首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
目的 分析千伏锥形束CT(kVCBCT)引导放疗系统可以发现的最小摆位误差和校正后剩余摆位误差。方法 采用小球(ball-bearing,BB)体模,比较经kVCBCT引导放疗系统得到的位移值与设定的位移值。设定的位移值分别为0.5、1.0、1.5和2.0 mm。侧向、纵向和垂直3个方向上的位移值均每日分析1次,共分析5次。校正后剩余摆位误差分析,采用CIRS Model 002LFC胸部体模,在侧向、纵向和垂直3个方向上均设置摆位误差,设置的数值为0、±5、±10和±15 mm。采用点标记法,共同配准体模的定位CT影像与kVCBCT影像,得出侧向、纵向和垂直3个方向上的摆位误差。根据配准结果移动治疗床,至侧向、纵向和垂直3个方向上摆位误差减少到最小。对校正位置后的体模再次行kVCBCT扫描,将再次获得的kVCBCT影像与定位CT采用点标记法配准,得到的侧向、纵向和垂直3个方向上的数值为经kVCBCT系统引导后剩余摆位误差。每日分析1次,共分析7次。结果 kVCBCT引导放疗系统可以发现的误差至少为0.5 mm。侧向、纵向和垂直3个方向上引导后剩余误差分别为(0.2±0.4)、(0.1±0.4)和(-0.4±0.3)mm,对3组数值行方差分析进行两两比较:侧向和纵向剩余误差无差别(P=0.63),垂直向和侧向剩余摆位误差的差异具有统计学意义(P=0.01),垂直向和纵向剩余摆位误差差异具有统计学意义(P=0.02)。结论 建立了kVCBCT引导放疗系统可以发现最小摆位误差和校正后剩余摆位误差的分析方法,kVCBCT引导放疗系统可以发现的误差至少为0.5 mm,侧向、纵向和垂直3个方向上引导后剩余误差约为1 mm。  相似文献   

2.
目的 探讨光学表面监测系统在胸部肿瘤调强放疗的摆位精度及其应用价值。方法 选取28例胸部肿瘤患者,应用体表标记与激光灯进行治疗前摆位,治疗前行锥形束CT(CBCT)扫描,扫描时通过光学表面监测系统获取表面影像,并与参考影像配准,记录x(左右)、y(头脚)与z(前后)轴的平移误差与旋转误差;扫描后CBCT图像与计划CT图像配准并记录xyz轴的平移误差与旋转误差,校正误差后治疗。应用Pearson法分析两组摆位误差的相关性,计算两组摆位误差的系统误差(Σ)与随机误差(σ);应用Bland-Altman法评估两种影像系统的一致性,并计算95%的可信区间。结果 两组摆位误差有较好的相关性,相关系数在xyz轴分别为0.79、0.62、0.53,光学表面监测系统(OSMS)的Σ/σ(mm/mm)在xyz轴分别为0.7/1.5、0.9/1.8、0.9/1.5;CBCT的Σ/σ(mm/mm)在xyz轴分别为0.8/1.6、1.3/1.9、0.7/1.5;95%的可信区间在xyz轴的平移方向分别为(-2.0~2.3)、(-3.4~3.6)与(-3.3~2.4)mm,旋转方向分别为(-2.0~1.6)°、(-2.0~1.4)°与(-1.6~1.6)°。结论 OSMS是一种有效的图像引导工具,能快速准确地验证患者位置,提高摆位精度,可用于胸部肿瘤患者调强放疗的治疗摆位。  相似文献   

3.
胸部肿瘤常规放疗摆位偏差的测量与分析   总被引:13,自引:0,他引:13       下载免费PDF全文
目的 确定胸部肿瘤常规放射治疗时的摆位偏差。方法 使用电子射野影像装置(EPID)对 2 1例胸部肿瘤病人常规放射治疗时所拍摄的 40 8幅射野图像 ,与计划系统生成的标准射野数字重建 (DRR)图像进行了比较 ,并对病人摆位的横向 (RL)和纵向 (SI)及前后 (AP)轴旋转角度的偏差进行了测量。结果 没有采用任何固定装置治疗时 ,RL和SI方向摆位的平均平移偏差分别为(0 7± 3 1 )mm和 (1 5± 4 1 )mm ;平均旋转偏差为 (0 3± 2 4)°。当使用体膜固定治疗时 ,RL和SI方向摆位的平均平移偏差分别为 (0 5± 2 4)mm和 (0 8± 2 7)mm ;平均旋转偏差为 (0 2± 1 6)°。结论 胸部肿瘤放射治疗时采用体部固定装置可降低摆位偏差。SI方向的摆位偏差大于RL方向的摆位偏差。摆位偏差的主要来源是随机误差  相似文献   

4.
目的 分析锥形束CT(CBCT)在线摆位校正与离线自适应校正在减小头颈部肿瘤临床靶区(CTV)外放,从而减轻正常组织并发症中的作用。方法 16例行三维适形放疗的头颈部癌症患者入组。分次放疗前后均行在线CBCT扫描1次,并与计划CT图像配准,记录各个方向的配准差值。放疗前后的配准差值分别作为放疗分次间误差和分次内误差,用于计算每例患者的系统误差和随机误差。利用CTV外放计算公式,计算在线校正前后CTV外放;以0.5 mm为允许的最大残余系统误差,计算离线校正系统摆位误差后CTV外放。结果 未经在线校正,左右、头脚和前后方向上群体化CTV外放分别为5.7 mm、5.6 mm和7.3 mm;每分次放疗均行在线校正,3个方向上群体化CTV外放分别为1.7 mm、1.7 mm和2.3 mm;对系统摆位误差进行离线自适应校正,3个方向上群体化CTV外放分别为2.7 mm、2.5 mm和3.6 mm。结论 基于CBCT图像分析的在线校正和离线自适应校正均能明显减小摆位误差,有助于缩小CTV外放,并有望减轻正常组织并发症。  相似文献   

5.
目的 探讨锥形束CT的穿刺导航功能在胸部肿瘤活检中的应用价值。方法 2019年7月至12月四川省肿瘤医院行胸部肿瘤穿刺活检术(percutaneous transthoracic needle biopsy, PTNB)患者139例。比较锥形束CT的穿刺导航功能引导同轴针穿刺针与常规CT引导非同轴穿刺针在PTNB中的有效性和安全性,分析不同引导穿刺方式与病灶大小、病灶深度和手术耗时之间关系。结果 常规CT组平均耗时19.08 min,锥形束CT组平均耗时14.36 min,差异有统计学意义(t=-6.034,P<0.05)。活检时患者俯卧位平均耗时15.75 min,仰卧位平均耗时16.94 min,侧卧位平均耗时18.22 min,特殊体位平均耗时20.84 min,差异无统计学意义(P>0.05)。病灶位于不同肺段穿刺耗时比较,差异无统计学意义(P>0.05)。两组患者病灶大小、病灶深度和病灶位置比较,差异均无统计学意义(t=-1.621、-0.402、χ2=24.222,P=0.107、0.687、0.114)。穿刺次数与并发症的发生率相关...  相似文献   

6.
CBCT图像引导鼻咽癌调强放疗的精确性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 探讨千伏级锥形束CT(kV-CBCT)图像引导技术对鼻咽癌调强放疗精确性的影响。方法 331例鼻咽癌调强放疗患者每周行kV-CBCT校正扫描。计算系统误差(Σ)和随机误差(σ),摆位扩边按照Van Herk公式计算(2.5Σ+0.7σ)。结果 分析3 972个CBCT扫描图像。校正前在xyz方向上的平移误差和旋转误差分别为(0.95±0.79)、(1.04±0.66)、(1.14±0.63) mm 和1.32°±0.99°、1.45°±1.37°、1.25°±1.35°,校正后分别为(0.56±0.44)、(0.56±0.51)、(0.42±0.63) mm 和0.78°±0.76°、0.62°±0.85°、0.75°±0.64°。在xyz方向校正前的计划靶区扩边值(MPTV)分别为2.93、3.06和3.30 mm,校正后为1.71、1.76和1.49 mm。结论 应用kV-CBCT校正鼻咽癌调强放疗摆位中的线性和旋转误差明显缩小系统和随机误差,使得MPTV缩小到2 mm以内,提高了放疗的精确性。  相似文献   

7.
目的 分析锥形束CT(CBCT)在线摆位校正与离线自适应校正在减小头颈部肿瘤临床靶区(CTV)外放,从而减轻正常组织并发症中的作用.方法 16例行三维适形放疗的头颈部癌症患者入组.分次放疗前后均行在线CBCT扫描1次,并与计划CT图像配准,记录各个方向的配准差值.放疗前后的配准差值分别作为放疗分次间误差和分次内误差,用于计算每例患者的系统误差和随机误差.利用CTV外放计算公式,计算在线校正前后CTV外放;以0.5 mm为允许的最大残余系统误差,计算离线校正系统摆位误差后CTV外放.结果 未经在线校正,左右、头脚和前后方向上群体化CTV外放分别为5.7mm、5.6 mm和7.3 mm;每分次放疗均行在线校正,3个方向上群体化CTV外放分别为1.7 mm、1.7 mm和2.3 mm;对系统摆位误差进行离线自适应校正,3个方向上群体化CTV外放分别为2.7 mm、2.5mm和3.6 mm.结论 基于CBCT图像分析的在线校正和离线自适应校正均能明显减小摆位误差,有助于缩小CTV外放,并有望减轻正常组织并发症.  相似文献   

8.
目的 分析锥形束CT(CBCT)在线摆位校正与离线自适应校正在减小头颈部肿瘤临床靶区(CTV)外放,从而减轻正常组织并发症中的作用.方法 16例行三维适形放疗的头颈部癌症患者入组.分次放疗前后均行在线CBCT扫描1次,并与计划CT图像配准,记录各个方向的配准差值.放疗前后的配准差值分别作为放疗分次间误差和分次内误差,用于计算每例患者的系统误差和随机误差.利用CTV外放计算公式,计算在线校正前后CTV外放;以0.5 mm为允许的最大残余系统误差,计算离线校正系统摆位误差后CTV外放.结果 未经在线校正,左右、头脚和前后方向上群体化CTV外放分别为5.7mm、5.6 mm和7.3 mm;每分次放疗均行在线校正,3个方向上群体化CTV外放分别为1.7 mm、1.7 mm和2.3 mm;对系统摆位误差进行离线自适应校正,3个方向上群体化CTV外放分别为2.7 mm、2.5mm和3.6 mm.结论 基于CBCT图像分析的在线校正和离线自适应校正均能明显减小摆位误差,有助于缩小CTV外放,并有望减轻正常组织并发症.  相似文献   

9.
目的 分析锥形束CT(CBCT)在线摆位校正与离线自适应校正在减小头颈部肿瘤临床靶区(CTV)外放,从而减轻正常组织并发症中的作用.方法 16例行三维适形放疗的头颈部癌症患者入组.分次放疗前后均行在线CBCT扫描1次,并与计划CT图像配准,记录各个方向的配准差值.放疗前后的配准差值分别作为放疗分次间误差和分次内误差,用于计算每例患者的系统误差和随机误差.利用CTV外放计算公式,计算在线校正前后CTV外放;以0.5 mm为允许的最大残余系统误差,计算离线校正系统摆位误差后CTV外放.结果 未经在线校正,左右、头脚和前后方向上群体化CTV外放分别为5.7mm、5.6 mm和7.3 mm;每分次放疗均行在线校正,3个方向上群体化CTV外放分别为1.7 mm、1.7 mm和2.3 mm;对系统摆位误差进行离线自适应校正,3个方向上群体化CTV外放分别为2.7 mm、2.5mm和3.6 mm.结论 基于CBCT图像分析的在线校正和离线自适应校正均能明显减小摆位误差,有助于缩小CTV外放,并有望减轻正常组织并发症.  相似文献   

10.
目的 分析锥形束CT(CBCT)在线摆位校正与离线自适应校正在减小头颈部肿瘤临床靶区(CTV)外放,从而减轻正常组织并发症中的作用.方法 16例行三维适形放疗的头颈部癌症患者入组.分次放疗前后均行在线CBCT扫描1次,并与计划CT图像配准,记录各个方向的配准差值.放疗前后的配准差值分别作为放疗分次间误差和分次内误差,用于计算每例患者的系统误差和随机误差.利用CTV外放计算公式,计算在线校正前后CTV外放;以0.5 mm为允许的最大残余系统误差,计算离线校正系统摆位误差后CTV外放.结果 未经在线校正,左右、头脚和前后方向上群体化CTV外放分别为5.7mm、5.6 mm和7.3 mm;每分次放疗均行在线校正,3个方向上群体化CTV外放分别为1.7 mm、1.7 mm和2.3 mm;对系统摆位误差进行离线自适应校正,3个方向上群体化CTV外放分别为2.7 mm、2.5mm和3.6 mm.结论 基于CBCT图像分析的在线校正和离线自适应校正均能明显减小摆位误差,有助于缩小CTV外放,并有望减轻正常组织并发症.  相似文献   

11.
《Medical Dosimetry》2014,39(2):190-193
The purpose of this study was to investigate the delivered dose from a kilovoltage cone-beam computed tomography (kV-CBCT) acquired in breast treatment position for a left and right breast setup. The dose was measured with thermoluminescent dosimeters positioned within a female anthropomorphic phantom at organ locations. Imaging was performed on an Elekta Synergy XVI system with the phantom setup on a breast board. The image protocol involved 120 kVp, 140 mAs, and a 270° arc rotation clockwise 0° to 270° for the left breast setup and 270° to 180° for the right breast setup (maximum arc rotations possible). The dose delivered to the left breast, right breast, and heart was 5.1 mGy, 3.9 mGy, and 4.0 mGy for the left breast setup kV-CBCT, and 6.4 mGy, 6.0 mGy, and 4.8 mGy for the right breast setup kV-CBCT, respectively. The rotation arc of the kV-CBCT influenced the dose delivered, with the right breast setup kV-CBCT found to deliver a dose of up to 4 mGy or 105% higher to the treated breast′s surface in comparison with the left breast setup. This is attributed to the kV-CBCT source being more proximal to the anterior of the phantom for a right breast setup, whereas the source is more proximal to the posterior of the patient for a left-side scan.  相似文献   

12.
电子射野影像系统已成为放疗质量控制和质量保证的重要设备之一,可用于摆位误差验证分析、加速器本身日常质量控制、剂量验证、实时剂量验证等放疗质控指标的采集分析,以保障放疗实施的准确性。笔者就电子射野影像系统在放疗中的应用研究进行简要综述。  相似文献   

13.
电子射野影像系统用于调强放疗剂量验证   总被引:3,自引:2,他引:1       下载免费PDF全文
目的 探讨电子射野影像系统(aS1000)用于调强放疗剂量验证的可行性和效率.方法 分别使用美国Varian公司生产的Trilogy直线加速器的aS1000电子射野影像系统和瑞典IBA公司的二维空气电离室矩阵MatriXX及其配套的Multicube模体对10例接受调强放疗的患者进行剂量验证,记录和比较两种方法验证的γ通过率和时间.结果 采用3%和3 mm的标准,aS1000和MatriXX验证的γ通过率分别为95.82%和99.08%,平均时间为12.7和47.8 min.结论 aS1000电子射野影像系统可以作为患者调强放疗的剂量验证工具,比MatriXX更方便快捷.  相似文献   

14.
目的 研究基于电子射野影像系统(EPID)与加速器日志文件(dynalogs file)重建模体内剂量的差异性。方法 收集12例盆腔患者的容积旋转调强(VMAT)计划,将计划信息复制到“Cheese”模体上重新计算剂量,而后在瓦里安加速器(RapidArc)上执行,“Cheese”模体置于等中心处获取射野影像(EPI),将EPI传入EPIgray软件中重建剂量。同时利用Mobius软件调用加速器日志文件,实现对模体计划剂量的重建。以A1SL型号的电离室和配套的剂量仪测量整个计划执行结束后射野等中心(电离室中心)处剂量值,在计划系统(TPS)中读取电离室敏感体积体内的平均剂量值(设置电离室中心与等中心重合)。结果 电离室测量值与TPS中读取的等中心处剂量值相比,两者偏差为1.31%。两种方式重建的射野等中心的剂量分别与电离室测量数值相比,差异均无统计学意义(P>0.05)。结论 两种重建体内剂量的方法均能为VMAT在体剂量验证提供参考。  相似文献   

15.
Many different methods of image guidance are available for radiotherapy treatment (IGRT). The aims of the study were (1) to determine the optimal diameter of gold markers for IGRT to the prostate; (2) to compare, using the Siemens Primatom, the relative merits of in-room computerized tomography (CT) and electronic portal image (EPI) for locating the marker seeds. Gold markers of differing widths were embedded in 2 phantoms (perspex slabs and anthropomorphic). Images were acquired with an amorphous silicon flat panel detector (Siemens Optivue 500) and with the in-room CT scanner (Siemens Somatom Balance). The EPIs were reviewed independently by 6 operators to determine which diameter marker could be best visualized. The optimal marker technique was determined by comparing the investigators' observed marker co-ordinates with the known locations within the phantom. The visibility of all markers on anterior-posterior EPIs was 100%. On the lateral EPI, of a possible 180 visualizations of 1.2-, 1.0-, and 0.8-mm diameter markers, 176 (97.8%), 151 (83.9%), and 132 (73.3%), respectively, were successful. On EPI, the average deviation of fiducial markers from the known position was less than 0.5 mm in any direction. On CT, the largest deviation (2.17 mm) of markers from the known coordinate position was in the superior-inferior direction, reflecting the 3.0-mm slice thickness used. EPI accurately located internal markers in all dimensions. The availability of “gold standard” CT imagery at the treatment unit does not improve how accurately the position of markers in a phantom can be defined compared with EPI. However, CT imagery does provide important soft tissue information, the benefits of which are being investigated further.  相似文献   

16.
BACKGROUND: Regional dysfunction demonstrated by Tc-99m-diethylenetriamine-penta-acetic acid-galactosyl human serum albumin (GSA) scintigraphy due to regional decrease in the portal venous flow has previously been reported. In this study, we call attention to the significance of unilateral portal venous flow decrease for preoperative hepatectomy simulation, and evaluate the hepatectomy simulation discrepancy between Tc-99m-GSA single-photon emission computed tomography (SPECT) and CT volumetry. METHODS: Twenty-four hepatectomy candidates underwent preoperative hepatectomy simulation by both Tc-99m-GSA SPECT and CT volumetry. Both anatomical and functional resection ratios were calculated by means of CT volumetry and Tc-99m-GSA SPECT, respectively. The differences and ratios between anatomical and functional resection ratios were calculated in all patients, and compared in patients with and without unilateral portal venous flow decrease. RESULTS: Anatomical resection ratios were 28.0 +/- 11.7 (mean +/- standard deviation) in patients with unilateral portal venous flow decrease, and 42.1 +/- 15.7 in patients without unilateral portal venous flow decrease (p = 0.0127). Functional resection ratios were 14.7 +/- 12.8 in patients with unilateral portal venous flow decrease and 40.5 +/- 14.6 in patients without (p = 0.0004). The differences between anatomical and functional resection ratios were 13.0 +/- 7.9 in patients with unilateral portal venous flow decrease and 5.6 +/- 3.1 in patients without (p = 0.0099). The ratios between anatomical and functional resection ratios were 0.48 +/- 0.29 in patients with unilateral portal venous flow decrease and 0.86 +/- 0.10 in patients without (p = 0.0018). In 12 of the 13 patients with unilateral portal venous flow decrease, anatomical resection ratios were found to be larger than functional resection ratios, whereas this happened in only 6 of 11 patients without unilateral portal venous flow decrease (p = 0.0063). CONCLUSION: Unilateral portal venous flow decrease is suspected to be a major factor in the discrepancy between hepatectomy simulations with radionuclide receptor imaging and CT volumetry.  相似文献   

17.
目的对肺癌和食管癌患者在放疗过程中行基于电子射野影像装置(EPID)的在体剂量验证, 探讨影响在体剂量验证结果准确性的因素, 并推荐应用在体剂量验证的流程及规范。方法单纯随机抽样法选取2022年5月至2022年8月在金华市中心医院放疗科行食管癌和肺癌放疗的患者32例(其中, 肺癌14例, 食管癌18例), 在uRT-TPOIS计划系统上制作动态调强放疗(dIMRT)及EPID在体剂量验证(In vivo EPID)计划, 使用uRT-linac 506c直线加速器进行治疗。治疗过程中行在体剂量验证, 其中, 肺癌病例行In vivo EPID的分次共238次, 执行图像引导放疗(IGRT)共80次, 食管癌病例行In vivo EPID的分次共414次, 执行IGRT共105次。设置阈值并获取每个射野的2D γ通过率, 分析低于阈值的分次射野, 并结合在线CT影像及三维重建剂量结果, 进一步分析影响γ通过率下降的主要因素。结果肺癌、食管癌3 mm/5%γ通过率均值分别为95.1%±5.7%、96.5%±4.5%;3 mm/3%γ通过率均值为91.5%±8.4%、92.2%±4.9%;2...  相似文献   

18.
Paik SH  Park JS  Koh ES  Kim HK  Shin HK  Hong HS  Cha JK  Lee HK 《European radiology》2006,16(9):2128-2131
We describe a rare case of a primitive neuroectodermal tumor (PNET) originating in the lung of a 28-year-old woman. A lung mass was detected incidentally on a chest radiograph taken before a Caesarian delivery. The chest P-A view showed a well-defined, lobulated mass in the right lower lobe with a small pleural effusion on the right. A thoracic CT with contrast enhancement showed a lobulated, heterogeneous, enhanced mass of approximately 9.2 × 8.4 × 6.3 cm with inner amorphous calcifications in the right lower lobe and a small right pleural effusion. A right lower lobectomy was performed 1 month after delivery. The pathology report was a primary pulmonary PNET with focal visceral pleural involvement.  相似文献   

19.

Purpose

To determine the feasibility of in vivo diffusion‐weighted imaging (DWI) to distinguish between normal liver, viable tumor and necrosis compared to postmortem DWI in a rat model with vascular‐targeting treatment.

Materials and Methods

Fifteen rats with liver implantation of 30 rhabdomyosarcomas were treated with combretastatin A‐4‐phosphate (CA4P) at 10 mg/kg. Two days after treatment, T2‐weighted imaging, precontrast T1‐weighted imaging, postcontrast T1‐weighted imaging, and DWI were performed in vivo and postmortem with a 1.5T scanner. Apparent diffusion coefficients (ADCs) calculated from DWIs with b values of 0, 50, and 100 seconds/mm2 (ADClow), 500, 750, and 1000 seconds/mm2 (ADChigh), 0, 500, and 1000 seconds/mm2 (ADC3b), and 0–1000 seconds/mm2 (ADC10b) for tumor, liver, therapeutic necrosis, and phantoms were compared and validated with ex vivo microangiographic and histopathologic findings.

Results

Except ADClow between tumor and necrosis, in vivo ADCs successfully differentiated liver, viable tumor, and necrosis (P < 0.05). Compared to in vivo outcomes, postmortem ADCs significantly dropped in tumor and liver (P < 0.05) except ADChigh of tumor, but not in necrosis and phantoms. Compared to ADClow, ADChigh was less affected by vital status.

Conclusion

Advantageous over postmortem DWI, in vivo DWI provides a noninvasive easy‐performing tool for distinguishing between liver, viable tumor, and necrosis. ADClow and ADChigh better reflect tissue perfusion and water diffusion, respectively. J. Magn. Reson. Imaging 2009;29:621–628. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号