time sequencing. The mAbs used were: Bamlanivimab alone (four patients), Bamlanivimab/Etesevimab (23 patients) and Casirivimab/Imdevimab (five patients).ResultsThe NP SARS-CoV-2 viral load of mAb-treated patients decreased from 8.2 log10 copies/mL before administration to 4.3 log10 copies/mL 7 days after administration. Five immunocompromised patients given Bamlanivimab/Etesevimab were found to have mAb activity-reducing spike mutations. Two patients harboured SARS-CoV-2 variants with a Q493R spike mutation 7 days after administration, as did a third patient 14 days after administration. The fourth patient harboured a variant with a Q493K spike mutation 7 days post-treatment, and the fifth patient had a variant with a E484K spike mutation on day 21. The emergence of the spike mutation was accompanied by stabilization or rebound of the NP viral load in three of five patients.ConclusionTwo-mAb therapy can drive the selection of resistant SARS-CoV-2 variants in immunocompromised patients. Patients given mAbs should be closely monitored and measures to limit virus spread should be reinforced.  相似文献   

5.
ObjectivesThe identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen or RNA in respiratory specimens ≥14 days after administration of all recommended doses of authorized coronavirus disease 2019 (COVID-19) vaccines is defined as breakthrough infection. In the present investigation, mRNA and vector-based SARS-CoV-2 vaccines were analysed with respect to postvaccination infections in vaccinated hospital employees.MethodsA total of 8553 staff members were vaccinated with BNT162b2 (47%) or ChAdOx1-S (53%) between January and May 2021. In a retrospective observational cohort study, incidence of SARS-CoV-2 postvaccination infections was analysed in relation to demographic data, viral load, virus variants, vaccine brand and vaccination status at time of positive PCR test (fully vaccinated: ≥14 days since second dose; partially vaccinated: >21 days since first, but <14 days after second dose; insufficiently vaccinated: <22 days since first dose).ResultsWithin the follow-up period, ending on 31 July 2021, person-time at risk-adjusted monthly rates for SARS-CoV-2 postvaccination infections were 0.18% (BNT162b2) and 0.57% (ChAdOx1-S) for insufficiently vaccinated, 0.34% (BNT162b2) and 0.32% (ChAdOx1-S) for partially vaccinated and 0.06% (BNT162b2) and 0.04% (ChAdOx1-S) for fully vaccinated participants. The two vaccine types did not differ with respect to hazard ratios for any of the respective postvaccination infection types. No cases of COVID-19-related hospitalizations or deaths were reported. Genotyping of positive PCR specimens revealed 42 variants of concern: B.1.1.7 (Alpha variant; n = 34); B.1.351 (Beta variant; n = 2), B.1.617.2 (Delta variant; n = 6).ConclusionsBNT162b2 and ChAdOx1-S are both effective in preventing breakthrough infections; however, it seems important, that all recommended vaccine doses are administered.  相似文献   

6.
《Clinical microbiology and infection》2022,28(11):1503.e5-1503.e8
ObjectivesTo describe Delta/Omicron SARS-CoV-2 variants co-infection detection and confirmation during the fifth wave of COVID-19 pandemics in France in 7 immunocompetent and epidemiologically unrelated patients.MethodsSince December 2021, the surveillance of Delta/Omicron SARS-CoV-2 variants of concern (VOC) circulation was performed through prospective screening of positive-samples using single nucleotide polymorphism (SNP) PCR assays targeting SARS-CoV-2 S-gene mutations K417N (Omicron specific) and L452R (Delta specific). Samples showing unexpected mutational profiles were further submitted to whole genome sequencing (WGS) using three different primer sets.ResultsBetween weeks 49-2021 and 02-2022, SARS-CoV-2 genome was detected in 3831 respiratory samples, of which 3237 (84.5%) were screened for VOC specific SNPs. Unexpected mutation profiles suggesting a dual Delta/Omicron population were observed in 7 nasopharyngeal samples (0.2%). These co-infections were confirmed by WGS. For 2 patients, the sequence analyses of longitudinal samples collected 7 to 11 days apart showed that Delta or Omicron can outcompete the other variant during dual infection. Additionally, for one of these samples, a recombination event between Delta and Omicron was detected.ConclusionsThis work demonstrates that SARS-CoV-2 Delta/Omicron co-infections are not rare in high virus co-circulation periods. Moreover, co-infections can further lead to genetic recombination which may generate new chimeric variants with unpredictable epidemic or pathogenic properties that could represent a serious health threat.  相似文献   

7.
ObjectivesTo analyse nosocomial transmission in the early stages of the coronavirus 2019 (COVID-19) pandemic at a large multisite healthcare institution. Nosocomial incidence is linked with infection control interventions.MethodsViral genome sequence and epidemiological data were analysed for 574 consecutive patients, including 86 nosocomial cases, with a positive PCR test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the first 19 days of the pandemic.ResultsForty-four putative transmission clusters were found through epidemiological analysis; these included 234 cases and all 86 nosocomial cases. SARS-CoV-2 genome sequences were obtained from 168/234 (72%) of these cases in epidemiological clusters, including 77/86 nosocomial cases (90%). Only 75/168 (45%) of epidemiologically linked, sequenced cases were not refuted by applying genomic data, creating 14 final clusters accounting for 59/77 sequenced nosocomial cases (77%). Viral haplotypes from these clusters were enriched 1–14x (median 4x) compared to the community. Three factors implicated unidentified cases in transmission: (a) community-onset or indeterminate cases were absent in 7/14 clusters (50%), (b) four clusters (29%) had additional evidence of cryptic transmission, and (c) in three clusters (21%) diagnosis of the earliest case was delayed, which may have facilitated transmission. Nosocomial cases decreased to low levels (0–2 per day) despite continuing high numbers of admissions of community-onset SARS-CoV-2 cases (40–50 per day) and before the impact of introducing universal face masks and banning hospital visitors.ConclusionGenomics was necessary to accurately resolve transmission clusters. Our data support unidentified cases—such as healthcare workers or asymptomatic patients—as important vectors of transmission. Evidence is needed to ascertain whether routine screening increases case ascertainment and limits nosocomial transmission.  相似文献   

8.
9.
ObjectivesSARS-CoV-2 infections with Omicron variants have a high capability of human-to-human transmission. Nevertheless, the duration of isolation for mild cases was shortened to 5 to 7 days. We aimed to detect the duration of viral shedding among healthcare workers (HCWs) with Omicron by using viral culture.MethodsWe prospectively included newly diagnosed nonsevere, symptomatic SARS-CoV-2 positive HCWs. Nasopharyngeal swab samples were obtained consecutively on days 5, 7,10, and 14 of onset of symptoms. The samples were examined by nucleic acid amplification test and viral culture.ResultsIn total, 55 non-severe patients with SARS-CoV-2 Omicron variant were included. The mean age of the population was 34 years (range, 23 to 54) and 78% (43/55) were female. The PCR positivity rate on days 5, 7, 10, and 14 was 96.4% (53/55), 87.3% (48/55), 74.545% (41/55), and 41.8% (23/55) consecutively, whereas the viral culture positivity rates were 83% (44/53), 52% (26/50), 13.5% (7/52), and 8% (4/50). Among the patients who became symptom-free, the viral culture positivity rates were 100% (4/4), 58% (7/12), 11% (3/27), and 5% (2/41).DiscussionWe showed that among the SARS-CoV-2 Omicron variant infected patients, viral shedding continues for ≥10 days in 13.5% of all cases and 11% in symptom-free cases. The decision for cessation of isolation according to the presence of symptoms could be reconsidered until further studies disapprove of our results. Meanwhile, the infected HCWs who give care to high-risk patients for severe COVID-19 might extend their isolations ≤10 days after the onset of symptoms, regardless of their symptoms.  相似文献   

10.
ObjectivesDuring the COVID-19 pandemic, numerous cases of chilblains have been reported. However, in most cases, RT-PCR or serology did not confirm SARS-CoV-2 infection. Hypotheses have been raised about an interferon-mediated immunological response to SARS-CoV-2, leading to effective clearance of the SARS-CoV-2 without the involvement of humoral immunity. Our objective was to explore the association between chilblains and exposure to SARS-CoV-2.MethodsIn this multicentre case–control study, cases were the 102 individuals referred to five referral hospitals for chilblains occurring during the first lockdown (March to May 2020). Controls were recruited from healthy volunteers' files held by the same hospitals. All members of their households were included, resulting in 77 case households (262 individuals) and 74 control households (230 individuals). Household exposure to SARS-CoV-2 during the first lockdown was categorized as high, intermediate or low, using a pre-established algorithm based on individual data on symptoms, high-risk contacts, activities outside the home and RT-PCR testing. Participants were offered a SARS-CoV-2 serological test.ResultsAfter adjustment for age, the association between chilblains and viral exposure was estimated at OR 3.3, 95% CI (1.4–7.3) for an intermediate household exposure, and 6.9 (2.5–19.5) for a high household exposure to SARS-CoV-2. Out of 57 case households tested, six (11%) had positive serology for SARS-CoV-2, whereas all control households tested (n = 50) were seronegative (p = 0.03). The effect of potential misclassification on exposure has been assessed in a bias analysis.DiscussionThis case–control study demonstrates the association between chilblains occurring during the lockdown and household exposure to SARS-CoV-2.  相似文献   

11.
Background/purposeSuperspreading events (SSEs) are pivotal in the spread of SARS-CoV-2. This study aimed to investigate an SSE of COVID-19 in a hospital and explore the transmission dynamics and heterogeneity of SSE.MethodsWe performed contact tracing for all close contacts in a cluster. We did nasopharyngeal or throat swabbing for SARS-CoV-2 by real-time RT-PCR. Environmental survey was performed. The epidemiological and clinical characteristics of the SSE were studied.ResultsPatient 1 with congestive heart failure and cellulitis, who had onset of COVID-19 two weeks after hospitalization, was the index case. Patient 1 led to 8 confirmed cases, including four health care workers (HCW). Persons tested positive for SARS-CoV-2 were HCW (n = 4), patient 1's family (n = 2), an accompanying person of an un-infected in-patient (n = 1), and an in-patient admitted before the SSE (n = 1). The attack rate among the HCW was 3.2 % (4/127). Environmental survey confirmed contamination at the bed rails, mattresses, and sink in the room patient 1 stayed, suggesting fomite transmission. The index case's sputum remained positive on illness day 35. Except one asymptomatic patient, at least three patients acquired the infection from the index case at the pre-symptomatic period. The effective reproduction number (Rt) was 0.9 (8/9).ConclusionThe host factor (heart failure, longer viral shedding), transmissibility of SARS-CoV-2 (Rt, pre-symptomatic transmission), and possible multiple modes of transmission altogether contributed to the SSE. Rapid response and advance deployment of multi-level protection in hospitals could mitigate COVID-19 transmission to one generation, thereby reducing its impact on the healthcare system.  相似文献   

12.
PurposeHost genetic variants in activating natural killer (NK) cell receptors may contribute to differences in severity of COVID-19. NK cell-mediated antibody-mediated cellular cytotoxicity (ADCC) responses play, however, a controversial role in SARS-CoV-2 infections. It is unclear whether proinflammatory and cytotoxic SARS-CoV-2-specific ADCC responses limit disease severity or rather contribute to the immunopathogenesis of severe COVID-19.MethodsUsing a genetic association approach and subsequent in vitro antibody-dependent NK cell activation experiments, we investigated whether genetic variants in the FcγRIIIa-encoding FCGR3A gene, resulting in expression of either a low-affinity or high-affinity variant, and individual SARS-CoV-2-specific ADCC response contribute to COVID-19 severity.ResultsIn our study, we showed that the high-affinity variant of the FcγRIIIa receptor, 158-V/V, is significantly over-represented in hospitalized and deceased patients with COVID-19, whereas the low-affinity FcγRIIIa-158-F/F variant occurs more frequently in patients with mild COVID-19 (P < .0001). Furthermore, functional SARS-CoV-2 antibody-specific NK cell-mediated ADCC assays revealed that significantly higher proinflammatory ADCC responses occur in hospitalized patients with COVID-19, and are especially observed in NK cells expressing the FcγRIIIa-158-V/V variant (P < .0001).ConclusionOur study provides evidence that pronounced SARS-CoV-2-specific NK cell-mediated ADCC responses are influenced by NK cell FcγRIIIa genetic variants and are a hallmark of severe COVID-19.  相似文献   

13.
BackgroundHealthcare-associated COVID-19 infections caused by SARS-CoV-2 have increased morbidity and mortality. Hospitals and skilled nursing facilities (SNFs) have been challenged by infection control and management.MethodsThis case study presents an outbreak investigation in a COVID-19-designated hospital and a hospital-based SNF. Real-time polymerase chain reaction (PCR) and other studies were performed on samples obtained from SNF residents, hospital patients, and healthcare workers (HCWs). The results of the laboratory tests and field epidemiological data were analyzed. Genome sequencing and phylogenetic analysis of SARS-CoV-2 were performed to identify the associations between cases. The tracer gas was released and recorded by a thermal imaging camera to investigate the spatial relations within clusters.ResultsDuring the outbreak, 29 COVID-19 infections in 3 clusters were identified through hospital-wide, risk-guided, and symptom-driven PCR tests. This included 12 HCWs, 5 patients, and 12 SNF residents who had been hospitalized for at least 14 days. Serology tests did not identify any cases among the PCR-negative individuals. The phylogenetic analysis revealed that viral strains from the 3 clusters shared a common mutation of G3994T and were phylogenetically related, which suggested that this outbreak had a common source rather than multiple introductions from the community. Linked cases exhibited vertical spatial distribution, and the sulfur hexafluoride release test confirmed a potential airborne transmission.ConclusionsThis report addressed the advantage of a multi-disciplinary team in outbreak investigation. Identifying an airborne transmission within an outbreak highlighted the importance of regular maintenance of ventilation systems.  相似文献   

14.
BackgroundFollowing a relatively mild first wave of coronavirus disease 2019 (COVID-19) in India, a deadly second wave of the pandemic overwhelmed the healthcare system due to the emergence of fast-transmitting SARS-CoV-2 genetic variants. The emergence and spread of the B.1.617.2/Delta variant considered to be driving the devastating second wave of COVID-19 in India. Currently, the Delta variant has rapidly overtaken the previously circulating variants to become the dominant strain. Critical mutations in the spike/RBD region of these variants have raised serious concerns about the virus's increased transmissibility and decreased vaccine effectiveness. As a result, significant scientific and public concern has been expressed about the impact of virus variants on COVID-19 vaccines.ObjectivesThe purpose of this article is to provide an additional explanation in the context of the evolutionary trajectory of SARS-CoV-2 variants in India, the vaccine-induced immune response to the variants of concern (VOC), and various vaccine deployment strategies to rapidly increase population immunity.ContentPhylogenetic analysis of SARS-CoV-2 isolates circulating in India suggests the emergence and spread of B.1.617 variant. The immunogenicity of currently approved vaccines indicates that the majority of vaccines elicit an antibody response and some level of protection. According to current data, vaccines in the pre-fusion configuration (2p substitution) have an advantage in terms of nAb titer, but the duration of vaccine-induced immunity, as well as the role of T cells and memory B cells in protection, remain unknown. Since vaccine efficacy on virus variants is one of the major factors to be considered for achieving herd immunity, existing vaccines need to be improved or effective next-generation vaccines should be developed to cover the new variants of the virus.  相似文献   

15.
ObjectivesTo evaluate whether the increase of temperature can influence the environmental endurance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).MethodsVirus was inoculated on a plastic surface and harvested at predefined time-points in parallel at 20°C–25°C (room temperature; RT) and at 28°C (June temperature; JT). Samples were tested by TCID50 titres on Vero cells.ResultsOur results confirm that fomite transmission of the emerging SARS-CoV-2 is possible: the virus reserved its ability to infect cells for up to 84 hours at both RT and JT on a plastic surface, with TCID50 viral titres of 0.67 and 0.25 log10, respectively. At RT, an important reduction in the viral titre, from 4 log10 to 3 log10 TCID50, was observed during the first 24–36 hours. At JT, the same decay was observed more rapidly (between 8 and 12 hours), The rate of viral inactivation by D-value was 24.74 hours at RT and 12.21 hours at JT.ConclusionsThis remarkable difference between the two temperatures suggests that virus vitality can be influenced by the environmental temperature and that the hot season could reduce the probability of COVID-19 transmission.  相似文献   

16.
《Clinical microbiology and infection》2021,27(7):1036.e1-1036.e8
ObjectivesGenotyping of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been instrumental in monitoring viral evolution and transmission during the pandemic. The quality of the sequence data obtained from these genotyping efforts depends on several factors, including the quantity/integrity of the input material, the technology, and laboratory-specific implementation. The current lack of guidelines for SARS-CoV-2 genotyping leads to inclusion of error-containing genome sequences in genomic epidemiology studies. We aimed to establish clear and broadly applicable recommendations for reliable virus genotyping.MethodsWe established and used a sequencing data analysis workflow that reliably identifies and removes technical artefacts; such artefacts can result in miscalls when using alternative pipelines to process clinical samples and synthetic viral genomes with an amplicon-based genotyping approach. We evaluated the impact of experimental factors, including viral load and sequencing depth, on correct sequence determination.ResultsWe found that at least 1000 viral genomes are necessary to confidently detect variants in the SARS-CoV-2 genome at frequencies of ≥10%. The broad applicability of our recommendations was validated in over 200 clinical samples from six independent laboratories. The genotypes we determined for clinical isolates with sufficient quality cluster by sampling location and period. Our analysis also supports the rise in frequencies of 20A.EU1 and 20A.EU2, two recently reported European strains whose dissemination was facilitated by travel during the summer of 2020.ConclusionsWe present much-needed recommendations for the reliable determination of SARS-CoV-2 genome sequences and demonstrate their broad applicability in a large cohort of clinical samples.  相似文献   

17.
BackgroundBoth humoral and cell-mediated responses are associated with immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although our understanding of the potential role of T-cell responses in the context of coronavirus disease 2019 (COVID-19) is rapidly increasing, more information is still needed.ObjectivesTo provide an overview of the role of T-cell immunity in COVID-19, in the context of natural infection and post-vaccination, and discuss the potential utility of measuring SARS-CoV-2-specific T-cell responses, drawing on experience of the use of interferon-γ release assays (IGRAs) in tuberculosis (TB).SourcesPubMed articles up to 16 April 2021.ContentT-cell responses can be detected very early in the course of COVID-19, earlier than the detection of antibody responses, and are correlated with COVID-19 outcome. Lower CD4+ and CD8+ T-cell counts are markers of more severe disease, longer duration of viral RNA positivity and increased mortality. In line with natural infection, SARS-CoV-2 vaccination stimulates robust T-cell responses, which probably play an important role in protection; data on long-term T-cell responses are currently limited. The utility of measuring T-cell responses is already well established in both aiding the diagnosis of TB infection using IGRAs, and evaluation of T-cell responses to TB vaccine candidates. A variety of assays have already been developed to measure SARS-CoV-2-specific T-cell responses, including IGRAs, intracellular cytokine staining and activation-induced markers. IGRAs based on SARS-CoV-2 antigens can distinguish between convalescent and uninfected healthy blood donors.ImplicationsSimple assays for measuring the quantity and function of T-cell responses may have utility in the prognostication of COVID-19, and for monitoring immune responses to SARS-CoV-2 vaccination and population-based immunity to SARS-CoV-2 variants of interest.  相似文献   

18.
ObjectivesThe effectiveness of remdesivir, a Food and Drug Administration-approved drug for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has been repeatedly questioned during the current coronavirus disease 2019 (COVID-19) pandemic. Most of the recently reported studies were randomized controlled multicentre clinical trials. Our goal was to test the efficiency of remdesivir in reducing nasopharyngeal viral load and hospitalization length in a real-life setting in patients admitted to a large tertiary centre in Israel.MethodsA total of 142 COVID-19 patients found to have at least three reported SARS-CoV-2 quantitative RT-PCR tests during hospitalization were selected for this study. Of these, 29 patients received remdesivir, while the remaining non-treated 113 patients served as controls.ResultsAmong the tested parameters, the control and remdesivir groups differed significantly only in the intubation rates. Remdesivir treatment did not significantly affect nasopharyngeal viral load, as determined by comparing the differences between the first and last cycle threshold values of the SARS-CoV-2 quantitative RT-PCR tests performed during hospitalization (cycle threshold 7.07 ± 6.85 vs. 7.08 ± 7.27, p 0.977 in the control and treated groups, respectively). Remdesivir treatment shortened hospitalization length by less than a day compared with non-treated controls and by 3.1 days when non-intubated patients from both groups were compared. These differences, however, were not statistically significant, possibly because of the small size of the remdesivir group.DiscussionRemdesivir was not associated with nasopharyngeal viral load changes, but our study had a significant disease severity baseline imbalance and was not powered to detect viral load or clinical differences.  相似文献   

19.
《Clinical microbiology and infection》2021,27(12):1858.e1-1858.e7
ObjectivesStudies comparing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA load in the upper respiratory tract (URT) between children and adults—who either presented with coronavirus disease 2019 (COVID-19) or were asymptomatic—have yielded inconsistent results. Here, we conducted a retrospective, single-centre study to address this issue.Patients and methodsIncluded were 1184 consecutive subjects (256 children and 928 adults) testing positive for SARS-CoV-2 RNA in nasopharyngeal exudates (NPs); of these, 424 (121 children and 303 adults) had COVID-19 and 760 (135 children and 625 adults) were asymptomatic close contacts of COVID-19 patients. SARS-CoV-2 RNA testing was carried out using the TaqPath COVID-19 Combo Kit (Thermo Fisher Scientific, MS, USA). The AMPLIRUN® TOTAL SARS-CoV-2 RNA Control (Vircell SA, Granada, Spain) was used for estimating SARS-CoV-2 RNA loads (in copies/mL). SARS-CoV-2 RNA loads at the time of laboratory diagnosis (single specimen/patient) were used for comparison purposes.ResultsMedian initial SARS-CoV-2 RNA load was lower (p 0.094) in children (6.98 log10 copies/mL, range 3.0–11.7) than in adults (7.14 log10 copies/mL, range 2.2–13.4) with COVID-19. As for asymptomatic individuals, median SARS-CoV-2 RNA load was comparable (p 0.97) in children (6.20 log10 copies/mL, range 1.8–11.6) and adults (6.48 log10 copies/mL, range 1.9–11.8). Children with COVID-19 symptoms displayed SARS-CoV-2 RNA loads (6.98 log10 copies/mL, range 3.0–11.7) comparable to those of their asymptomatic counterparts (6.20 log10 copies/mL, range 1.8–11.6) (p 0.61). Meanwhile in adults, median SARS-CoV-2 RNA load was significantly higher in symptomatic (7.14 log10 copies/mL, range 2.2–13.4) than in asymptomatic subjects (6.48 log10 copies/mL, range 1.9–11.8) (p < 0.001). Overall, the observed URT SARS-CoV-2 RNA clearance rate was faster in children than in adults.ConclusionsBased on viral load data at the time of diagnosis, our results suggest that SARS-CoV-2-infected children, with or without COVID-19, may display NP viral loads of comparable magnitude to those found in their adult counterparts. However, children may have shorter viral shedding than adults.  相似文献   

20.
Human evolution has resulted in selection for genetic polymorphisms beneficial in the defense against pathogens. However, such polymorphisms may have the potential to heighten the risk of autoimmune disease. Here, we investigated whether psoriasis-associated single nucleotide polymorphisms influence host control of HIV-1 infection. We studied psoriasis and viral immune response variants in three HIV-positive cohorts: (1) HIV-1 controllers and non-controllers in the Study of the Consequences of the Protease Inhibitor Era (SCOPE) cohort (n = 366), (2) Individuals with primary HIV infection in the Options cohort (n = 675), and (3) HIV-positive injection drug users from the Urban Health Study (UHS) (n = 987). We found a strong association of two psoriasis MHC variants, rs9264942 and rs3021366, with both HIV-1 controller status and viral load, and identified another Class III MHC variant rs9368699 to be strongly associated with viral load. A number of genetic variants outside the MHC (SOX5, TLR9, SDC4, PROX1, IL12B, TLR4, MBL-2, TYK2, IFIH1) demonstrated nominal significance. Overall, our data suggest that several psoriasis variants within the MHC have a robust impact on HIV-1 control, while variants outside the MHC require further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号