首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: Patients with medial compartment knee osteoarthritis (OA) adopt an abnormal gait pattern, and often develop frontal plane laxity at the knee. The purpose of this study was to quantify the extent of frontal plane knee joint laxity in patients with medial knee OA and genu varum and to assess the effect of joint laxity on knee joint kinetics, kinematics and muscle activity during gait. DESIGN: Twelve subjects with genu varum and medial compartment knee osteoarthritis (OA group) and 12 age-matched uninjured subjects underwent stress radiography to determine the presence and magnitude of frontal plane laxity. All subjects also went through gait analysis with surface electromyography of the medial and lateral quadriceps, hamstrings, and gastrocnemius to calculate knee joint kinematics and kinetics and co-contraction levels during gait. RESULTS: The OA group showed significantly greater knee instability (P = 0.002), medial joint laxity (P = 0.001), greater medial quadriceps-medial gastrocnemius (VMMG) co-contraction (P = 0.043), and greater knee adduction moments (P = 0.019) than the control group. Medial joint laxity contributed significantly to the variance in both VMMG and the knee adduction moment during early stance. CONCLUSION: The presence of medial laxity in patients with knee OA is likely contributing to the altered gait patterns observed in those with medial knee OA. Greater medial co-contraction and knee adduction moments bodes poorly for the long-term integrity of the articular cartilage, suggesting that medial joint laxity should be a focus of interventions aimed at slowing the progression of disease in individuals with medial compartment knee OA.  相似文献   

2.
BackgroundThe knee adduction moment (KAM) is considered an index for estimating the knee mechanical load, and increased KAM peak and KAM impulse are related to increased medial knee load and progression of knee joint degeneration. We aimed to verify the biomechanical factors of gait related to medial knee loading in patients 6 months after TKA.MethodsThirty-nine women who underwent TKA were enrolled. A three-dimensional gait analysis was performed 6 months postoperatively to generate data on the lower limb joint angle, moment, and power at the backward component (braking phase) and forward component (propulsion phase) peaks of the ground reaction force. Medial knee loading was evaluated using the time-integrated value of KAM during the stance period (KAM impulse). The higher the value of the KAM impulse, the higher the medial knee joint load. The relationships between the KAM impulse and the data for biomechanical factors were evaluated using partial correlation analysis with gait speed as a control factor.ResultsIn the braking phase, the KAM impulse positively correlated with the knee adduction angle (r = 0.377) and negatively correlated with the toe-out angle (r = −0.355). The KAM impulse positively correlated with the knee adduction angle (r = 0.402), the hip flexion moment (r = 0.335), and the hip adduction moment (r = 0.565) and negatively correlated with the toe-out angle (r = −0.357) in the propulsive phase.ConclusionThe KAM impulse 6 months after TKA was related to the knee adduction angle, hip flexion moment, hip adduction moment, and toe-out angle. These findings may provide fundamental data for controlling variable medial knee joint load after TKA and implementing patient management strategies to ensure implant durability.  相似文献   

3.
Knee osteoarthritis (OA) is one of the most prevalent forms of this disease, with the medial compartment most commonly affected. The direction of external forces and limb orientation during walking results in an adduction moment that acts around the knee, and this parameter is regarded as a surrogate measure of medial knee compression. The knee adduction moment is intimately linked with the development and progression of knee OA and is, therefore, a target for conservative biomechanical intervention strategies, which are the focus of this Review. We examine the evidence for walking barefoot and the use of lateral wedge insoles and thin-soled, flexible shoes to reduce the knee adduction moment in patients with OA. We review strategies that directly affect the gait, such as walking with the foot externally rotated ('toe-out gait'), using a cane, lateral trunk sway and gait retraining. Valgus knee braces and muscle strengthening are also discussed for their effect upon reducing the knee adduction moment.  相似文献   

4.
OBJECTIVE: This study tests the hypothesis that the peak external knee adduction moment during gait is increased in a group of ambulatory subjects with knee osteoarthritis (OA) of varying radiographic severity who are being managed with medical therapy. Tibiofemoral knee OA more commonly affects the medial compartment. The external knee adduction moment can be used to assess the load distribution between the medial and lateral compartments of the knee joint. Additionally, this study tests if changes in the knee angles, such as a reduced midstance knee flexion angle, or reduced sagittal plane moments previously identified by others as load reducing mechanisms are present in this OA group. DESIGN: Thirty-one subjects with radiographic evidence of knee OA and medial compartment cartilage damage were gait tested after a 2-week drug washout period. Thirty-one normal subjects (asymptomatic control subjects) with a comparable age, weight and height distribution were also tested. Significant differences in the sagittal plane knee motion and peak external moments between the normal and knee OA groups were identified using t tests. RESULTS: Subjects with knee OA walked with a greater than normal peak external knee adduction moment (P=0.003). The midstance knee flexion angle was not significantly different between the two groups (P=0.625) nor were the peak flexion and extension moments (P> 0.037). CONCLUSIONS: Load reducing mechanisms, such as a decreased midstance knee flexion angle, identified by others in subjects with endstage knee OA or reduced external flexion or extension moments were not present in this group of subjects with knee OA who were being managed by conservative treatment. The finding of a significantly greater than normal external knee adduction moment in the knee OA group lends support to the hypothesis that an increased knee adduction moment during gait is associated with knee OA.  相似文献   

5.
This study aimed to determine if active feedback gait retraining to produce a medial weight transfer at the foot significantly reduces the knee adduction moment in subjects with medial compartment knee osteoarthritis. Secondarily, changes in peak knee flexion moment, frontal plane knee and ankle kinematics, and center of pressure were investigated. Ten individuals with medial compartment knee osteoarthritis (9 males; age: 65.3 ± 9.8 years; BMI: 27.8 ± 3.0 kg/m2) were tested at self‐selected normal and fast speeds in two conditions: Intervention, with an active feedback device attached to the shoe of their more affected leg, and control, with the device de‐activated. Kinematics and kinetics were assessed using a motion capture system and force plate. The first peak, second peak, and impulse of the knee adduction moment were significantly reduced by 6.0%, 13.9%, and 9.2%, respectively, at normal speed, with reductions of 10.7% and 8.6% in first peak and impulse at fast speed, respectively, with the active feedback system, with no significant effect on the peak knee flexion moment. Significant reductions in peak varus knee angle and medialized center of pressure in the first half of stance were observed, with reductions in peak varus knee angle associated with reductions in the knee adduction moment. This study demonstrated that active feedback to produce a medial weight‐bearing shift at the foot reduces the peaks and impulse of the knee adduction moment in patients with medial compartment knee osteoarthritis. Future research should determine the long‐term effect of the active feedback intervention on joint loading, pain, and function. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2251–2259, 2017.
  相似文献   

6.
The purpose of this study was to examine interlimb differences in gait kinematics and kinetics in patients with symptomatic medial knee OA. The main objective was to identify hip joint movement strategies that might lower the knee adduction moment and also compensate for decreased knee flexion during weight acceptance. Gait analysis was performed on 32 patients with moderate medial compartment knee OA. Kinetic and kinematic data were calculated and side‐to‐side comparisons made. Radiographs were used to identify frontal plane alignment. No interlimb difference in the peak knee adduction moment was found (p = 0.512), whereas a greatly reduced hip adduction moment was seen on the involved side (p < 0.001) during the early part of stance. The involved limb flexed significantly less and hip and knee flexion moments were smaller compared to the uninvolved side. Gait adaptations involving a lateral sway of the trunk may successfully lead to relatively lower ipsilateral knee adduction moments, and would further be reflected by a lower adduction moment at the hip. Subjects did not compensate for less knee flexion by any dynamic means, and likely experience a resulting higher joint impact. These gait adaptations may have implications with respect to development of weakness of the ipsilateral hip musculature and progression of multiarticular OA. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:78–83, 2009  相似文献   

7.
Gait modification offers a noninvasive option for offloading the medial compartment of the knee in patients with knee osteoarthritis. While gait modifications have been proposed based on their ability to reduce the external knee adduction moment, no gait pattern has been proven to reduce medial compartment contact force directly. This study used in vivo contact force data collected from a single subject with a force‐measuring knee replacement to evaluate the effectiveness of two gait patterns at achieving this goal. The first was a “medial thrust” gait pattern that involved medializing the knee during stance phase, while the second was a “walking pole” gait pattern that involved using bilateral walking poles commonly used for hiking. Compared to the subject's normal gait pattern, medial thrust gait produced a 16% reduction and walking pole gait a 27% reduction in medial contact force over stance phase, both of which were statistically significant based on a two‐tailed Mann–Whitney U‐test. While medial thrust gait produced little change in lateral and total contact force over the stance phase, walking pole gait produced significant 11% and 21% reductions, respectively. Medial thrust gait may allow patients with knee osteoarthritis to reduce medial contact force using a normal‐looking walking motion requiring no external equipment, while walking pole gait may allow patients with knee osteoarthritis or a knee replacement to reduce medial, lateral, and total contact force in situations where the use of walking poles is possible. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27: 1016–1021, 2009  相似文献   

8.
Reducing the knee adduction moment (KAM) is a promising treatment for medial compartment knee osteoarthritis (OA). Although several gait modifications to lower the KAM have been identified, the potential to combine modifications and individual dose‐responses remain unknown. This study hypothesized that: (i) there is a general scheme consisting of modifications in trunk sway, step width, walking speed, and foot progression angle that reduces the KAM; (ii) gait modifications can be combined; and (iii) dose‐responses differ among individuals. Walking trials with simultaneous modifications in step width, walking speed, progression angle, and trunk sway were analyzed for 10 healthy subjects. Wider step width, slower speed, toeing‐in, and increased trunk sway resulted in reduced first KAM peak, whereas wider step width, faster speed, and increased trunk sway reduced the KAM angular impulse. Individual regressions accurately modeled the amplitude of the KAM variables relative to the amplitude of the gait modification variables, while the dose‐responses varied strongly among participants. In conclusion, increasing trunk sway, increasing step width, and toeing‐in are three gait modifications that could be combined to reduce KAM variables related to knee OA. Results also indicated that some gait modifications reducing the KAM induced changes in the knee flexion moment possibly indicative of an increase in knee loading. Taken together with the different dose‐responses among subjects, this study suggested that gait retraining programs should consider this general scheme of modifications with individualization of the modification amplitudes. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1547–1556, 2016.  相似文献   

9.
The aims of this study were to evaluate and explain the individual muscle contributions to the medial and lateral knee compartment forces during gait, and to determine whether these quantities could be inferred from their contributions to the external knee adduction moment. Gait data from eight healthy male subjects were used to compute each individual muscle contribution to the external knee adduction moment, the net tibiofemoral joint reaction force, and reaction moment. The individual muscle contributions to the medial and lateral compartment forces were then found using a least‐squares approach. While knee‐spanning muscles were the primary contributors, non‐knee‐spanning muscles (e.g., the gluteus medius) also contributed substantially to the medial compartment compressive force. Furthermore, knee‐spanning muscles tended to compress both compartments, while most non‐knee‐spanning muscles tended to compress the medial compartment but unload the lateral compartment. Muscle contributions to the external knee adduction moment, particularly those from knee‐spanning muscles, did not accurately reflect their tendencies to compress or unload the medial compartment. This finding may further explain why gait modifications may reduce the knee adduction moment without necessarily decreasing the medial compartment force. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1586–1595, 2012  相似文献   

10.
Thorp LE  Wimmer MA  Block JA  Moisio KC  Shott S  Goker B  Sumner DR 《BONE》2006,39(5):1116-1122
Based on the premise that bone mass and bone geometry are related to load history and that subchondral bone may play a role in osteoarthritis (OA), we sought to determine if static and dynamic markers of knee joint loads explain variance in the medial-to-lateral ratio of proximal tibial bone mineral density (BMD) in subjects with mild and moderate medial knee OA. We utilized two surrogate markers of dynamic load, the peak knee adduction moment and the knee adduction angular momentum, the latter being the time integral of the frontal plane knee joint moment. BMD for medial and lateral regions of the proximal tibial plateau and one distal region in the tibial shaft was measured in 84 symptomatic subjects with Kellgren and Lawrence radiographic OA grades of 2 or 3. Utilizing gait analysis, the peak knee adduction moment (the external adduction moment of greatest magnitude) and the time integral of the frontal plane knee joint moment (the angular momentum) over the entire stance phase as well as for each of the four subdivisions of stance were calculated. The BMD ratio was not significantly different in grade 2 (1.32 +/- 0.27) and grade 3 knees (1.47 +/- 0.40) (P = 0.215). BMD of the tibial shaft was not correlated with any loading parameter or static alignment. Of all the surrogate gait markers of dynamic load, the knee adduction angular momentum in terminal stance explained the most variance (20%) in the medial-to-lateral BMD ratio (adjusted r(2) = 0.196, P < 0.001). The knee adduction angular momentum for the entire stance phase explained 18% of the variance in the BMD ratio (adjusted r(2) = 0.178, P < 0.001), 10% more variance than explained by the overall peak knee adduction moment (adjusted r(2) = 0.081, P < 0.001). 18% of the variance in the BMD ratio was also explained by the knee alignment angle (adjusted r(2) = 0.183, P < 0.001), and the total explanatory power was increased to 22% when the knee adduction angular momentum in terminal stance was added (change in r(2) = 0.041, P < 0.05, total adjusted r(2) = 0.215, P < 0.001). The BMD ratio and its relationship to dynamic and static markers of loading were independent of height, weight, and the body mass index, demonstrating that both dynamic markers of knee loading as well as knee alignment explained variance in the tibial BMD ratio independent of body size.  相似文献   

11.
Despite the increasing percentages of children who are overweight, few studies have investigated their gait patterns. The purpose of this study was to quantify the three-dimensional knee joint kinematics and kinetics during walking in children of varying body mass and to identify effects associated with obesity. Three-dimensional kinematics and kinetics were collected from children of normal weight and overweight during normal gait using surface-mounted infrared emitting diodes and a force plate. The overweight group walked with a significantly lower peak knee flexion angle during early stance, and no significant differences in peak internal knee extension moments were found between groups. However, the overweight group showed a significantly higher peak internal knee abduction moment during early stance. These data suggest that although overweight children may develop a gait adaptation to maintain a similar knee extensor load, they may not be able to compensate for alterations in the frontal plane, which may lead to increased medial compartment joint loads. Therefore, assuming that the development of varus angular deformities of the knee joint and, in the longer term, medial compartment osteoarthritis are influenced by cumulative stress, this study supports the understanding that childhood obesity may impart a greater risk for the development of these diseases.  相似文献   

12.
This study tested whether the peak external knee adduction moments during walking in subjects with knee osteoarthritis (OA) were correlated with the mechanical axis of the leg, radiographic measures of OA severity, toe out angle or clinical assessments of pain, stiffness or function. Gait analysis was performed on 62 subjects with knee OA and 49 asymptomatic control subjects (normal subjects). The subjects with OA walked with a greater than normal peak adduction moment during early stance (p = 0.027). In the OA group, the mechanical axis was the best single predictor of the peak adduction moment during both early and late stance (R = 0.74, p < 0.001). The radiographic measures of OA severity in the medial compartment were also predictive of both peak adduction moments (R = 0.43 to 0.48, p < 0.001) along with the sum of the WOMAC subscales (R = -0.33 to -0.31, p < 0.017). The toe out angle was predictive of the peak adduction moment only during late stance (R = -0.45, p < 0.001). Once mechanical axis was accounted for, other factors only increased the ability to predict the peak knee adduction moments by 10 18%. While the mechanical axis was indicative of the peak adduction moments, it only accounted for about 50% of its variation, emphasizing the need for a dynamic evaluation of the knee joint loading environment. Understanding which clinical measures of OA are most closely associated with the dynamic knee joint loads may ultimately result in a better understanding of the disease process and the development of therapeutic interventions.  相似文献   

13.
OBJECTIVE: Reduced muscle function, causing greater knee joint load, is a potentially modifiable risk factor of knee osteoarthritis (OA). Exercise is an important treatment of knee OA, but the effect on joint load has not been determined. The aim of this study was to investigate the effect of exercise on knee adduction moment during one-leg rise and gait. DESIGN: Patients below age 65 with early signs of radiographic knee OA, from a population-based cohort on OA development, were invited to participate in the study. They defined their most symptomatic knee as the index knee. Knee adduction moment during one-leg rise from a stool (48cm), and during gait was assessed using a three-dimensional motion analysis system, before and after eight weeks of supervised exercise. RESULTS: Thirteen patients, seven women, mean age 54.5, 12/13 with Kellgren and Lawrence grade I or II, took part in the study. Peak knee adduction moment during one-leg rise was reduced by 0.08 (95% CI 0.01;0.16) Nm/kg, or 14%, for the index knee, and 0.05 (95% CI -0.04;0.14), or 8% for the opposite knee after eight weeks. The reductions in peak adduction moment during gait were smaller and not significant. CONCLUSIONS: This study indicates that peak knee adduction moment could be reduced by supervised, individualized exercise in middle-aged patients presenting early signs of knee osteoarthritis, suggesting further investigation of this area. Peak adduction moment during one-leg rise seems to be more sensitive to deviations and change than peak adduction moment during gait in this population.  相似文献   

14.
External knee adduction moment can be reduced using footwear interventions, but the exact changes in in vivo medial joint loading remain unknown. An instrumented knee replacement was used to assess changes in in vivo medial joint loading in a single patient walking with a variable‐stiffness intervention shoe. We hypothesized that during walking with a load modifying variable‐stiffness shoe intervention: (1) the first peak knee adduction moment will be reduced compared to a subject's personal shoes; (2) the first peak in vivo medial contact force will be reduced compared to personal shoes; and (3) the reduction in knee adduction moment will be correlated with the reduction in medial contact force. The instrumentation included a motion capture system, force plate, and the instrumented knee prosthesis. The intervention shoe reduced the first peak knee adduction moment (13.3%, p = 0.011) and medial compartment joint contact force (12.3%; p = 0.008) compared to the personal shoe. The change in first peak knee adduction moment was significantly correlated with the change in first peak medial contact force (R2 = 0.67, p = 0.007). Thus, for a single subject with a total knee prosthesis the variable‐stiffness shoe reduces loading on the affected compartment of the joint. The reductions in the external knee adduction moment are indicative of reductions in in vivo medial compressive force with this intervention. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1548–1553, 2010  相似文献   

15.
The effect of a valgus knee brace and a lateral wedged insole on knee and ankle kinematics and kinetics was evaluated in ten patients with medial knee osteoarthritis (OA). The knee orthosis was tested in two valgus adjustments (4° and 8°), and the laterally wedged insole was fabricated with an inclination of 4°. A motion capture system and force platforms were used for data collection and joint moments were calculated using inverse dynamics. The valgus moment applied by the orthosis was also measured using a strain gauge implemented in the orthosis' rotational axis. For the second peak knee adduction moment, decreases of 18%, 21%, and 7% were observed between baseline and test conditions for the orthosis in 4° valgus, in 8° valgus, and insole, respectively. Similar decreases were observed for knee lever arm in the frontal plane. Knee adduction angular impulse decreased 14%, 18%, and 7% from baseline to conditions for the orthosis in 4° valgus, in 8° valgus, and insole, respectively. Knee angle in the frontal plane reached a more valgus position during gait using the valgus knee brace. The valgus moment applied by the orthosis with 8° valgus adjustment was 30% higher than with 4° valgus adjustment. The valgus knee orthosis was more effective than the laterally wedged insole in reducing knee adduction moment in patients with medial knee OA.  相似文献   

16.
The knee adduction moment (KAM) provides a major contribution to the elevated load in the medial compartment of the knee. An abnormally high KAM has been linked with the progression of knee osteoarthritis (OA). Footwear‐generated biomechanical manipulations reduce the magnitude of this moment by conveying a more laterally shifted trajectory of the foot's center of pressure (COP), reducing the distance between the ground reaction force and the center of the knee joint, thus lowering the magnitude of the torque. We sought to examine the outcome of a COP shift in a cohort of female patients suffering from medial knee OA. Twenty‐two female patients suffering from medial compartment knee OA underwent successive gait analysis testing and direct pedobarographic examination of the COP trajectory with a foot‐worn biomechanical device allowing controlled manipulation of the COP. Modulation of the COP coronal trajectory from medial to lateral offset resulted in a significant reduction of the KAM. This trend was demonstrated in subjects with mild‐to‐moderate OA and in patients suffering from severe stages of the disease. Our results indicate that controlled manipulation of knee coronal kinetics in individuals suffering from medial knee OA can be facilitated by customized COP modification. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 29:1668–1674, 2011  相似文献   

17.
Subject‐specific three‐dimensional finite element models of the knee joint were created and used to study the effect of the frontal plane tibiofemoral angle on the stress and strain distribution in the knee cartilage during the stance phase of the gait cycle. Knee models of three subjects with different tibiofemoral angle and body weight were created based on magnetic resonance imaging of the knee. Loading and boundary conditions were determined from motion analysis and force platform data, in conjunction with the muscle‐force reduction method. During the stance phase of walking, all subjects exhibited a valgus–varus–valgus knee moment pattern with the maximum compressive load and varus knee moment occurring at approximately 25% of the stance phase of the gait cycle. Our results demonstrated that the subject with varus alignment had the largest stresses at the medial compartment of the knee compared to the subjects with normal alignment and valgus alignment, suggesting that this subject might be most susceptible to developing medial compartment osteoarthritis (OA). In addition, the magnitude of stress and strain on the lateral cartilage of the subject with valgus alignment were found to be larger compared to subjects with normal alignment and varus alignment, suggesting that this subject might be most susceptible to developing lateral compartment knee OA. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1539–1547, 2010  相似文献   

18.
The aim of this study was twofold: first, to determine which muscles and ligaments resist the adduction moment at the knee during normal walking; and second, to describe and explain the contributions of muscles, ligaments, and the ground reaction force to medial and lateral compartment loading. Muscle forces, ground reaction forces, and joint motions obtained from a dynamic optimization solution for normal walking were used as input to a three-dimensional model of the lower limb. A static equilibrium problem was solved at each instant of the gait cycle to determine tibiofemoral joint loading at the knee. Medial compartment loading was determined mainly by the orientation of the ground reaction force. Because this force vector passed medial to the knee, it applied an adduction moment about the joint during stance. In contrast, all of the force transmitted by the lateral compartment was due to muscle and ligament action. The muscles that contributed most to support and forward propulsion during normal walking (quadriceps and gastrocnemius) also contributed most to knee stability in the frontal plane. The knee ligaments, particularly those of the posterior lateral corner, provided stability to the knee at certain periods of the stance phase, when activity of the important stabilizing muscles was low.  相似文献   

19.
We examined if a subject-specific amount of lateral wedge added to a foot orthosis could alter knee mechanics to potentially reduce the progression of knee osteoarthritis in patients with medial knee osteoarthritis. Twenty individuals with medial knee osteoarthritis (>/=2 Kellgren Lawrence grade) were prescribed a custom laterally wedged foot orthotic device. The prescribed wedge amount was the minimal wedge amount that provided the maximum amount of pain reduction during a lateral step-down test. Following an accommodation period, all subjects returned to the laboratory for a gait analysis. Knee mechanics were collected as the subjects walked at an intentional walking speed. Walking in the laterally wedged orthotic device significantly reduced the peak adduction moment during early stance (p < 0.01) compared to the nonwedged device. Similarly, the wedged orthotic device significantly reduced the knee adduction excursion from heel strike to peak adduction (p < 0.01) compared to the nonwedged device. No differences in the peak adduction moment during propulsion or peak adduction during stance were observed between the orthotic conditions. A subject-specific laterally wedged orthotic device was able to reduce the peak knee adduction moment during early stance, which is thought to be associated with the progression of knee osteoarthritis. Previous studies on this device have reported issues associated with foot discomfort when using wedge amounts >7 degrees; however, no such issues were reported in this study. Therefore, providing a custom laterally wedged orthotic device may potentially increase compliance while still potentially reducing disease progression.  相似文献   

20.
The peak external knee adduction moment (pKAM), KAM impulse, and peak knee flexion moment (pKFM) during gait are important loading variables in medial tibiofemoral osteoarthritis. We evaluated the effects of gait modification, using real‐time pKAM visual feedback, on pKAM, KAM impulse, and pKFM; and whether participants could maintain the KAM‐reducing gait after feedback removal. Eleven healthy individuals performed a series of walking trials on a split‐belt instrumented treadmill under four conditions of Baseline, Feedback, No Feedback Early, and No Feedback Late. Guided by real‐time feedback of pKAM, they modified their gait patterns to lower pKAM by 20%. Three‐dimensional joint kinematics/kinetics during each walking condition were recorded by a 12‐camera motion capture system and the instrumented treadmill. Change in each knee loading parameter from baseline across conditions was assessed using one‐way repeated‐measures analysis‐of‐variances. In the feedback limb, successful 20% reductions from baseline in pKAM and KAM impulse were achieved across all three conditions. There was a trend for concomitant pKFM increases, partially attenuating the beneficial effects of pKAM reduction. A carry‐over effect of KAM reduction in the non‐feedback limb was noted. The altered gait patterns were participant‐specific and multi‐modal; each participant reported a combination of two to three gait modification strategies used for pKAM reduction. Toe‐in and medial foot contact were the most reported strategies. The findings support the real‐time pKAM visual feedback as a tool for individualized gait modification to reduce knee load. Future studies to evaluate its effectiveness in persons with or at risk for medial knee osteoarthritis is warranted. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:397–404, 2018.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号