首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Cytochrome P450 2A13 (CYP2A13), an enzyme predominantly expressed in human respiratory tissues, is highly efficient for the metabolic activation of two suspected human lung carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and aflatoxin B1 (AFB1). Functional genetic polymorphisms of CYP2A13 may therefore be an important factor in human susceptibility to related lung cancers. Among the reported CYP2A13 polymorphisms with missense variations, only CYP2A13*2 variant (containing either a single or double variation of R25Q and R257C) was studied for its NNK-metabolizing activity. The present study demonstrated that there was no remarkable difference in AFB1- and NNK-induced toxicity between the Flp-In Chinese Hamster Ovary (CHO) cells stably expressing wild-type CYP2A13 and the cells expressing the individual polymorphic variants R25Q, D158E, R257C, R25Q/R257C, V323L, F453Y, and R494C. In contrast, cells transfected with R101Q variant complementary DNA (cDNA), same as the vector control cells, showed no significant death even at highest concentrations of AFB1 (10microM) and NNK (200microM). This result correlated with the lack of CYP2A13 protein in the R101Q-CHO cells, although the genomic integration of transfected R101Q cDNA and the expression of R101Q messenger RNA were clearly demonstrated in these stable transfectants. Consistent with the possibility that the variation might reduce the protein stability, R101Q variant protein expressed in insect cells showed a loss of P450 peak and coumarin 7-hydroxylase activity as well as an increased susceptibility to limited protein digestion. Thus, the R101Q polymorphic change results in a null allelic variant of CYP2A13. Our results should be useful in designing and interpreting molecular epidemiological studies related to CYP2A13 genetic polymorphisms.  相似文献   

2.
CYP2A13 has been identified as an efficient catalyst for the metabolisms of coumarin, aflatoxin B(1) (AFB(1)), and several tobacco-specific carcinogens. The reported CYP2A13 polymorphisms with missense variations have been studied for their functional consequences, and CYP2A13*4 (R101Q) variant was found to be a null enzyme in metabolizing 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), AFB(1), and 5-methoxypsoralen. In the present study, CYP2A13*4 was expressed in Sf9 cells and evaluated for coumarin 7-hydroxylation activity. Our results demonstrated that CYP2A13*4 showed no activity in coumarin 7-hydroxylation. Furthermore, computer modeling studies were conducted to probe the mechanisms underlying the loss of catalytic activity of CYP2A13*4. The results suggested that the R101Q alteration may result in the absence of several hydrogen bonds involved in heme binding and thus lead to the loss of function in CYP2A13*4. In addition, for the first time, the distribution frequencies of all eight known CYP2A13 missense alleles were examined in a Chinese Han population. The distribution frequencies of CYP2A13*3 allele and CYP2A13*4 allele in the Chinese Han population were statistically significantly different from the reported values in Japanese. Considering that the two variants of CYP2A13 are incapable of metabolic activation of NNK and AFB(1), the susceptibility to NNK or AFB(1) exposure between the Chinese Han population and Japanese can be different.  相似文献   

3.
1.?1-Chloropyrene, one of the major chlorinated polycyclic aromatic hydrocarbon contaminants, was incubated with human cytochrome P450 (P450 or CYP) enzymes including CYP1A1, 1A2, 1B1, 2A6, 2A13, 2B6, 2C9, 2D6, 2E1, 3A4 and 3A5. Catalytic differences in 1-chloropyrene oxidation by polymorphic two CYP1B1 and five CYP2A13 allelic variants were also examined.

2.?CYP1A1 oxidized 1-chloropyrene at the 6- and 8-positions more actively than at the 3-position, while both CYP1B1.1 and 1B1.3 preferentially catalyzed 6-hydroxylation.

3.?Five CYP2A13 allelic variants oxidized 8-hydroxylation much more than 6- and 3-hydroxylation, and the variant CYP2A13.3 was found to slowly catalyze these reactions with a lower kcat value than other CYP2A13.1 variants.

4.?CYP2A6 catalyzed 1-chloropyrene 6-hydroxylation at a higher rate than the CYP2A13 enzymes, but the rate was lower than the CYP1A1 and 1B1 variants. Other human P450 enzymes had low activities towards 1-chloropyrene.

5.?Molecular docking analysis suggested differences in the interaction of 1-chloropyrene with active sites of CYP1 and 2?A enzymes. In addition, a naturally occurring Thr134 insertion in CYP2A13.3 was found to affect the orientation of Asn297 in the I-helix in interacting with 1-chloropyrene (and also 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, NNK) and caused changes in the active site of CYP2A13.3 as compared with CYP2A13.1.  相似文献   

4.
Cytochrome P450 2A6 (CYP2A6) catalyzes important metabolic reactions of many xenobiotic compounds, including coumarin, nicotine, cotinine, and clinical drugs. Genetic polymorphisms of CYP2A6 can influence its metabolic activities. This study analyzed the functional activities of six CYP2A6 allelic variants (CYP2A6*5, *7, *8, *18, *19, and *35) containing nonsynonymous single-nucleotide polymorphisms. Recombinant variant enzymes of CYP2A6*7, *8, *18, *19, and *35 were successfully expressed in Escherichia coli and purified. However, a P450 holoenzyme spectrum was not detected for the CYP2A6*5 allelic variant (G479V). Structural analysis shows that the G479V mutation may alter the interaction between the A helix and the F-G helices. Enzyme kinetic analyses indicated that the effects of mutations in CYP2A6 allelic variants on drug metabolism are dependent on the substrates. In the case of coumarin 7-hydroxylation, CYP2A6*8 and *35 displayed increased K(m) values whereas CYP2A6*18 and *19 showed decreased k(cat) values, which resulted in lower catalytic efficiencies (k(cat)/K(m)). In the case of nicotine 5-oxidation, the CYP2A6*19 variant exhibited an increased K(m) value, whereas CYP2A6*18 and *35 showed much greater decreases in k(cat) values. These results suggest that individuals carrying these allelic variants are likely to have different metabolisms for different CYP2A6 substrates. Functional characterization of these allelic variants of CYP2A6 can help determine the importance of CYP2A6 polymorphisms in the metabolism of many clinical drugs.  相似文献   

5.
In this study, we performed a screening of the specificities of rat cytochrome P450 (CYP) isoforms for metabolic reactions known as the specific probes of human CYP isoforms, using 13 rat CYP isoforms expressed in baculovirus-infected insect cells or B-lymphoblastoid cells. Among the metabolic reactions studied, diclofenac 4-hydroxylation (DFH), dextromethorphan O-demethylation (DMOD) and midazolam 4-hydroxylation were specifically catalyzed by CYP2C6, CYP2D2 and CYP3A1/3A2, respectively. These results suggest that diclofenac 4-hydroxylation, dextromethorphan O-demethylation and midazolam 4-hydroxylation are useful as catalytic markers of CYP2C6, CYP2D2 and CYP3A1/3A2, respectively. On the other hand, phenacetin O-deethylation and 7-ethoxyresorufin O-deethylation were catalyzed both by CYP1A2 and by CYP2C6. Benzyloxyresorufin O-dealkylation and pentoxyresorufin O-dealkylation were also catalyzed by CYP1A2 in addition to CYP2B1. Bufuralol 1'-hydroxylation was extensively catalyzed by CYP2D2 but also by CYP2C6 and CYP2C11. p-Nitrophenol 2-hydroxylation and chlorzoxazone 6-hydroxylation were extensively catalyzed by CYP2E1 but also by CYP1A2 and CYP3A1. Therefore, it is necessary to conduct further study to clarify whether these activities in rat liver microsomes are useful as probes of rat CYP isoforms. In contrast, coumarin 7-hydroxylation and S- and R-mephenytoin 4'-hydroxylation did not show selectivity toward any isoforms of rat CYP studied. Therefore, activities of coumarin 7-hydroxylation and S- and R-mephenytoin 4'-hydroxylation are not able to be used as catalytic probes of CYP isoforms in rat liver microsomes. These results may provide useful information regarding catalytic probes of rat CYPs for studies using rat liver microsomal samples.  相似文献   

6.
CYP2C8 plays important roles in metabolizing therapeutic drugs and endogenous compounds. Although genetic polymorphisms of CYP2C8 were reported, there is little information on CYP2C8 polymorphisms in the Japanese population. In the present study, we screened for previously described polymorphisms in the coding region of this gene using polymerase chain reaction (PCR)-restriction fragment length polymorphism or allele specific-PCR analyses. Eleven polymorphisms of CYP2C8*2 (I269F), CYP2C8*3 (R139K, K399R), CYP2C8*4 (I264M), CYP2C8*5 (frameshift), T130N, E154D, N193K, K249R, L390S, P404A, and H411L have been comprehensively investigated in at least 200 Japanese individuals. A single subject was heterozygous for CYP2C8*5, and the allele frequency was calculated as 0.0025. The other single nucleotide polymorphisms (SNPs) were not found in the Japanese subjects in the present study. Thus, it appears that the frequencies of these alleles in Japanese are extremely low. In addition, concerning the SNPs of T130N, E154D, N193K, K249R, and H411L, it remains clear that these alleles exist as polymorphisms or represent sequence errors or cloning artifacts. Although several SNPs such as CYP2C8*2, CYP2C8*3, CYP2C8*4, and P404A have been reported to reduce the enzymatic activity, pharmacokinetic abnormalities of drugs metabolized by polymorphic CYP2C8 might be rare in Japanese.  相似文献   

7.
The present study investigated CYP2B6 genetic variability by sequencing genomic DNA samples of African-American, Ghanaian, Taiwanese, Japanese and Korean subjects throughout all exons and exon-intron boundaries. The most common nonsynonymous single nucleotide polymorphisms (SNPs) were 15631G > T (Q172H) and 18053A > G (K262R, together defining allele 2B6*6), both of which had frequencies close to 50% in Ghanaians and 30% in African-Americans. These SNPs have recently been shown to affect efavirenz pharmacokinetics and response in HIV patients. Eight new missense mutations (76A > T [T26S], 83A > G [D28G], 85C > A, 86G > C [both R29T], 15618C>T [T168I], 18038G > A [D257N], 21034C > T [R336C], 21498C > A [P428T]), three new silent mutations and two new intronic SNPs defining six novel alleles (*17A and B, *18, *19, *20, *21) were identified. Heterologous expression in COS-1 cells revealed pronounced reduction in expression and/or bupropion hydroxylase activity for variants T168I, D257N, R336C and P428T, whereas the triple mutant 2B6.17 (T26S, D28G, R29T) appeared to be functionally normal. These data extend the CYP2B6 knowledge base and should be particularly relevant for anti-HIV-therapy with efavirenz.  相似文献   

8.
Both cytochrome P450 2A6 (CYP2A6) and cytochrome P450 2A13 (CYP2A13) are involved in metabolic activation of tobacco-specific nitrosamines and may play important roles in cigarette smoking-induced lung cancer. Unlike CYP2A6, effects of CYP2A13 on the tobacco-specific nitrosamine-induced mutagenesis in lung cells remain unclear. This study uses a supF mutagenesis assay to examine the relative effects of CYP2A6 and CYP2A13 on metabolic activation of a tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and its resulting mutagenesis in human lung cells. A recombinant adenovirus-mediated CYP2A6/CYP2A13 expression system was established to specifically address the relative effects of these two CYPs. Mutagenesis results revealed that both CYP2A6 and CYP2A13 significantly enhanced the NNK-induced supF mutation and that the mutagenic effect of CYP2A13 was markedly higher than that of CYP2A6. Analysis of NNK metabolism indicated that ≥ 70% of NNK was detoxified to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), either with or without CYP2A6/CYP2A13 expression. Both CYP2A6 and CYP2A13 significantly enhanced the α-hydroxylation of NNK; and the α-hydroxylation activity of CYP2A13 was significantly higher than that of CYP2A6. Analysis of the NNK-related DNA adduct formation indicated that, in the presence of CYP2A13, NNK treatments caused marked increases in O6-methylguanine (O6-MeG). The present results provide the first direct in vitro evidence demonstrating the predominant roles of CYP2A13 in NNK-induced mutagenesis, possibly via metabolic activation of NNK α-hydroxylation.  相似文献   

9.
Cytochrome P450 2A13 (CYP2A13) is responsible for the metabolism of chemical compounds such as nicotine, coumarin, and tobacco-specific nitrosamine. Several of these compounds have been recognized as procarcinogens activated by CYP2A13. We recently showed that CYP2A13*2 contributes to inter-individual variations observed in bladder cancer susceptibility because CYP2A13*2 might cause a decrease in enzymatic activity. Other CYP2A13 allelic variants may also affect cancer susceptibility. In this study, we performed an in vitro analysis of the wild-type enzyme (CYP2A13.1) and 8 CYP2A13 allelic variants, using nicotine and coumarin as representative CYP2A13 substrates. These CYP2A13 variant proteins were heterologously expressed in 293FT cells, and the kinetic parameters of nicotine C-oxidation and coumarin 7-hydroxylation were estimated. The quantities of CYP2A13 holoenzymes in microsomal fractions extracted from 293FT cells were determined by measuring reduced carbon monoxide-difference spectra. The kinetic parameters for CYP2A13.3, CYP2A13.4, and CYP2A13.10 could not be determined because of low metabolite concentrations. Five other CYP2A13 variants (CYP2A13.2, CYP2A13.5, CYP2A13.6, CYP2A13.8, and CYP2A13.9) showed markedly reduced enzymatic activity toward both substrates. These findings provide insights into the mechanism underlying inter-individual differences observed in genotoxicity and cancer susceptibility.  相似文献   

10.
In a caffeine test previously performed with healthy Japanese volunteers, we found that the CYP1A2 index defined as urinary {5-acetylamino-6-amine-3-methyluracil (AAMU)+1-methylxanthine (1X)+1-methyluric acid (1 U)}/1,7-dimethyluric acid (17 U) was affected by the whole deleted allele of CYP2A6 (CYP2A6*4). Since the high value of the CYP1A2 index could be caused by a low urinary concentration of 17 U, we postulated that CYP2A6 was responsible for the 1,7-dimethylxanthine (17 X) metabolism to generate 17 U (17 X 8-hydroxylation). Thus, the role of CYP2A6 in the 17 X 8-hydroxylation was fully examined in the present study. Among 10 isoforms of human cytochrome P450 (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, or CYP3A5) expressed in Escherichia coli cells, CYP2A6 and CYP1A2 showed high catalytic activities for the 17 X 8-hydroxylation. The 17 X 8-hydroxylase activities significantly associated with coumarin 7-hydroxylase activities (r=0.67, p<0.01) in liver microsomes from 17 individuals, but not with ethoxyresorufin O-deethylase activities. Tranylcypromine, an inhibitor of CYP2A6, reduced the 17 X 8-hydroxylase activities of human liver microsomes. The 17 X 8-hydroxylase activities of CYP2A6.7, CYP2A6.10, and CYP2A6.11 expressed in E. coli cells were 12, 13, and 22% of that of CYP2A6.1, respectively. The 17 X 8-hydroxylase activities were found to be low in liver microsomes from individuals possessing the deletion or mutations in the CYP2A6 gene. Based on these data, we conclude that CYP2A6 is a main 17 X 8-hydroxylase and that the catalytic activities for the 17 X 8-hydroxylation are reduced by the genetic polymorphisms of the CYP2A6 gene.  相似文献   

11.
Pilocarpine is a cholinergic agonist that is metabolized to pilocarpic acid by serum esterase. In this study, we discovered a novel metabolite in human urine after the oral administration of pilocarpine hydrochloride, and we investigated the metabolic enzyme responsible for the metabolite formation. The structure of the metabolite was identified as 3-hydroxypilocarpine by liquid chromatography-tandem mass spectrometry and NMR analyses and by comparing to the authentic metabolite. To clarify the human cytochrome P450 (P450) responsible for the metabolite formation, in vitro experiments using P450 isoform-selective inhibitors, cDNA-expressed human P450s (Supersomes; CYP1A2, -2A6, -2B6, -2C9, -2C19, -2D6, -2E1, and -3A4), and liver microsomes from different donors were conducted. The formation of 3-hydroxypilocarpine in human liver microsomes was strongly inhibited (>90%) by 200 microM coumarin. Other selective inhibitors of CYP1A2 (furafylline and alpha-naphthoflavone), CYP2C9 (sulfaphenazole), CYP2C19 [(S)-mephenytoin], CYP2E1 (4-methylpyrazole), CYP2D6 (quinidine), and CYP3A4 (troleandomycin) had a weak inhibitory effect (<20%) on the formation. The highest formation activity was expressed by recombinant CYP2A6. The K(m) value for recombinant CYP2A6 was 3.1 microM, and this value is comparable with that of human liver microsomes (1.5 microM). The pilocarpine 3-hydroxylation activity was correlated with coumarin 7-hydroxylation activity in 16 human liver microsomes (r = 0.98). These data indicated that CYP2A6 is the main enzyme responsible for the 3-hydroxylation of pilocarpine. In conclusion, we identified a novel metabolite of pilocarpine, 3-hydroxypilocarpine, and we clarified the involvement of CYP2A6 in the formation of this molecule in human liver microsomes.  相似文献   

12.
Twenty-four genetic polymorphisms in the CYP2D6 gene were analysed in liver DNA samples of 39 Japanese and 44 Caucasians and compared with CYP2D6 protein levels and bufuralol 1'- and 6-hydroxylation activities in liver microsomes of these human samples. We detected 13 types of CYP2D6 genetic polymorphisms and classified these into 20 genotypes; nine types were found in Japanese and 14 types in Caucasian samples. CYP2D6*10B, but not CYP2D6*10A, was the most frequent (34.6%) in Japanese. In Caucasians, several CYP2D6 polymorphisms including CYP2D6*4, *4D, *4E, *4L, *3, *9, *5 and *2E (frequencies of 6.8, 3.4, 4.5, 9.1, 1.1, 2.3, 2.3 and 4.5%, respectively) were detected. A Caucasian having CYP2D6*3/*5 had a protein with slower gel mobility (immunoblotting with anti-CYP2D6 antibody) and very low activity for bufuralol 1'-hydroxylation. Five Caucasian samples (CYP2D6*4/*4, *4/*4L, or *4D/*4L) had no measurable CYP2D6 protein and very low bufuralol 1'-hydroxylation activities. Seven Japanese subjects with CYP2D6*10B/*10B had CYP2D6 protein at levels of approximately 20% of those present in humans with CYP2D6*1 and *2 and catalysed bufuralol 1'-hydroxylation at low rates. Kinetic analysis of bufuralol 1'- and 6-hydroxylation indicates that (i) the Km values for 1'-hydroxylation were lower in individuals with CYP2D6*1/*1, *1/*2, *1/*2X2, and *2/*2 than those with CYP2D6*4/*4, *4/*4L, *4D/*4L, or *10B/*10B and Vmax values tended to be higher in the former groups (*1, *2), and (ii) individuals with heterozygous CYP2D6*1/*4D, *1/*4L, and *1/*5 had relatively high Vmax/Km ratios, whereas individuals with heterozygous CYP2D6*1/*9, *2/4D, *2/*5, *2/*10B, *2E/*4E, *3/*5, *4L/*9, and *10B/*39 had lower Vmax/Km ratios for bufuralol 1'-hydroxylation. Quinidine inhibited bufuralol 1'-hydroxylation in liver microsomes, particularly at low substrate concentrations, in individuals with CYP2D6*1/*1, and 1/1*2, but not those with CYP2D6*4/*4 and very slightly in individuals with CYP2D6*10B/*10B. The latter two groups were found to be more sensitive to alpha-naphthoflavone than the former groups, indicative of the contribution of CYP1A2. These results support the view that CYP2D6*3, *4, *4D, and *4L are major genotypes producing poor metabolizer phenotypes in CYP2D6 in Caucasians, whereas CYP2D6*10B is a major factor in decreased CYP2D6 protein expression and catalytic activities in Japanese.  相似文献   

13.
Azelastine, an antiallergy and antiasthmatic drug, has been reported to be metabolized mainly to desmethylazelastine and 6-hydroxyazelastine in mammals. In the present study, the inhibitory effects of azelastine and its two metabolites on human cytochrome P-450 (CYP) isoform-dependent reactions were investigated to predict the drug interactions of azelastine using microsomes from human B-lymphoblast cells expressing CYP. The specific activities for human CYP isoforms included: 7-ethoxyresorufin O-deethylation (CYP1A1), phenacetin O-deethylation (CYP1A2), coumarin 7-hydroxylation (CYP2A6), 7-benzyloxyresorufin O-dealkylation (CYP2B6), S-warfarin 7-hydroxylation (CYP2C9), S-mephenytoin 4'-hydroxylation (CYP2C19), bufuralol 1'-hydroxylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1), and testosterone 6beta-hydroxylation (CYP3A4). In almost all the activities, desmethylazelastine exhibited stronger inhibition than azelastine and 6-hydroxyazelastine. Desmethylazelastine, but not azelastine and 6-hydroxyazelastine, uncompetitively inhibited CYP2B6 activity (Ki = 32.6 +/- 4.8 microM). Azelastine, desmethylazelastine, and 6-hydroxyazelastine competitively inhibited CYP2C9 activity (Ki = 13. 9 +/- 1.8, 15.0 +/- 3.1, and 17.0 +/- 4.1 microM, respectively), CYP2C19 activity (Ki = 21.9 +/- 2.2, 7.3 +/- 1.6, and 9.3 +/- 1.6 microM, respectively), and CYP2D6 activity (Ki = 1.2 +/- 0.1, 1.5 +/- 0.2, and 3.0 +/- 0.5 microM, respectively). Azelastine and desmethylazelastine competitively inhibited CYP3A4 activity (Ki = 23. 7 +/- 4.6 and 13.2 +/- 2.3 microM). 6-Hydroxyazelastine interfered with the determination of testosterone 6beta-hydroxylation by HPLC. CYP1A2, CYP2A6, and CYP2E1 activities were not significantly inhibited by azelastine and the two metabolites. Among the human CYPs tested, the inhibitory effects of azelastine and its two metabolites were the most potent on human CYP2D6. In consideration of the Ki values and the concentration of azelastine and desmethylazelastine in human livers after chronic oral administration of azelastine, the possibility of in vivo drug interaction of azelastine and other drugs that are mainly metabolized by CYP2D6 was suggested although it might not cause critical side effects. The inhibition of CYP2C9, CYP2C19, and CYP3A4 activity by azelastine and its two metabolites might be clinically insignificant.  相似文献   

14.
The effects of buprenorphine, a powerful mixed agonist/antagonist analgesic, on several cytochrome P450 (CYP) isoform specific reactions in human liver microsomes were investigated to predict drug interaction of buprenorphine in vivo from in vitro data. The following eight CYP-catalytic reactions were used in this study: CYPlA1/2-mediated 7-ethoxyresorufin O-deethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated 7-benzyloxyresorufin O-debenzylation, CYP2C8/9-mediated tolbutamide methylhydroxylation, CYP2C19-mediated S-mephenytoin 4-hydroxylation, CYP2D6-mediated bufuralol 1'-hydroxylation, CYP2E1-mediated chlorzoxazone 6-hydroxylation, and CYP3A4-mediated testosterone 6beta-hydroxylation. Buprenorphine strongly inhibited the CYP3A4- and CYP2D6-catalyzed reactions with Ki values of 14.7 microM and 21.4 microM, respectively. The analgesic also weakly inhibited specific reactions catalyzed by CYP1A1/2 (Ki=132 microM), CYP2B6 (Ki=133 microM), CYP2C19 (Ki=146 microM), CYP2C8/9 (IC50>300 microM), and CYP2E1 (IC50>300 microM), but not CYP2A6 mediated pathway. In consideration of the Ki values obtained in this study and the therapeutic concentration of buprenorphine in human plasma, buprenorphine would not be predicted to cause clinically significant interactions with other CYP-metabolized drugs.  相似文献   

15.
1. We investigated the total metabolism of coumarin by baculovirus (BV)-expressed CYP2A13 and compared it with metabolism by BV-expressed CYP2A6. The major coumarin metabolite formed by CYP2A13 was 7-hydroxycoumarin, which accounted for 43% of the total metabolism. The product of 3,4-epoxidation, o-hydroxyphenylacetaldehyde (o-HPA), accounted for 30% of the total metabolites. 2. The K(m) and V(max) for CYP2A13-mediated coumarin 7-hydroxylation were 0.48+/-0.07 micro m and 0.15+/-0.006 nmol min(-1) nmol(-1) CYP, respectively. The V(max) of coumarin 7-hydroxylation by CYP2A13 was about 16-fold lower than that of CYP2A6, whereas the K(m) was 10-fold lower. 3. In the mouse, there were two orthologues for CYP2A6: CYP2A4 and CYP2A5, which differed by only 11 amino acids. However, CYP2A5 is an efficient coumarin 7-hydroxylase, where as CYP2A4 is not. We report here that BV-expressed CYP2A4 metabolizes coumarin by 3,4-epoxidation. Two products of the 3,4-epoxidation pathway, o-HPA and o-hydroxyphenylacetic acid (o-HPAA), were detected by radioflow HPLC. 4. The K(m) and V(max) for the coumarin 3,4-epoxidation by CYP2A4 were 8.7+/-3.6 micro m and 0.20+/-0.04 nmol min(-1) nmol(-1) CYP, respectively. Coumarin 7-hydroxylation by CYP2A5 was more than 200 times more efficient than 3,4 epoxidation by CYP2A4.  相似文献   

16.
The effect of cytochrome P450 (CYP) 2C9 polymorphisms on the stereoselective biotransformation of the oral anticoagulant phenprocoumon (PPC) to inactive, monohydroxylated metabolites was studied in vitro and in vivo. In human liver microsomes, the (S)-7-hydroxylation--being the major metabolic pathway--was significantly compromised in a gene-dose-dependent manner in samples expressing the CYP2C9*2 or CYP2C9*3 allele. The CYP2C9*3/*3 genotype corresponded to an almost fourfold lower (S)-7-hydroxylation rate than CYP2C9*1/*1 (wild-type). The intrinsic clearance of human recombinant CYP2C9*2 and CYP2C9*3 for the (S)-7-hydroxylation was 28.9 and 50.9% lower than of CYP2C9*1, respectively. The area under the plasma concentration-time curve (AUC) of PPC metabolites after oral intake of 12 mg racemic PPC was significantly lower in volunteers expressing the CYP2C9*2 or CYP2C9*3 allele. Increasing plasma AUC metabolic ratios (parent compound/metabolite) in CYP2C9*2 and CYP2C9*3 variant allele carriers were found for each hydroxylation reaction and the CYP2C9*3/*3 genotype corresponded to an about 10-fold higher metabolic ratio of PPC (S)-7-hydroxylation relative to CYP2C9*1/*1. CYP2C9 polymorphisms cause a markedly compromised PPC (S)-7-hydroxylation. However, PPC metabolism appears overall less influenced by CYP2C9 genotype compared with other oral anticoagulants and it may thus be a valuable alternative for therapeutic anticoagulation of patients expressing CYP2C9 variant alleles.  相似文献   

17.
Humans possess three cytochrome P450 enzymes in the 2A subfamily (2A6, 2A7, and 2A13). P450 2A13 is mainly expressed in the human trachea and lung, whereas P450 2A6 is found in human liver. The P450 2A13 enzyme may be considered as the primary enzyme responsible for metabolic activation of many tobacco-specific carcinogens. Genetic variations significantly influence the toxicological consequences attributed to tobacco smoking. The aim of this study was to examine the in vitro functional activities of five P450 2A13 genetic variations (R257C, 133_134insT, R101Q, I331T, and R257C/I331T) in P450 2A13*2, *3, *4, and *10 alleles. Mutant clones were constructed and their recombinant enzymes were expressed in Escherichia coli. P450 2A13 mutants containing R257C, 133_134insT, I331T, and R257C/I331T displayed P450 holoenzyme spectra. The R101Q mutant was not apparently expressed. P450 2A13 enzymes displayed the typical type I binding spectra to coumarin and the calculated binding affinities of R257C, R257C/I331T, and 133_134insT mutants were decreased approximately three- to sevenfold. In catalytic analyses of purified mutant enzymes for coumarin and nicotine, the R257C and I331T mutants exhibited lower kcat values with catalytic efficiencies reduced up to approximately 20%. The double mutation of R257C/I331T induced increased Km values and diminished kcat values that resulted in >50% decrease in catalytic efficiencies. For 133_134insT mutant, catalytic activities were not markedly saturated but the measured rates at the highest concentrations were significantly lower than those of the wild-type or other mutant enzymes. Functional analysis of these variations in P450 2A13 allelic variants may help to understand the consequences of P450 2A13 polymorphism in bioactivation of many tobacco-derived carcinogens.  相似文献   

18.
The present study investigated the role of specific human cytochrome P450 (CYP) enzymes in the in vitro metabolism of valproic acid (VPA) by a complementary approach that used individual cDNA-expressed CYP enzymes, chemical inhibitors of specific CYP enzymes, CYP-specific inhibitory monoclonal antibodies (MAbs), individual human hepatic microsomes, and correlational analysis. cDNA-expressed CYP2C9*1, CYP2A6, and CYP2B6 were the most active catalysts of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA formation. The extent of 4-OH-VPA and 5-OH-VPA formation by CYP1A1, CYP1A2, CYP1B1, CYP2C8, CYP2C19, CYP2D6, CYP2E1, CYP4A11, CYP4F2, CYP4F3A, and CYP4F3B was only 1-8% of the levels by CYP2C9*1. CYP2A6 was the most active in catalyzing VPA 3-hydroxylation, whereas CYP1A1, CYP2B6, CYP4F2, and CYP4F3B were less active. Correlational analyses of VPA metabolism with CYP enzyme-selective activities suggested a potential role for hepatic microsomal CYP2A6 and CYP2C9. Chemical inhibition experiments with coumarin (CYP2A6 inhibitor), triethylenethiophosphoramide (CYP2B6 inhibitor), and sulfaphenazole (CYP2C9 inhibitor) and immunoinhibition experiments (including combinatorial analysis) with MAb-2A6, MAb-2B6, and MAb-2C9 indicated that the CYP2C9 inhibitors reduced the formation of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA by 75-80% in a panel of hepatic microsomes from donors with the CYP2C9*1/*1 genotype, whereas the CYP2A6 and CYP2B6 inhibitors had a small effect. Only the CYP2A6 inhibitors reduced VPA 3-hydroxylation (by approximately 50%). The extent of inhibition correlated with the catalytic capacity of these enzymes in each microsome sample. Overall, our novel findings indicate that in human hepatic microsomes, CYP2C9*1 is the predominant catalyst in the formation of 4-ene-VPA, 4-OH-VPA, and 5-OH-VPA, whereas CYP2A6 contributes partially to 3-OH-VPA formation.  相似文献   

19.
We studied the effects of acetonitrile, dimethyl sulfoxide (DMSO), and methanol (MeOH) in human hepatocytes on cytochrome P450 (CYP) and phase II conjugation activities: phenacetin O-deethylation (CYP1A2), coumarin 7-hydroxylation (CYP2A6), tolbutamide 4-hydroxylation (CYP2C9), S-mephenytoin 4'-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), chlorzoxazone 6-hydroxylation (CYP2E1), testosterone 6beta-hydroxylation (CYP3A4), and umbelliferone glucuronidation and sulfation. The solvents were evaluated at concentrations (v/v) of 0.1, 1, and 2%. Previously cryopreserved human hepatocytes pooled from multiple donors were used as suspension cultures in this study. DMSO was found to inhibit CYP2C9 and CYP2C19, CYP2E1, and CYP3A4 in a concentration-dependent manner. At 2% DMSO, the activities for the four isoforms were approximately 40% (CYP2C9), 23% (CYP2C19), and 11% (CYP2E1) of that observed for 0.1% acetonitrile and 45% (CYP3A4) of that observed for 1% acetonitrile. No apparent inhibitory effects were observed for the other activities evaluated. Methanol was found to inhibit CYP2C9 and CYP2E1 activities, but to a lesser extent than DMSO. Acetonitrile had no apparent effects on any of the on any of the activities evaluated. These findings should be considered when choosing an organic solvent for metabolism studies with human hepatocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号