首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aging is a risk factor of human depression. Middle-aged or older men are vulnerable to adverse life events and an absence of social contact and easily become depressed. In the present study, we investigated the influence of aging on responses to life events in socially isolated conditions. We applied isolation-rearing (4 W) to two age groups, older (18 M) and younger (11 W), of male F344 rats that had been reared in a group and then examined responses to novelty stress (20 min). Changes in brain monoamines and their metabolites such as dopamine (DA), serotonin (5-HT), dihydroxyphenylacetic acid (DOPAC), homovanilic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were measured in six regions: the prefrontal cortex, nucleus accumbens, hippocampus, amygdala, midbrain, and raphe nuclei. MANOVA was carried out for rearing condition, age, and novelty stress. Isolation significantly changed monoamines and their metabolites, except in amygdala and raphe nuclei. Aging significantly altered them in all regions, although novelty stress did not. In the amygdala and midbrain, isolation significantly changed monoamine biosynthesis, with monoamine turnover remaining unchanged. In the prefrontal cortex and nucleus accumbens, aging significantly altered turnover, while biosynthesis remained unchanged. Novelty stress significantly varied only the turnover in the prefrontal cortex. The interaction between isolation and aging indicated that aging influences changes in turnover and biosynthesis elicited by isolation primarily at the center of the mesolymbic DA system, the midbrain, and in raphe nuclei of the 5-HT system. In peripheral regions of the mesolymbic system, aging primarily affects changes in turnover induced by isolation.  相似文献   

2.
Recent evidence has suggested a role for free radicals in tardive dyskinesia. We, therefore, investigated the effects of chronic administration of fluphenazine decanoate (FLU) and/or vitamin E (VIT E) on regional monoamine metabolism in rat brain. Chronic FLU caused significant increases in dopamine (DA) in nucleus accumbens and brainstem, significant decreases in dihydroxyphenylacetic acid (DOPAC) in frontal cortex, nucleus accumbens and hippocampus and significant decreases in homovanillic acid (HVA) in nucleus accumbens, caudate-putamen and brainstem. Coadministration of FLU and VIT E normalized HVA in caudate-putamen, nucleus accumbens and brainstem as well as DOPAC in nucleus accumbens and hippocampus. Chronic FLU caused significant increases in norepinephrine (NE) levels in all regions studied. VIT E attenuated FLU-induced increases in NE levels in nucleus accumbens and hippocampus. Significant increases in serotonin (5-HT) levels occurred in nucleus accumbens and hippocampus whereas significant decreases in 5-hydroxyindole-acetic acid (5-HIAA) occurred in all brain regions after chronic FLU. Coadministration of VIT E attenuated the changes observed in hippocampal 5-HIAA but potentiated the FLU-induced increases in 5-HT in this region. Our data suggest that VIT E can attenuate some of the FLU-induced changes in monoamine metabolism. Results are discussed in relation to possible involvement of free radicals in monoamine metabolism during chronic neuroleptic use.  相似文献   

3.
Stress consistently has been found to activate peripheral and central catecholamine systems. Dopamine (DA) turnover in the prefrontal cortex is especially sensitive to stress produced by relatively mild footshock, conditioned fear, or exposure to a novel cage. Because lesions of the central nucleus of the amygdala block the effects of both stress and fear in many experimental paradigms, the present study evaluated whether such lesions would block stress-induced increases in prefrontal dopamine turnover using either mild footshock or novelty as stressors. In Experiment 1 electrolytic lesions of the central nucleus of the amygdala attenuated the increase in the dopamine metabolite homovanillic acid (HVA) in the prefrontal cortex evaluated in post-mortem tissue normally produced by footshock. In Expriment 2 similar lesions attenuated the increase in dopamine turnover in the prefrontal cortex using a different stressor, novelty, and a different measure of dopamine turnover, DOPAC/DA ratios. These data provide further evidence for the critical role of the amygdala in stress.  相似文献   

4.
To determine the influence of neurons of the ventral hippocampus on dopamine (DA) turnover in other limbic areas, spontaneous and amphetamine-induced locomotion as well as DA and its metabolites were assayed in nucleus accumbens, medial prefrontal cortex and anteromedial striatum, 14 and 28 days after bilateral ibotenic acid (IA) or sham lesions of the ventral hippocampus in the rat. Spontaneous locomotion was increased 28 days postoperatively, while D-amphetamine induced locomotion was augmented both 14 and 28 days postoperatively in IA lesioned animals. DA levels in the nucleus accumbens were decreased on the 14th, but increased on the 28th day after the lesion. Dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and the DOPAC/DA ratio in the medial prefrontal cortex (MPFC) were reduced 28 days postoperatively. Moreover, there was a significant negative correlation between the DOPAC/DA ratio in the MPFC and DA levels in the nucleus accumbens at this time point. These data indicate that a lesion of the ventral hippocampus can produce differential changes in cortical and limbic DA activity. Implications for an animal model of schizophrenia are considered.  相似文献   

5.
The effects of neurotensin, 7.5 or 30 micrograms, on concentrations of DA, DOPAC, (HVA), serotonin 5-HT and 5-HIAA were measured in 8 regions of the rat brain either 5 or 30 min following intracerebroventricular administration. Regions examined include the frontal cortex, striatum, nucleus accumbens, amygdala, septum, hypothalamus, ventral tegmentum and substantia nigra. Results indicate that both doses of neurotensin significantly elevated concentrations of dopamine in the striatum and amygdala 5 min following injection. The effects of the peptide on DOPAC and HVA were more pervasive and enduring, with significant increases in metabolite levels occurring in both mesolimbic and nigrostriatal terminal regions. In order to assess effects on turnover of dopamine, the ratios of each metabolic to dopamine concentrations were examined. Results indicate that, while the DOPAC/DA ratio was elevated in many regions, the HVA/DA ratio was increased in all regions examined. The effects of neurotensin on serotoninergic parameters were less pervasive and more variable, with both increases and decreases in 5-HT and 5-HIAA concentrations being observed. The effects of the peptide on 5-HIAA/5-HT were limited to the nucleus accumbens, where this ratio was increased, and the ventral tegmentum, where 5-HIAA/5-HT was decreased. These findings reveal that the effects of the neurotensin on dopaminergic transmission are more widespread than previously reported in that all major dopamine pathways are affected by the peptide. Also, the observed changes in the ratios of both DOPAC and HVA to DA suggest that neurotensin enhances the turnover of this transmitter.  相似文献   

6.
We previously showed that chronic administration of the clinically atypical and clinically superior antipsychotic drug clozapine selectively reduces dopamine (DA) release in the nucleus accumbens but not neostriatum, and that this effect appears mediated by anatomically selective mesolimbic DA depolarization blockade. The present study extends that research to another mesocorticolimbic DA locus, the medial prefrontal cortex. Acute clozapine challenge (5-40 mg/kg i.p.) produced dose-dependent increased extracellular levels of DA and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the medial prefrontal cortex of awake, free-moving rats as measured by in vivo brain microdialysis. Chronic clozapine treatment (20 mg/kg/day for 21 days) did not significantly change basal extracellular levels of DA, DOPAC or HVA. Acute clozapine challenge on day 22 in the chronic clozapine-treated animals produced no significant differences in medial prefrontal cortex DA, DOPAC or HVA as compared to chronic vehicle-treated animals, indicating that tolerance to clozapine does not develop in the mesocortical DA system, in contrast to the mesolimbic system. The DA agonist apomorphine (100 micrograms/kg) produced decreased basal extracellular levels of DA, DOPAC and HVA in medial prefrontal cortex of both chronic clozapine-treated and chronic vehicle-treated rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Tetrahydrobiopterin (BH(4)) is a coenzyme of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), which are rate-limiting enzymes of monoamine biosynthesis. According to the monoamine hypothesis of depression, antidepressants will restore the function of the brain monoaminergic system and the BH(4) concentration. In the present study, we investigated the effect of paroxetine, a selective serotonin reuptake inhibitor (SSRI), on the BH(4) levels and dopamine (DA) and serotonin (5-HT) turnover in the mesoprefrontal system, incorporating two risk factors of depression, social isolation and acute environmental change. Male ddY mice (8W) were divided into two housing groups, i.e., group-housing (eight animals per cage; 28 days), and isolation-housing (one per cage; 28 days), being p.o.-administered paroxetine (5 or 10 mg/kg; days 15-28), and exposed to a 20-min novelty stress (day 28). The levels of BH(4), DA, homovanilic acid (HVA), 5-HT, and 5-hydroxyindoleacetic acid (5-HIAA) were measured in the prefrontal cortex and midbrain. In both the regions, novelty stress significantly increased BH(4) levels under the isolation-housing condition, whereas these levels were decreased under the group-housing condition. Thus, social isolation altered the neurochemical response to novelty stress. Paroxetine significantly decreased BH(4) levels under the isolation-housing condition, whereas decreased HVA/DA and 5-HIAA/5-HT ratios were observed under the group-housing condition. Thus, social isolation may have influenced the suppressive effects of paroxetine on BH(4) levels as well as exerted an influence on DA and 5-HT turnover. We replicated our recent findings that SSRI, fluvoxamine, suppressed BH(4) levels, as well as DA and 5-HT turnover in the mouse mesoprefrontal system.  相似文献   

8.
Concentrations of monoamines (dopamine, DA; serotonin, 5-HT) and their major metabolites (homovanillic acid — HVA; dihydroxyphenylacetic acid — DOPAC; 5-hydroxyindolacetic acid — 5-HIAA) were measured in selected brain areas of chronically gonadectomized, steroid- or oil-treated male and female rats. Concentrations of DOPAC and HVA were markedly increased in the hypothalamus (male, female), striatum (male, female) and brainstem (male) following gonadectomy, whereas the levels of DA remained unaltered in most of the brain areas examined. Most of the changes were reversed or attenuated by chronic estradiol (EB) substitution. In contrast, chronic treatment with physiological concentrations of testosterone (TP) reduced indexes of DA turnover only in the striatum of ovariectomized (OVX) and brainstem of orchidectomized (ORDX) rats. ORDX-related increases in striatal levels of DOPAC and HVA were not reversed by either EB or TP. ORDX increased the levels of 5-HIAA (hypothalamus, striatum) and decreased those of 5-HT (hypothalamus, hippocampus). These changes were reversed by chronic treatment with either TP or EB. Brain metabolism of 5-HT remained unaltered following OVX.

Gonadectomy and chronic steroid replacement therapy appear to alter brain monoamine metabolism in a brain region and sex-dependent manner. Our data demonstrate that gonadectomy-related increases in the activity of brain monoaminergic neurons in both male and female rats was attenuated more effectively with physiological concentrations of estradiol than with testosterone. Insensitivity of monoaminergic neurons in a number of brain areas (e.g., hypothalamus, striatum) to the action of testosterone was evident in both sexes.  相似文献   


9.
The effects of ketamine on the levels of dopamine (DA), norepinephrine (NE), 5-hydroxytryptamine (5-HT, serotonin) and their metabolites were examined in discrete brain regions in mice. A high dose of ketamine (150 mg/kg, i.p.) did not change DA metabolism in the frontal cortex, nucleus accumbens, striatum and hippocampus, but did decrease it in the brainstem during anesthesia. In contrast, during recovery from the ketamine anesthesia, the high dose increased the level of homovanillic acid (HVA) in all brain regions. A low subanesthetic dose of ketamine (30 mg/kg, i.p.) increased the concentrations of both 3,4-dihydroxyphenylacetic acid (DOPAC) and HVA only in the nucleus accumbens. The DA level was not affected by any ketamine treatment. During ketamine anesthesia, the content of 3-methoxy-4-hydroxy-phenylglycol (MHPG) was decreased in the brainstem, whereas during recovery from anesthesia, the MHPG level was increased in the frontal cortex, nucleus accumbens and brainstem. The NE content was not altered in any region by ketamine treatment. The concentration of 5-hydroxyindoleacetic acid (5-HIAA) was reduced in the frontal cortex, striatum, hippocampus and brainstem during ketamine anesthesia. The 5-HT level was unaltered in all regions except the brainstem where it was reduced. In contrast, after anesthesia, the concentrations of both 5-HT and 5-HIAA were increased in the striatum. During the subanesthetic phase, however, the levels of NE, 5-HT and their metabolites were unchanged. These neurochemical results are consistent with the electrophysiological findings that a high dose of ketamine does not change the basal firing rates of nigrostriatal DA neurons during anesthesia, while low subanesthetic doses significantly increase those of ventral tegmental DA neurons.  相似文献   

10.
The present study was performed to determine the effects of neonatal excitotoxic lesions of the left entorhinal cortex on dopamine (DA) metabolism and release in limbic regions of the rat brain. Quinolinic acid or phosphate buffered saline was infused into the left entorhinal cortex of rat pups on postnatal day 7 (PD7). Concentrations of DA,3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the lateral amygdala, nucleus accumbens, caudate-putamen, and medial prefrontal cortex were determined in the postmortem brains of lesioned and sham-operated rats on PD35 and PD56. On PD35, concentrations of DA in the bilateral lateral amygdala and HVA in the left lateral amygdala were significantly increased in lesioned rats compared with sham-operated animals, while no significant change was observed in the other three brain areas. On PD56, in addition to the increased concentration of DA in the left lateral amygdala, those of DA, DOPAC and HVA in the caudate-putamen, and DA in the nucleus accumbens were found to be increased, but DA concentrations in the right medial prefrontal cortex were decreased. The DOPAC/DA concentration ratio was, however, decreased in the amygdala and nucleus accumbens of the lesioned rats. In an in vivo microdialysis study, methamphetamine (MAP: 2 mg/kg, i.p.)-induced DA release in the amygdala of lesioned rats was significantly enhanced compared with sham-operated rats on both PD35 and PD56. There were no significant differences in MAP-induced DA release in the caudate-putamen between the sham-operated and lesioned rats at any time point. These findings provide evidence that neonatally induced structural abnormalities in the entorhinal cortex affect DA transmission in the limbic regions at the adolescent stage.  相似文献   

11.
We have shown, using in vivo microdialysis sampling, that systemic administration of the selective group II metabotropic (mGlu) receptor agonist LY379268, like the atypical antipsychotic clozapine, increased extracellular levels of dopamine, dopamine metabolites DOPAC and HVA, and the major 5-HT metabolite 5-HIAA, in rat medial prefrontal cortex (mPFC). Here, we have compared the effects of LY379268 with clozapine as well as risperidone on ex vivo tissue levels of dopamine, DOPAC, HVA, 5-HT and 5-HIAA in multiple brain regions. One to two hours following administration of LY379268, mPFC tissue levels of DOPAC, HVA and 5-HIAA were increased in a dose-dependent manner. Increases evoked by LY379268 (10 mg/kg s.c.) at the 2 h point were 189, 245 and 139% of basal levels, respectively. These effects were reversed within 4 h of administration. Clozapine (10 mg/kg s.c.) and risperidone (1 mg/kg s. c.) also increased levels of the dopamine metabolites to a similar extent but were without significant effect on tissue levels of 5-HIAA. LY379268 (10 mg/kg s.c.) also increased tissue levels of DOPAC, HVA and 5-HIAA by 169, 221 and 134% of basal levels in nucleus accumbens, respectively, and by 131, 179 and 132% of basal levels in striatum, respectively. These data show that activation of mGlu2/3 receptors can increase the turnover of dopamine and 5-HT in the areas of the brain implicated in the actions of atypical antipsychotics.  相似文献   

12.
Both male and female mHEP rats consume excessive amounts of ethanol and thus offer a rational model for examining biochemical and behavioral differences with non-drinking rat lines. Differences in basal concentrations of 5-hydroxytryptamine (5-HT) and dopamine (DA) correlate with the consumption of ethanol in some ethanol-preferring rat lines. The concentrations of 5-HT and DA were examined by HPLC in five brain areas (prefrontal cortex, hippocampus, nucleus accumbens, striatum and hypothalamus) of ethanol-n?ive rats and after the oral administration of 0.25 or 1.0 g ethanol/kg in the male and female mHEP rat, the male Wistar rat, and the female Sprague-Dawley rat. The mHEP and control rats that received ethanol were screened for drinking in a 10-day "step-up" 3% to 30% ethanol solutions beginning at postnatal days 40 and 80, and then tested at 150 days of age. The levels of DOPAC in females were lower in the hippocampus of both na?ve mHEP and ethanol-treated Sprague-Dawley rats. In striatum, the concentrations of 5-HT and DA were elevated in both mHEP and ethanol-treated Sprague-Dawley female rats. The concentrations of 5-HT and its metabolite, 5-HIAA, were lower in the nucleus accumbens of the ethanol-n?ive female mHEP rat relative to the female outbred control. In the male rats, the levels of DA, HVA and DOPAC, as well as 5-HT and 5-HIAA were reduced in the hypothalamus of both ethanol-n?ive mHEP rats and Wistar rats receiving ethanol by gavage. These data demonstrate differences in neurotransmitter activity between the selectively bred mHEP rat and the outbred rat strains. There are few common features found in both the male and the female mHEP rat when compared to their respective controls. Differences in neurotransmitter function in these brain areas may account for some of the behavioral differences previously demonstrated between the two sexes of the mHEP rat.  相似文献   

13.
Topographic distribution of dopamine (DA), serotonin (5-HT), dihydroxyphenylacetic acid (DOPAC), hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) was determined in rat striatum using high-pressure liquid chromatography (HPLC) with electrochemical detection. The ratios of DOPAC:DA and 5-HIAA:5-HT were calculated as indices of turnover of DA and 5-HT. There was a rostro-caudal gradient for both DA and 5-HT, with DA highest in rostral striatum and 5-HT highest in caudal striatum (P less than 0.01). DA concentrations in the coronal plane showed a homogeneous distribution except at the level of the globus pallidus. DOPAC also showed a rostro-caudal gradient and concentrations were significantly increased in the nucleus accumbens (P less than 0.01). DOPAC:DA ratios were significantly increased in both the nucleus accumbens and the ventromedial striatum as compared to the remaining striatal punches. 5-HT was more heterogeneously distributed in the coronal plane with concentrations highest in the ventromedial and the ventrolateral quadrants, where they were 2-3-fold higher than in dorsal striatum (P less than 0.01). Concentrations of 5-HIAA were highest in the nucleus accumbens and ventromedial striatum but HIAA-5-HT ratios were highest in the dorsolateral striatum (P less than 0.01). DA turnover is therefore highest in limbic innervated (n. accumbens and ventromedial) striatum while 5-HT turnover is highest in sensorimotor innervated (dorsolateral) striatum. These findings provide further evidence for functional compartmentalization within the striatum.  相似文献   

14.
The purpose of this study was to determine whether the regional brain biogenic amine levels in adult rats were altered by pre- and post-natal exposure to 2,4-dichlorophenoxyacetic acid (2,4-D). Pregnant rats were daily orally exposed to 70 mg/kg per day of 2,4-D from gestation day (GD) 16 to post-partum day (PPD) 23. After weaning, the pups were assigned to one of two subgroups: T1 fed with untreated diet up to post-natal day (PND) 90 and T2 (maintained with 2,4-D diet up to PND 90). In addition, we wanted to know the effect of 2,4-D on lateralization in the monoamine systems of the basal ganglia of these adult rats and whether there was any correlation with the behavioral developmental pattern previously reported by us. In this study the content of noradrenaline (NA) was significantly increased in substantia nigra (SN) while it decreased in cerebellum in male and female rats of T2 group. The decreased dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovallinic acid (HVA) contents in cerebellum, midbrain, ventral tegmental area (VTA) and prefrontal cortex (PFc) showed an alteration in the mesocorticolimbic system. However, an increase of DA in SN and of DOPAC and HVA in nucleus accumbens (NAc) in both sexes and of DA and DOPAC (only in females) in striatum was detected. The contents of serotonin (5-hydroxytryptamine, 5-HT) were significantly increased in both sexes in PFc, striatum (St), midbrain, SN and cerebellum. Variations of any monoamine levels in NAc and VTA were determined. T1 rats were irreversibly altered: a diminution in DA and/or DOPAC levels in PFc, midbrain, VTA and cerebellum was determined. Indolamines of these rats were increased in both sexes in PFc and St. There was also a large increase in 5-HT levels in midbrain of male rats. Although no changes in the dopaminergic system with respect to their control values in any side of these brain structures were observed, DA and DOPAC levels were found to be decreased in the right side with respect to the left side in striata and accumbens nuclei in T2 female rats supporting the behavioral rotation previously registered by us in these rats. In addition, the increased 5-HT content detected in both the right and left striata observed in this study could be the answer to the behaviors observed and to the early alterations in dopamine in basal ganglia by 2,4-D in neonatal exposed rats, mediated by a serotonergic modulation on the dopaminergic system.  相似文献   

15.
The effects of an IP injection of the monoamine uptake inhibitor fluoxetine on the extracellular concentration of serotonin (5-HT), dopamine (DA), 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the nucleus accumbens of awake and freely moving rats were examined using a push-pull perfusion technique. Baseline values of 5-HT, 5-HIAA, DA, DOPAC and HVA in the perfusates were approximately 0.07, 13, 0.8, 49 and 12 pmol/hr, respectively. The IP administration of 5 and 10 mg/kg fluoxetine dose-dependently elevated the amounts of 5-HT 3- and 13-fold, respectively, in the push-pull perfusate, with the maximum reached within one hour after drug administration. Moreover, 10 mg/kg fluoxetine also significantly decreased the levels of 5-HIAA in the perfusate as much as 50% within 2-3 hours. On the other hand, no significant effect of 5 or 10 mg/kg fluoxetine was observed on the contents of DA, DOPAC and HVA in the push-pull perfusates. The data indicate that fluoxetine, in accord with its role as a 5-HT uptake inhibitor, increases the physiologically active pool of 5-HT in the nucleus accumbens under in vivo conditions.  相似文献   

16.
The regional brain metabolism of serotonin (5-HT) and dopamine (DA) was studied in rats injected with morphine either systemically or in the nuclei raphe medianus (MR) or dorsalis (DR). A subcutaneous injection of 10 mg/kg morphine significantly raised the levels of 5-hydroxyindoleacetic acid (5-HIAA) in the diencephalon, striatum, nucleus accumbens and cortex with no effect in the hippocampus. Similar changes in 5-HT metabolism were found in animals injected with 5 micrograms/0.5 microliter in the DR whereas morphine injected in the MR raised 5-HIAA levels only in the nucleus accumbens. A subcutaneous or direct injection of morphine in the DR significantly raised the levels of homovanillic acid (HVA) and dihydroxyphenylacetic acid (DOPAC) in the striatum and nucleus accumbens, but injection in the MR was ineffective. All the effects of morphine were blocked by naloxone, injected either intraperitoneally (1 mg/kg) or directly in the raphe nuclei (2 micrograms/0.5 microliter). Pretreatment with parachlorophenylalanine, an inhibitor of serotonin synthesis, significantly reduced the effect of morphine injected in the DR on dopamine metabolism in the striatum and nucleus accumbens. The data suggest that a major mechanism by which morphine increases 5-HT metabolism in the rat forebrain is activation of 5-HT cells in the nucleus raphe dorsalis, and this action may contribute to the increased DA metabolism found in the animal injected with morphine in this brain area.  相似文献   

17.
The effect of caerulein, a cholecystokinin-like peptide, on the dopamine (DA) system was examined in rat brain. Caerulein, when tested in vitro, had no significant influence on either D-1 or D-2 DA receptors. A single injection of caerulein (400 μg/kg, i.p.) reduced both homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum. No significant change in DA metabolites was found in the other 7 areas (polar and medial fields of prefrontal cortex, anterior cingulate cortex, nucleus accumbens, tuberculum olfactorium, septum and amygdala). After repeated injections of caerulein (200 μg/kg, i.p., daily for 5 days), the decreases in striatal HVA and DOPAC had disappeared, while the amount of HVA had increased in the nucleus accumbens. These results suggest that peripherally administered caerulein modulates the nigrostriatal and mesolimbic DA neuron systems in the different modes of action.  相似文献   

18.
Ethanol (3.5 g/kg 60 min post-IP injection) produced the following changes in regional brain monoamine levels and in the respective metabolite/neurotransmitter ratios: for the noradrenergic system, MHPG was decreased in the amygdala and increased in the hypothalamus, while the MHPG/NE ratio was increased in the prefrontal cortex and the hypothalamus. For the dopaminergic system, DA was decreased in the olfactory tubercle, DOPAC was increased in the prefrontal cortex and septum, and DOPAC/DA was increased in the prefrontal cortex, septum, striatum, and hypothalamus. HVA was increased in the prefrontal cortex and septum, while HVA/DA was increased in the same regions plus the olfactory bulb. 3MT was decreased in the olfactory tubercle and striatum. The serotonergic system was not altered. The results demonstrate that ETOH produces selective regional changes in the concentration and utilization of monoamines in mouse brain with a predominant influence on dopaminergic systems and a lesser effect on noradrenergic activity.  相似文献   

19.
In a model of an experimental anxiodepressive state induced by postnatal administration of an inhibitor of dipeptidyl peptidase 4 (DPP-4), we studied peculiarities of the turnover of dopamine (DA), noradrenaline (NA), and serotonin (5-HT) in the brain structures of rats at ages of 1, 3, and 7 months. In males, the major changes in the functional activity of the DA system, which are related to a decrease in DA turnover according to the HVA/DA ratio, were observed in the striatum. In males at an age of 7 months, we found an increase in the NA level in the hypothalamus. In females, changes in the state of the DA system included a decrease in the level of DA and its metabolites in the nucleus accumbens (1 and 3 months), the level of DOPAC in the hypothalamus (3 months), and the level of DA in the striatum (7 months). At all ages, in the hippocampus of females, we found an increase in the functional activity of 5-HT, according to the 5-HIAA/5-HT and 5-HIAA level. In the frontal cortex of females at an age of 3 months we found a decrease in the 5-HIAA/5-HT ratio and an increase in the DOPAC/DA ratio, while at the age of 7 months, we observed an increase in 5-HT. These changes in the activity of the central monoaminergic systems may reflect specific features of the functioning of the pathological system of the anxiodepressive state in the CNS that determine the character of the formation and dynamics of emotional behavioral disturbances of male and female rats.  相似文献   

20.
The effects on rat brain tissue monoamine and monoamine metabolite concentrations of chronic nicotine administration at two doses (3 and 12 mg/kg/day) using constant infusion were studied. After 21 days of treatment, tissue concentrations of dopamine (DA), norepinephrine (NE), 5-hydroxytryptamine (5-HT), and several metabolites in striatum, hypothalamus, and frontal cortex were determined by high performance liquid chromatography with electrochemical detection. Compared with a control group, nicotine treatment significantly decreased NE in frontal cortex but not in other regions. The concentration of 5HT also was decreased in frontal cortex but increased in the hypothalamus at the higher dose of nicotine. The 5HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) was not significantly altered in any region. The 5HT index (5-HIAA/5-HT) was significantly decreased in the hypothalamus and increased in frontal cortex at the higher dose. Concentrations of DA and the metabolite homovanillic acid (HVA) were not significantly altered by nicotine. Nevertheless, significant decreases in the DA metabolite dihydroxyphenyl-acetic acid (DOPAC) were observed in both striatum and hypothalamus. Moreover, the DA index [(DOPAC + HVA)/DA] was significantly decreased in all three brain regions. In contrast to other studies using acute dose and in vitro perfusion paradigms that have reported increased CNS catecholamine release stimulated by nicotine, chronic administration appears to be associated with decreased catecholamine turnover in some brain regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号