首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pituitary tumor development involves clonal expansion stimulated by hormones and growth factorscytokines. Using mRNA differential display, we found that the bone morphogenetic protein (BMP) inhibitor noggin is down-regulated in prolactinomas from dopamine D2-receptor-deficient mice. BMP-4 is overexpressed in prolactinomas taken from dopamine D2-receptor-deficient female mice, but expression of the highly homologous BMP-2 does not differ in normal pituitary tissue and prolactinomas. BMP-4 is overexpressed in other prolactinoma models, including estradiol-induced rat prolactinomas and human prolactinomas, compared with normal tissue and other pituitary adenoma types (Western blot analysis of 48 tumors). BMP-4 stimulates, and noggin blocks, cell proliferation and the expression of c-Myc in human prolactinomas, whereas BMP-4 has no action in other human pituitary tumors. GH3 cells stably transfected with a dominant negative of Smad4 (Smad4dn; a BMP signal cotransducer) or noggin have reduced tumorigenicity in nude mice. Tumor growth recovered in vivo when the Smad4dn expression was lost, proving that BMP-4Smad4 are involved in tumor development in vivo. BMP-4 and estrogens act through overlapping intracellular signaling mechanisms on GH3 cell proliferation and c-myc expression: they had additive effects at low concentrations but not at saturating doses, and their action was inhibited by blocking either pathway with the reciprocal antagonist (i.e., BMP-4 with ICI 182780 or 17beta-estradiol with Smad4dn). Furthermore, coimmunoprecipitation studies demonstrate that under BMP-4 stimulation Smad4 and Smad1 physically interact with the estrogen receptor. This previously undescribed prolactinoma pathogenesis mechanism may participate in tumorigenicity in other cells where estrogens and the type beta transforming growth factor family have important roles.  相似文献   

2.
Estrogen is involved in the development and progression of breast cancer. Here we investigated the effect of fibroblast growth factor (FGF)-8 on breast cancer cell proliferation caused by estrogen using human breast cancer MCF-7 cells. MCF-7 cells express estrogen receptor (ER)α, ERβ, FGF receptors, and Smad signaling molecules. Estradiol stimulated MCF-7 cell proliferation in a concentration-responsive manner, whereas BSA-bound estradiol had a weak effect on MCF-7 cell mitosis compared with the effect of free estradiol. It is notable that estrogen-induced cell proliferation was enhanced in the presence of FGF-8 and that the combined effects were reversed in the presence of an FGF-receptor kinase inhibitor or an ER antagonist. It was also revealed that FGF-8 increased the expression levels of ERα, ERβ and aromatase mRNAs, while estradiol reduced the expression levels of ERs, aromatase and steroid sulfatase in MCF-7 cells. FGF-8-induced phosphorylation of FGF receptors was augmented by estradiol, which was reversed by an ER antagonist. FGF-8-induced activation of MAPKs and AKT signaling was also upregulated in the presence of estrogen. On the other hand, FGF-8 suppressed BMP-7 actions that are linked to mitotic inhibition by activating the cell cycle regulator cdc2. FGF-8 was revealed to inhibit BMP receptor actions including Id-1 promoter activity and Smad1/5/8 phosphorylation by suppressing expression of BMP type-II receptors and by increasing expression of inhibitory Smads. Collectively, the results indicate that FGF-8 acts to facilitate cell proliferation by upregulating endogenous estrogenic actions as well as by suppressing BMP receptor signaling in ER-expressing breast cancer cells.  相似文献   

3.
OBJECTIVE: Bone Morphogenetic Protein-4 (BMP-4) and Extracellular-Signal Regulated Kinases (ERK) play crucial roles in vascular diseases. Here, we demonstrate that BMP-4 not only signals through the classical Smad cascade but also activates ERK phosphorylation as an alternative pathway in human umbilical vein endothelial cells (HUVEC) and that Smad and ERK pathways communicate through signal crosstalk. METHODS: HUVECs were treated with BMP-4 and/or MEK inhibitors. Smad 6 and constitutively active (ca) MEK1 were overexpressed. Loss of function of Smad 4 and Smad 6 was achieved by specific siRNA transfection. Cell lysates were analyzed by western blotting for Smad and ERK phosphorylation. HUVEC spheroids were generated for angiogenesis quantification. RESULTS: Treatment with BMP-4 results in a dose- and time-dependent activation of the MEK-ERK 1/2 pathway in addition to activation of the Smad pathway and is blocked by MEK inhibitors. Quantitative in-gel angiogenesis assays in the presence or absence of MEK inhibitors demonstrate that ERK signals are necessary for BMP-4 induced capillary sprouting. Furthermore sprouting is not blocked by inhibition of the Smad signaling pathway. Overexpression of the inhibitory Smad 6 inhibits ERK phosphorylation and ERK-induced capillary sprouting, whereas loss of function of Smad 4 has no effect. CONCLUSIONS: We demonstrate that ERK1/2 functions as an alternative pathway in BMP-4 signaling in HUVECs. Capillary sprouting induced by BMP-4 is dependent on ERK phosphorylation. ERK is essential for efficient transduction of BMP signals and serves as a positive feedback mechanism. On the other hand, stimulation of Smad 6 inhibits ERK activation and thus results in a negative feedback loop to fine-tune BMP signaling in HUVECs.  相似文献   

4.
5.
BACKGROUND & AIMS: Bone morphogenetic proteins (BMPs) belong to the transforming growth factor beta superfamily of signaling molecules. We characterized the expression of BMP-2 and its receptors in human pancreatic tissues and pancreatic cancer cell lines and examined the effects of BMP-2 on mitogenesis. METHODS: Expression of BMP-2 and its receptors was determined by Northern blot analysis using specific complementary DNA probes. Distribution of BMP-2 in pancreatic cancers was examined by immunohistochemistry and in situ hybridization. Effects of BMP-2 on mitogenesis were assessed by monitoring cell proliferation and activation of mitogen-activated protein kinase (MAPK). RESULTS: Compared with the normal pancreas, pancreatic cancers showed a 12.5-fold (P < 0.01), 2-fold (P < 0.01), and 8-fold (P < 0.01) increase of BMP-2, BMP receptor (R)-IA, and BMPR-II messenger RNA levels, respectively. By immunohistochemistry and in situ hybridization, BMP-2 was expressed in the cancer cells within the tumor mass. There was a significant correlation between the presence of BMP-2 immunostaining in the tumors and shorter postoperative survival. Pancreatic cancer cell lines expressed variable levels of messenger RNA encoding BMP-2 and its receptors. BMP-2 stimulated the growth of two pancreatic cancer cell lines (ASPC-1 and CAPAN-1). This mitogenic effect was associated with MAPK activation and blocked by the MAPK inhibitor PD98059 in CAPAN-1 but not in ASPC-1 cells. In both cell lines, expression of wild-type Smad4 abolished the BMP-2-mediated growth stimulation. BMP-2 inhibited the growth of COLO-357 cells, an effect that was blocked by expressing a dominant negative Smad4. BMP-2 had no effect in three cell lines that underexpressed either the BMP receptors or Smad1. CONCLUSIONS: These findings indicate that BMP-2 has the capacity to act as a mitogen when Smad4 is mutated and suggest that it might play a role in the pathobiology of human pancreatic cancer.  相似文献   

6.
7.
Whereas bone morphogenetic protein (BMP)-signaling events induce maturational characteristics in vitro, recent evidence suggests that the effects of other regulators might be mediated through BMP-signaling events. The present study examines the mechanism through which retinoic acid (RA) stimulates differentiation in chicken embryonic caudal sternal chondrocyte cultures. Both RA and BMP-2 induced expression of the chondrocyte maturational marker, colX, in chondrocyte cultures by 8 d. Though the RA effect was small, it synergistically enhanced the effect of BMP-2 on colX and phosphatase activity. Inhibition of either RA or BMP signaling, with selective inhibitors, interfered with the inductive effects of these agents but also inhibited the complementary pathway, demonstrating a codependence of RA and BMP signaling during chondrocyte maturation. BMP-2 did not enhance the effects of RA on an RA-responsive reporter construct, but RA enhanced basal activity and synergistically enhanced BMP-2 stimulation of the BMP-responsive chicken type X collagen reporter. A similar synergistic interaction between RA and BMP-2 was observed on colX expression. RA did not increase the expression of the type IA BMP receptor but did markedly up-regulate the expression of Smad1 and Smad5 proteins, important participants in the BMP pathway. Inhibition of RA signaling, with the selective inhibitor AGN 193109, blocked RA-mediated induction of the Smad proteins and chondrocyte differentiation. These findings demonstrate that RA induces the expression of BMP-signaling molecules and enhances BMP effects in chondrocytes.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Recent studies have suggested possible adverse effects of thiazolidinediones on bone metabolism. However, the detailed mechanism by which the activity of PPAR affects bone formation has not been elucidated. Impaired osteoblastic function due to cytokines is critical for the progression of inflammatory bone diseases. In the present study, we investigated the cellular mechanism by which PPAR actions interact with osteoblast differentiation regulated by BMP and TNF-α using mouse myoblastic C2C12 cells. BMP-2 and -4 potently induced the expression of various bone differentiation markers including Runx2, osteocalcin, type-1 collagen and alkaline phosphatase (ALP) in C2C12 cells. When administered in combination with a PPARα agonist (fenofibric acid) but not with a PPARγ agonist (pioglitazone), BMP-4 enhanced osteoblast differentiation through the activity of PPARα. The osteoblastic changes induced by BMP-4 were readily suppressed by treatment with TNF-α. Interestingly, the activities of PPARα and PPARγ agonists reversed the suppression by TNF-α of osteoblast differentiation induced by BMP-4. Furthermore, TNF-α-induced phosphorylation of MAPKs, NFκB, IκB and Stat pathways was inhibited in the presence of PPARα and PPARγ agonists with reducing TNF-α receptor expression. In view of the finding that inhibition of SAPK/JNK, Stat and NFκB pathways reversed the TNF-α suppression of osteoblast differentiation, we conclude that these cascades are functionally involved in the actions of PPARs that antagonize TNF-α-induced suppression of osteoblast differentiation. It was further discovered that the PPARα agonist enhanced BMP-4-induced Smad1/5/8 signaling through downregulation of inhibitory Smad6/7 expression, whereas the PPARγ agonist impaired this activity by suppressing BMPRII expression. On the other hand, BMPs increased the expression levels of PPARα and PPARγ in the process of osteoblast differentiation. Thus, PPARα actions promote BMP-induced osteoblast differentiation, while both activities of PPARα and PPARγ suppress TNF-α actions. Collectively, our present data establishes that PPAR activities are functionally involved in modulating the interaction between the BMP system and TNF-α receptor signaling that is crucial for bone metabolism.  相似文献   

15.
16.
17.
Mutations in the bone morphogenetic protein type II receptor gene (BMPR2) are the major genetic cause of familial pulmonary arterial hypertension (FPAH). Although smooth muscle cell proliferation contributes to the vascular remodeling observed in PAH, the role of BMPs in this process and the impact of BMPR2 mutation remains unclear. Studies involving normal human pulmonary artery smooth muscle cells (PASMCs) suggest site-specific responses to BMPs. Thus, BMP-4 inhibited proliferation of PASMCs isolated from proximal pulmonary arteries, but stimulated proliferation of PASMCs from peripheral arteries, and conferred protection from apoptosis. These differences were not caused by differential activation of BMP signaling pathways because exogenous BMP-4 led to phosphorylation of Smad1, p38(MAPK), and ERK1/2 in both cell types. However, the proproliferative effect of BMP-4 on peripheral PASMCs was found to be p38MAPK/ERK-dependent. Conversely, overexpression of dominant-negative Smad1 converted the response to BMP-4 in proximal PASMCs from inhibitory to proliferative. Furthermore, we confirmed that proximal PASMCs harboring kinase domain mutations in BMPR2 are deficient in Smad signaling and are unresponsive to the growth suppressive effect of BMP-4. Moreover, we show that the pulmonary vasculature of patients with familial and idiopathic PAH are deficient in the activated form of Smad1. We conclude that defective Smad signaling and unopposed p38(MAPK)/ERK signaling, as a consequence of mutation in BMPR2, underlie the abnormal vascular cell proliferation observed in familial PAH.  相似文献   

18.
The bone morphogenic proteins (BMPs) play important roles in vertebrate development. In Xenopus, BMPs act as epidermal inducers and also as negative regulators of neurogenesis. Antagonism of BMP signaling results in neuralization. BMPs signal through the cell-surface receptors and downstream Smad molecules. Upon stimulation with BMP, Smad1, Smad5, and Smad8 are phosphorylated by the activated BMP receptors, form a complex with Smad4, and translocate into the nucleus, where they regulate the expression of BMP target genes. Here, we show that the Ski oncoprotein can block BMP signaling and the expression of BMP-responsive genes in both Xenopus and mammalian cells by directly interacting with and repressing the activity of BMP-specific Smad complexes. This ability to antagonize BMP signaling results in neuralization by Ski in the Xenopus embryo and blocking of osteoblast differentiation of murine W-20-17 cells. Thus, Ski is able to repress the activity of all receptor-associated Smads and may regulate vertebrate development by modulating the signaling activity of transforming growth factor-beta family members.  相似文献   

19.
Circulating aldosterone concentrations occasionally increase after initial suppression with angiotensin II (Ang II) converting enzyme inhibitors or Ang II type 1 receptor blockers (ARBs), a phenomenon referred to as aldosterone breakthrough. However, the underlying mechanism causing the aldosterone breakthrough remains unknown. Here we investigated whether aldosterone breakthrough occurs in human adrenocortical H295R cells in vitro. We recently reported that bone morphogenetic protein (BMP)-6, which is expressed in adrenocortical cells, enhances Ang II- but not potassium-induced aldosterone production in human adrenocortical cells. Accordingly, we examined the roles of BMP-6 in aldosterone breakthrough induced by long-term treatment with ARB. Ang II stimulated aldosterone production by adrenocortical cells. This Ang II stimulation was blocked by an ARB, candesartan. Interestingly, the candesartan effects on Ang II-induced aldosterone synthesis and CYP11B2 expression were attenuated in a course of candesartan treatment for 15 d. The impairment of candesartan effects on Ang II-induced aldosterone production was also observed in Ang II- or candesartan-pretreated cells. Levels of Ang II type 1 receptor mRNA were not changed by chronic candesartan treatment. However, BMP-6 enhancement of Ang II-induced ERK1/2 signaling was resistant to candesartan. The BMP-6-induced Smad1, -5, and -8 phosphorylation, and BRE-Luc activity was augmented in the presence of Ang II and candesartan in the chronic phase. Chronic Ang II exposure decreased cellular expression levels of BMP-6 and its receptors activin receptor-like kinase-2 and activin type II receptor mRNAs. Cotreatment with candesartan reversed the inhibitory effects of Ang II on the expression levels of these mRNAs. The breakthrough phenomenon was attenuated by neutralization of endogenous BMP-6 and activin receptor-like kinase-2. Collectively, these data suggest that changes in BMP-6 availability and response may be involved in the occurrence of cellular escape from aldosterone suppression under chronic treatment with ARB.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号