首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aerosolised DNA administration could potentially advance the treatment of inheritable lung diseases, lung malignancies and provide genetic immunisation against infection. Jet nebulisation, the current standard for introducing DNA formulations into the lung, is inherently inefficient. Pressurised metered dose inhalers (pMDIs) offer a potentially more efficacious and convenient alternative, especially for repeat administration. We aim to modify a novel low-energy nanotechnology process to prepare surfactant-coated pDNA nanoparticles for pulmonary gene delivery via a pMDI. Water-in-oil microemulsions containing green fluorescent protein reporter plasmid were snap-frozen and lyophilised. Lyophilised pDNA, in some cases following a surfactant wash, was incorporated into pMDIs with hydrofluoroalkane 134a (HFA134a) propellant and ethanol as cosolvent. To assess biological functionality, A549 human lung epithelial cells were exposed to aerosolised pDNA particles in the presence of dioleoyl-trimethylammonium propane (DOTAP). Transfection studies demonstrated that pDNA biological functionality was maintained following aerosolisation. In vitro toxicity assays (MTT) showed no significant cell viability loss following aerosolised pDNA treatment. We have demonstrated that pDNA particles can be incorporated into an HFA134a formulation and aerosolised using a standard valve and actuator. Particles prepared by this novel process have potential for stable and efficient delivery of pDNA to the lower respiratory tract via standard pMDI technology.  相似文献   

2.
The purpose of the present study was to examine unilateral lung-selective gene transfer following the administration of naked plasmid DNA (pDNA) onto the pulmonary pleural surface in mice. Naked pDNA was administered intravenously, intraperitoneally, and instilled onto the right pulmonary pleural surface. Four hours later, right pulmonary pleural surface instillation of naked pDNA resulted in high gene expression in the right lung. On the contrary, intravenous and intraperitoneal administration of naked pDNA resulted in no detectable gene expression. After instilling naked pDNA onto the right or left pulmonary pleural surface, gene expressions in the applied lung were significantly higher than those in the other lung and tissues. In addition, gene expressions were detected only in the intrathoracic tissues, not in the intraperitoneal tissues. Four hours after instillation of naked pDNA onto the right pulmonary pleural surface, gene expression in the right lung was the highest, and thereafter gene expression in the right lung decreased gradually. This novel gene transfer method is expected to be a safe and effective treatment against serious lung diseases.  相似文献   

3.
The lower respiratory tract provides a number of disease targets for gene therapy. Nebulisation is the most practical system for the aerosolisation of non-viral gene delivery systems. The aerosolisation process represents a significant challenge to the maintenance of the physical stability and biological activity of the gene vector. In this study we investigate the role of a condensing polycationic peptide on the stability and efficiency of nebulised lipid-DNA complexes. Complexes prepared from the cationic lipid 1, 2-dioleoyl-3-trimethylammonium propane (DOTAP) and plasmid DNA (pDNA) at mass (w/w) ratios of 12:1, 6:1 and 3:1, and complexes prepared from DOTAP, the polycationic peptide, protamine, and pDNA (LPD) at 3:2:1 w/w ratio were nebulised using a Pari LC Plus jet nebuliser. Samples from the nebuliser reservoir (pre- and post-nebulisation) and from the aerosol mist were collected and investigated for changes, including: particle diameter, retention of in-vitro transfection activity and the relative concentration and nature of the complexed pDNA remaining after the nebulisation procedure. The process of jet nebulisation adversely affected the physical stability of lipid:pDNA complexes with only those formulated at 12:1 w/w DOTAP:pDNA able to maintain their pre-nebulisation particle size distribution (145+/-3 nm pre-nebulisation vs. 142+/-2 nm aerosol mist) and preserve significant pDNA integrity in the reservoir (35% of pre-nebulisation pDNA band intensity). The LPD complexes were smaller (102+/-1 nm pre-nebulisation vs. 113+/-2 nm aerosol mist) with considerably greater retention of pDNA integrity in the reservoir (90% of pre-nebulisation pDNA band intensity). In contrast the concentration of pDNA in the aerosol mist for both the 12:1 w/w DOTAP:pDNA and LPD complexes were significantly reduced (10 and 12% of pre-nebulised values, respectively). Despite reduced pDNA concentration the transfection (% cells transfected) mediated by aerosol mist for the nebulised complexes was comparatively efficient (LPD aerosol mist 26 vs. 40% for pre-nebulised complex; the respective values for 12: 1 w/w DOTAP:pDNA were 12 vs. 28%). The physical stability and biological activity of nebulised lipid:pDNA complexes can be improved by inclusion of a condensing polycationic peptide such as protamine. The incorporation of the peptide precludes the use of potentially toxic excesses of lipid and charge and may act as a platform for the covalent attachment of peptide signals mediating sub-cellular targetting.  相似文献   

4.
In order to evaluate the in vivo effect of inhaled formulations, it is a gold standard to create a lung metastasis model by intravenously injecting cancer cells into an animal. Because the cancer grows from the blood vessel side, there is a possibility of underestimating the effect of an inhaled formulation administered to the lung epithelium side. In addition, the metastasis model has disadvantages in terms of preparation time and expense. The present study aimed to establish a new method to evaluate the effect of an inhaled small interfering RNA (siRNA) formulation that is more correct, more rapid, and less expensive. We investigated whether siRNA can suppress gene expression of plasmid DNA (pDNA) by serial pulmonary administration of siRNA and pDNA powders prepared by spray-freeze-drying. We revealed that formulations of dry siRNA powder significantly suppressed gene expression of pDNA powder compared with a control group with no siRNA. Naked siRNA inhalation powder with no vector showed the suppression of gene expression equivalent to that of an siRNA-polyethyleneimine complex without damaging tissues. These results show that the present method is suitable for evaluating the gene-silencing effect of inhaled siRNA powders.  相似文献   

5.
While somatic gene therapy has the potential to treat many genetic disorders, recent clinical trials suggest that an efficient and safe delivery vehicle for successful gene therapy is lacking. The current study examines the influence of two different preparation (the solvent evaporation method and the complex coacervation method) methods on the encapsulation of a model plasmid with chitosan. The ability of different molecular weights of chitosan to form nanoparticles with a plasmid, and particulated polymers to stabilize a plasmid in a supercoiled form, were examined by agarose gel electrophoresis. Protection of encapsulated pDNA offered by these nanoparticles from nuclease attack was confirmed by assessing degradation in the presence of DNase I, and the transformation of the plasmids with incubated nanoparticles were examined by β-galactosidase assay. Model pDNA existed as a mixture of both supercoiled (84.2%) and open circular (15.8%) forms. Our results demonstrated that supercoiled forms decreased while open circular forms and fragmented linear forms increased during the preparation of formulations. F1 formulation prepared by the complex coacervation method protected the supercoiled form of pDNA effectively. There weren't any significant changes in nanoparticle size and zeta potential values at pH 5.5 for a period of 3 months, but differences in particle sizes were observed after lyophilization with a cryoprotective agent. The efficiency of nanoparticles mediated transformation to Escherichia coli cells was significantly higher than naked DNA or poly-l-lysine (PLL)–DNA polycation complexes. The transfection studies were performed in COS-7 cells. A 3-fold increase in gene expression was produced by nanoparticles as compared to the same amount of naked plasmid DNA (pDNA). These observations suggest that formulations with high molecular weight (HMW) chitosan can be an effective non-viral method of gene vector in animal studies.  相似文献   

6.
7.
Delivering active ingredients using biocompatible and biodegradable carriers such as gelatin nanoparticles (GNPs) to the lung constitutes a promising non-invasive route of administration. However, the pulmonary delivery of nanoparticle-based immunotherapy is still a field that requires more clarification.

In this study, GNPs loaded with cytosine-phosphate-guanine oligodeoxynucleotides (CpG-ODN)-loaded and plain GNPs were aerosolised either by a conventional pressured metered dose inhaler (pMDI) or by active or passive vibrating-mesh (VM) nebulisers. GNP sizes after nebulisation by active and passive VM nebulisers were 248.2?±?7.34 and 222.3?±?1.42?nm, respectively. GNP concentrations after aerosolisation were found consistent and second-stage particle deposition in an impinger was up to 65.68?±?11.2% of the nebulised dose. VM nebulisers produced high fine particle fractions, while pMDIs did not. Nebulised CpG-ODN-loaded GNPs remained capable to stimulate IL-10 release (225.2?±?56.3?pg/ml) in vitro from equine alveolar lymphocytes. Thus, a novel system for pulmonary GNP-mediated immunotherapy in vivo was established.  相似文献   

8.
Purpose. Uptake and degradation of naked plasmid DNA (pDNA) by liver sinusoidal endothelial cells (LSECs) were investigated. Methods. Tissue distribution and intrahepatic localization were determined after an intravenous injection of 111In- or 32P-labeled pDNA into rats. Cellular uptake and degradation of fluorescein- or 32P-labeled pDNA were evaluated using primary cultures of rat LSECs. Results. Following intravenous injection, pDNA was rapidly eliminated from the circulation and taken up by the liver. Fractionation of liver-constituting cells by centrifugal elutriation revealed a major contribution of LSECs to the overall hepatic uptake of pDNA. Confocal microscopic study confirmed intracellular uptake of pDNA in cultured LSECs. Apparent cellular association of pDNA was similar at 37°C and 4°C. However, trichloroacetic acid (TCA) precipitation experiments showed the TCA-soluble radioactivity in the culture medium increased in an accumulative manner at 37°C. Involvement of a specific mechanism was demonstrated, as the uptake of pDNA was significantly inhibited by excess unlabeled pDNA and some polyanions (polyinosinic acid, dextran sulfate, heparin) but not by others (polycytidylic acid, dextran). These inhibitors also reduced the amount of TCA-soluble radioactivity in the culture medium. Conclusion. These results suggest that LSECs efficiently ingested and rapidly degraded naked pDNA in vivo and in vitro and released the degradation products into the extracellular space.  相似文献   

9.
This study investigated the stability and transfection efficiency of plasmid DNA (pDNA) and sea urchin sperm histone H1 (Sp H1) complexes embedded in albumin microsphere formulations. Sp H1 increased the stability and transfection efficiency of pDNA, while providing a favourable sustained pDNA release profile. Encapsulating Sp H1-complexed pDNA into albumin microspheres further protected the pDNA from physical stress and heparin treatment. When compared with free pDNA encapsulated in albumin microspheres, the Sp H1-pDNA microsphere formulations exhibited decreased hydrophilicity, slower pDNA release profiles, protection against heparin-induced degradation of embedded pDNA and increased stability against physical stress. These results indicate that complex formation of pDNA with Sp H1 facilitates intracellular DNA transfer and that albumin microspheres-Sp H1-pDNA gene delivery formulations are suitable for controlled-release delivery of pDNA while offering protection of the pDNA from degradation and maintaining pDNA biological activity.  相似文献   

10.
Previous studies have suggested that direct injection of naked plasmid DNA (pDNA) into solid tumors can be a useful method for in vivo gene transfer into tumor cells. To gain more insight into this approach, we studied the disposition and gene expression characteristics of naked pDNA after intratumoral injection by direct comparison with those after intramuscular injection in mice. pDNA encoding reporter genes were directly injected into subcutaneous solid tumor models and skeletal muscles. Biodistribution studies using radiolabeled pDNA showed that the elimination of pDNA from the injection site was relatively fast and a part of the pDNA was absorbed from the lymphatic system after both local injections. Confocal microscopic studies using fluorescein-labeled pDNA demonstrated that pDNA distributed efficiently throughout the muscle tissue whereas pDNA localization in the tumor tissue was restricted. Characterization of gene expression clarified the variation in expression level between tumor preparations and some factors affecting the expression level in the tumor. Reporter gene expression was significantly inhibited by simultaneous administration of some polyanions in both cases, suggesting that a specific mechanism may be involved in the naked pDNA uptake by muscle and tumor cells. These findings provide useful information for direct naked pDNA delivery into solid tumors.  相似文献   

11.
The purpose of present study was to examine spleen-selective gene transfer following the administration of naked plasmid DNA (pDNA) onto the spleen surface in mice. Gene expression in the spleen and other tissues was evaluated based on firefly luciferase activity. Six hours after spleen surface instillation of naked pDNA, high gene expression in the spleen was observed. On the contrary, intravenous and intraperitoneal administration of naked pDNA resulted in no detectable gene expression. After instilling naked pDNA onto the spleen surface, gene expression in the spleen was significantly higher than those in other tissues. Six hours after instillation of naked pDNA onto the spleen surface, gene expression in the spleen reached the peak value, and thereafter decreased gradually. By utilizing a glass-made diffusion cell that is able to limit the contact dimension between the spleen surface and naked pDNA solution administered, site-specific gene expression in the spleen was found. This novel gene transfer method is expected to be a safe and effective strategy for DNA vaccine against serious infectious diseases and cancers.  相似文献   

12.
The purpose of the present study was to achieve a stomach-selective gene transfer following the administration of naked plasmid DNA (pDNA) onto the gastric serosal surface in mice. Gene expression in the stomach and other tissues was evaluated by firefly luciferase activity. Six hours after gastric serosal surface instillation of naked pDNA, high gene expression in the stomach was observed. On the contrary, intravenous and intraperitoneal injection of naked pDNA exhibited no detectable gene expression. Following instillation of naked pDNA onto the gastric serosal surface, gene expression in the stomach was significantly higher than in other tissues. Gene expression in the stomach was highest 12 h after the instillation and thereafter decreased gradually. Utilizing a glass-made diffusion cell that is able to limit the contact dimension between the gastric serosal surface and the naked pDNA solution administered, site-specific gene expression in the stomach was achieved. This novel gene transfer method is expected to be a safe and effective treatment against serious stomach diseases.  相似文献   

13.
While somatic gene therapy has the potential to treat many genetic disorders, recent clinical trials suggest that an efficient and safe delivery vehicle for successful gene therapy is lacking. The current study examines the influence of two different preparation (the solvent evaporation method and the complex coacervation method) methods on the encapsulation of a model plasmid with chitosan. The ability of different molecular weights of chitosan to form nanoparticles with a plasmid, and particulated polymers to stabilize a plasmid in a supercoiled form, were examined by agarose gel electrophoresis. Protection of encapsulated pDNA offered by these nanoparticles from nuclease attack was confirmed by assessing degradation in the presence of DNase I, and the transformation of the plasmids with incubated nanoparticles were examined by beta-galactosidase assay. Model pDNA existed as a mixture of both supercoiled (84.2%) and open circular (15.8%) forms. Our results demonstrated that supercoiled forms decreased while open circular forms and fragmented linear forms increased during the preparation of formulations. F1 formulation prepared by the complex coacervation method protected the supercoiled form of pDNA effectively. There weren't any significant changes in nanoparticle size and zeta potential values at pH 5.5 for a period of 3 months, but differences in particle sizes were observed after lyophilization with a cryoprotective agent. The efficiency of nanoparticles mediated transformation to Escherichia coli cells was significantly higher than naked DNA or poly-L-lysine (PLL)-DNA polycation complexes. The transfection studies were performed in COS-7 cells. A 3-fold increase in gene expression was produced by nanoparticles as compared to the same amount of naked plasmid DNA (pDNA). These observations suggest that formulations with high molecular weight (HMW) chitosan can be an effective non-viral method of gene vector in animal studies.  相似文献   

14.
Ternary mixtures composed of coarse lactose (CL) (90.8 microm), salbutamol sulphate (SS) (5.8 microm) and either micronised lactose (ML) (5 microm) or intermediate sized lactose (IML) (15.9 microm) in a ratio of 66.5:1:1 w/w were prepared using different mixing sequences of the various components. In addition, a binary mixture composed of CL and SS (67.5:1 w/w) was also prepared as the control. The in vitro deposition of SS was measured using a twin stage impinger after aerosolisation at 60 and 90 l min-1 via a Rotahaler. The aerodynamic particle size distribution of both the aerosolised SS and lactose was further analysed using an Andersen cascade impactor at 60 l min-1. All ternary mixtures produced a significantly higher (analysis of variance, P<0.01) fine particle fraction (FPF) and fine particle dose (FPD) of SS than the control after aerosolisation at either 60 or 90 l min-1. Formulations containing the ML produced significantly (P<0.05) higher FPF and FPD of SS than those containing the IML at both aerosolisation flow rates. Different mixing sequences were also shown to result in different deposition profiles of both SS and lactose after aerosolisation of the ternary mixtures containing ML at 60 l min-1. The formulation prepared by first blending ML with CL before mixing with SS produced a higher FPF and FPD of SS but a lower FPF of lactose than the same formulation in terms of composition but prepared using different mixing orders of the three components. In contrast, the formulations containing IML produced a similar deposition profile to SS, regardless of the mixing sequences, and so did the formulations containing ML aerosolised at 90 l min-1. These results suggest that the effect of mixing sequences on drug deposition may become more prominent at lower aerosolisation flow rates and by reducing the size of any added fine lactose.  相似文献   

15.
Dual imaging of lung deposition and gene expression following the pulmonary delivery of a gene formulation is useful for a precise analysis of gene transfection efficiency in vivo. As a novel probe for evaluating lung deposition, in this study, a poly(ethylene glycol)-conjugated near-infrared fluorescent probe (PEG-NIRF) was newly synthesized, and compared with indocyanine green (ICG), for application to pDNA/polyethyleneimine (PEI) complex. PEG-NIRF had superior characteristics including a larger Stokes shift (absorption maximum, 662?nm; emission maximum, 772?nm) and relatively equivalent fluorescence intensity compared with ICG. ICG affected the physicochemical properties of pDNA/PEI complex with a loss of fluorescence intensity, while PEG-NIRF did not. Experiments in mice demonstrated that PEG-NIRF showed greater lung localization than ICG following pulmonary co-delivery with pDNA/PEI complex, indicating the possibility of accurately evaluating lung deposition. Moreover, it was clarified that the evaluation of lung deposition by PEG-NIRF even at 60?min could be significantly correlated with gene expression in each mouse following pulmonary co-delivery with pDNA/PEI complex. These results suggest that PEG-NIRF is widely applicable to the dual imaging of the lung deposition and gene expression of inhaled gene formulations.  相似文献   

16.
17.
The aim of this work was to investigate lipid-based dried powders as transfection competent carriers capable of promoting the expression of therapeutic genes. The lipid-based vectors were prepared by combining different cationic lipids 1,2-dioleoyl-3-trimethylammoniumpropane chloride (DOTAP), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 3beta(N(N',N-dimethylaminoethane) carbamoyl) cholesterol hydrochloride (DC-Chol) or by mixing of anionic lipids (1,2-dimyristoyl-sn-glycero-3-phospocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phospho-rac-glycerol sodium salt (DMPG) and chitosan salts. Spray drying of the formulations was performed using carbohydrates as thermoprotectant excipients and some amino acids as aerosolisation enhancers. Both the lipidic vectors and the dried powders were characterized for morphology, size, zeta potential (Z-potential) and a yield of the process. Agarose gel electrophoresis was used to examine the structural integrity of dehydrated plasmid DNA (pDNA). The biological functionality of the powders was quantified using the in vitro cell transfection. Among the several lipids and lipid-polymer mixtures tested, the best-selected formulations had spherical shape, narrow size distribution (mean diameter<220 nm, P.I.<0.250), a positive zeta-potential (>25 mV) with a good yield of the process (>65%). The set-up spray drying parameters allowed to obtain good yield of the process (>50%) and spherically shaped particles with the volume-weighted mean diameter (d[4,3])<6 microm in the respirable range. The set-up conditions for the preparation of the lipid dried powders did not adversely affect the structural integrity of the encapsulated pDNA. The powders kept a good transfection efficiency as compared to the fresh colloidal formulations. Lipid-based spray dried powders allowed the development of stable and viable formulations for respiratory gene delivery. In vitro dispersibility and deposition studies are in progress to determine the aerosolisation properties of the powders.  相似文献   

18.

Purpose

This work describes the production and application of an aerosolised formulation of chitosan nanoparticles for improved pulmonary siRNA delivery and gene silencing in mice.

Methods

Aerosolised chitosan/siRNA nanoparticles were pneumatically formed using a nebulising catheter and sized by laser diffraction. In vitro silencing of aerosolised and non-aerosolised formulations was evaluated in an EGFP endogenous-expressing H1299 cell line by flow cytometry. Non-invasive intratracheal insertion of the catheter was used to study nanoparticle deposition by histological detection of Cy3-labeled siRNA and gene silencing in transgenic EGFP mouse lungs using a flow cytometric method.

Results

Flow cytometric analysis demonstrated minimal alteration in gene silencing efficiency before (68%) and after (62%) aerosolisation in EGFP-expressing H1299 cells. Intratracheal catheter administration in mice resulted in nanoparticle deposition throughout the entire lung in both alveoli and bronchiolar regions using low amounts of siRNA. Transgenic EGFP mice dosed with the aerosolised nanoparticle formulation showed significant EGFP gene silencing (68% reduction compared to mismatch group).

Conclusions

This work provides a technology platform for effective pulmonary delivery and gene silencing of RNAi therapeutics with potential use in preclinical studies of respiratory disease treatment.  相似文献   

19.
Purpose Microneedles disrupt the stratum corneum barrier layer of skin creating transient pathways for the enhanced permeation of therapeutics into viable skin regions without stimulating pain receptors or causing vascular damage. The cutaneous delivery of nucleic acids has a number of therapeutic applications; most notably genetic vaccination. Unfortunately non-viral gene expression in skin is generally inefficient and transient. This study investigated the potential for improved delivery of plasmid DNA (pDNA) in skin by combining the microneedle delivery system with sustained release pDNA hydrogel formulations. Materials and Methods Microneedles were fabricated by wet etching silicon in potassium hydroxide. Hydrogels based on Carbopol polymers and thermosensitive PLGA-PEG-PLGA triblock copolymers were prepared. Freshly excised human skin was used to characterise microneedle penetration (microscopy and skin water loss), gel residence in microchannels, pDNA diffusion and reporter gene (β-galactosidase) expression. Results Following microneedle treatment, channels of approximately 150–200 μm depth increased trans-epidermal water loss in skin. pDNA hydrogels were shown to harbour and gradually release pDNA. Following microneedle-assisted delivery of pDNA hydrogels to human skin expression of the pCMVβ reporter gene was demonstrated in the viable epidermis proximal to microchannels. Conclusions pDNA hydrogels can be successfully targeted to the viable epidermis to potentially provide sustained gene expression therein.  相似文献   

20.
Stomach-selective gene transfer is a promising approach as a therapeutic strategy for refractory gastric diseases. In this study, we improved the stomach selectivity of gene expression following microinstillation of naked plasmid DNA (pDNA) onto the gastric serosal surface in mice. pDNA encoding firefly luciferase was used as a reporter gene. It was confirmed that the gene expression level in the stomach 6h after gastric serosal surface microinstillation of pDNA was significantly higher than after intragastric, intraperitoneal and intravenous administration. Regarding selectivity of gene expression, the gene expression level in the stomach after gastric serosal surface microinstillation of 1 microg/1 microL (dose/volume) pDNA was 5.7 times higher than that in the spleen. In our previous study (30 microg/30 microL), the expression level in the stomach was 2.7 times higher than that in the spleen; therefore, the selectivity was 2.1 times higher in this study. When we investigated gene expression at various pDNA solution concentrations, the ratio of the gene expression level in the stomach to that in the spleen was the highest as 1 microg/1 microL of pDNA, which was considered the optimal concentration. Information in this study is useful for further development of target organ-selective gene delivery systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号