首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosomal losses involving the short arm of chromosome 8 are frequent in a variety of tumour types, including breast cancer, suggesting the presence of one or more tumour suppressor genes in this region. In this study, we have used 11 microsatellite markers to analyse loss of heterozygosity (LOH) at chromosome 8p in 151 sporadic breast tumours and 50 tumours from subjects carrying the BRCA2 999del5 mutation. Fifty percent of sporadic tumours compared to 78% of BRCA2 linked tumours exhibit LOH at one or more markers at 8p showing that chromosome 8p alterations in breast tumours from BRCA2 999del5 carriers are more pronounced than in sporadic breast tumours. The pattern of LOH is different in the two groups and a higher proportion of BRCA2 tumours have LOH in a large region of chromosome 8p. In the total patient material, LOH of 8p is associated with LOH at other chromosome regions, for example, 1p, 3p, 6q, 7q, 9p, 11p, 13q, 17p, and 20q, but no association is found between LOH at 8p and chromosome regions 11q, 16q, 17q, and 18q. Furthermore, an association is detected between LOH at 8p and positive node status, large tumour size, aneuploidy, and high S phase fraction. Breast cancer patients with LOH at chromosome 8p have a worse prognosis than patients without this defect. Multivariate analysis suggests that LOH at 8p is an independent prognostic factor. We conclude that chromosome 8p carries a tumour suppressor gene or genes, the loss of which results in growth advantage of breast tumour cells, especially in carriers of the BRCA2 999del5 mutation.


Keywords: chromosome 8; BRCA2; LOH; breast cancer  相似文献   

2.
INTRODUCTION—A small fraction of breast cancer is the result of germline mutations in the BRCA1 and BRCA2 cancer susceptibility genes. Mutation carriers frequently have a positive family history of breast and ovarian cancer, are often diagnosed at a young age, and may have a higher incidence of double or multiple primary breast tumours than breast cancer patients in general.
OBJECTIVES—To estimate the prevalence and spectrum of BRCA1 and BRCA2 mutations in young Danish patients affected with bilateral or multifocal breast cancer and to determine the relationship of mutation status to family history of cancer.
SUBJECTS—From the files of the Danish Breast Cancer Cooperative Group (DBCG), we selected 119 breast cancer patients diagnosed before the age of 46 years with either bilateral (n=59) or multifocal (n=61) disease.
METHODS—DNA from the subjects was screened for BRCA1 and BRCA2 mutations using single strand conformation analysis (SSCA) and the protein truncation test (PTT). Observed and expected cancer incidence in first degree relatives of the patients was estimated using data from the Danish Cancer Registry.
RESULTS—Twenty four mutation carriers were identified (20%), of whom 13 had a BRCA1 mutation and 11 carried a BRCA2 mutation. Two mutations in BRCA1 were found repeatedly in the material and accounted for seven of the 24 (29%) mutation carriers. The mutation frequency was about equal in patients with bilateral (22%) and multifocal breast cancer (18%). The incidence of breast and ovarian cancer was greatly increased in first degree relatives of BRCA1 and BRCA2 mutation carriers, but to a much lesser degree in relatives of non-carriers. An increased risk of cancer was also noted in brothers of non-carriers.
CONCLUSIONS—A relatively broad spectrum of germline mutations was observed in BRCA1 and BRCA2 and most of the mutations are present in other populations. Our results indicate that a diagnosis of bilateral and multifocal breast cancer is predictive of BRCA1 and BRCA2 mutation status, particularly when combined with information on the patients' age at diagnosis and family history of breast/ovarian cancer.


Keywords: breast cancer; mutations; BRCA1; BRCA2  相似文献   

3.
Recurrent germline mutation in MSH2 arises frequently de novo   总被引:4,自引:0,他引:4       下载免费PDF全文
INTRODUCTION—An intronic germline mutation in the MSH2 gene, A→T at nt942+3, interferes with the exon 5 donor splicing mechanism leading to a mRNA lacking exon 5. This mutation causes typical hereditary non-polyposis colorectal cancer (HNPCC) and has been observed in numerous probands and families world wide. Recurrent mutations either arise repeatedly de novo or emanate from ancestral founding mutational events. The A→T mutation had previously been shown to be enriched in the population of Newfoundland where most families shared a founder mutation. In contrast, in England, haplotypes failed to suggest a founder effect. If the absence of a founder effect could be proven world wide, the frequent de novo occurrence of the mutation would constitute an unexplored predisposition.
METHODS—We studied 10 families from England, Italy, Hong Kong, and Japan with a battery of intragenic and flanking polymorphic single nucleotide and microsatellite markers.
RESULTS—Haplotype sharing was not apparent, even within the European and Asian kindreds. Our marker panel was sufficient to detect a major mutation arising within the past several thousand generations.
DISCUSSION—As a more ancient founder is implausible, we conclude that the A→T mutation at nt942+3 of MSH2 occurs de novo with a relatively high frequency. We hypothesise that it arises as a consequence of misalignment at replication or recombination caused by a repeat of 26 adenines, of which the mutated A is the first. It is by far the most common recurrent de novo germline mutation yet to be detected in a human mismatch repair gene, accounting for 11% of all known pathogenic MSH2 mutations.


Keywords: MSH2; recurrent mutation; splice donor site of exon 5; founder mutation  相似文献   

4.

Background

Breast cancer is the most common cancer in women worldwide. About 5 to 10% of cases are due to an inherited predisposition in two major genes, BRCA1 and BRCA2, transmitted as an autosomal dominant form. Male breast cancer is rare and is mainly due to BRCA2 than BRCA1 germline mutations.

Objective

Molecular study of BRCA2 gene in man with familial breast cancer.

Methods

PCR and direct sequencing of BRCA2 gene.

Results

Identification of novel heterozygous germline mutation c.6428C>A ; p.Ser2143Stop of BRCA2 gene.  相似文献   

5.
The effect of a single BRCA2 mutation on cancer in Iceland   总被引:2,自引:0,他引:2  
Objective: To estimate the risk of malignant diseases in families of probands with the same mutation in the BRCA2 gene.

Design: A cohort study using record linkage of a breast cancer family resource and the Icelandic Cancer Registry.

Setting: Iceland.

Subjects: Families of 995 breast cancer patients, from which 887 were tested for a single founder 999del5 mutation; 90 had the mutation and 797 did not.

Results: Relatives of probands with the mutation had significantly increased relative risk (RR) of breast cancer. For first degree relatives, the RR was 7.55 (95% CI 6.04 to 9.03) but was 1.72 (95% CI 1.49 to 1.96) in first degree relatives of probands without the mutation. For prostate and ovarian cancer, the first and second degree relatives of probands with the mutation had a significantly increased RR, but in families of probands without the mutation no significant familial risk was found.

Conclusions: The 999del5 mutation in the BRCA2 gene explains a substantial proportion of familial risk of breast cancer in Iceland, but significant familial risk remains in relatives of probands without the mutation. For prostate and ovarian cancer, the mutation accounts for most of the familiality observed in families of breast cancer patients.

  相似文献   

6.
While sequence analysis is considered by many to be the most sensitive method of detecting unknown mutations in large genes such as BRCA1, most published estimates of the prevalence of mutations in this gene have been derived from studies that have used other methods of gene analysis. In order to determine the relative sensitivity of techniques that are widely used in research on BRCA1, a set of blinded samples containing 58 distinct mutations were analysed by four separate laboratories. Each used one of the following methods: single strand conformational polymorphism analysis (SSCP), conformation sensitive gel electrophoresis (CSGE), two dimensional gene scanning (TDGS), and denaturing high performance liquid chromatography (DHPLC). Only the laboratory using DHPLC correctly identified each of the mutations. The laboratory using TDGS correctly identified 91% of the mutations but produced three apparent false positive results. The laboratories using SSCP and CSGE detected abnormal migration for 72% and 76% of the mutations, respectively, but subsequently confirmed and reported only 65% and 60% of mutations, respectively. False negatives therefore resulted not only from failure of the techniques to distinguish wild type from mutant, but also from failure to confirm the mutation by sequence analysis as well as from human errors leading to misreporting of results. These findings characterise sources of error in commonly used methods of mutation detection that should be addressed by laboratories using these methods. Based upon sources of error identified in this comparison, it is likely that mutations in BRCA1 and BRCA2 are more prevalent than some studies have previously reported. The findings of this comparison provide a basis for interpreting studies of mutations in susceptibility genes across many inherited cancer syndromes.


Keywords: BRCA1; mutation detection; cancer genetics  相似文献   

7.
8.
Mutations in breast cancer susceptibility (BRCA) genes lead to defects in DNA repair processes resulting in elevated genome instability and predisposing to breast and ovarian cancer. The study was designed to detect mutational spectra of BRCA1/2 genes in a Serbian population. Using automated DNA sequencing, we tested individuals for BRCA mutations, based on positive family history of either breast or ovarian cancer or both. Two novel mutations (c.4765_4784del in BRCA1 exon 15 and c.4367_4368dupTT in BRCA2 exon 11) were detected, in three probands from two different families. These mutations have not been reported previously in the BIC or LOVD databases. Protein products of these mutated alleles lack domains necessary for their DNA repair functions, an indicator that these are deleterious mutations. Neither mutation was found in any proband from 50 other families with hereditary predisposition, so the two mutations are likely family-specific rather than population-specific. Although BRCA1-associated tumors are typically negative for estrogen receptor (ER), progesterone receptor (PR), and ERBB2, the novel BRCA1 mutation identified in this study was detected in a proband with ER- and PR-positive breast cancer. Steroid receptor-positive BRCA-related breast cancer in this proband supports the idea of characteristic pathological features and older age of onset among BRCA1-mutated ER-positive breast cancers.  相似文献   

9.
The majority of breast cancer in high risk families is believed to result from a mutation in either of two genes named BRCA1 and BRCA2. A germline defect in either gene is usually followed by chromosomal deletion of the normal allele in the tumour. In Iceland two recurrent mutations have been identified, 999del5 BRCA2 and G5193A BRCA1. In this study, randomly selected pairs of sisters diagnosed with breast cancer at the age of 60 years or younger were analysed to evaluate the proportion of breast cancer resulting from BRCA1 and BRCA2. Genotypes and allele loss in tumour tissue from 42 sister pairs were compared using markers within and around the BRCA1 and BRCA2 genes. Eleven sister pairs were highly suggestive of BRCA2 linkage, and no obvious BRCA1 linkage was seen. Screening for the G5193A BRCA1 and 999del5 BRCA2 mutations showed the 999del5 mutation in the 11 BRCA2 suggestive pairs plus three pairs less indicative of linkage, and the G5193A BRCA1 mutation in one pair. When known mutation carriers are removed from the group, no indication of further linkage to BRCA1 or BRCA2 is seen. The results of our studies suggest that a large proportion of familial breast cancer in Iceland is the result of the 999del5 BRCA2 mutation, and it is unlikely that BRCA1 and BRCA2 germline mutations other than 999del5 and G5193A play a significant role in hereditary breast cancer in Iceland. Furthermore it can be concluded that most families with BRCA1 or BRCA2 linkage are easily identified by studying LOH around the defective gene in as few as two affected relatives.  相似文献   

10.
Germline mutations in the BRCA1 and BRCA2 (BRCA1/2) genes explain a substantial proportion of hereditary breast and ovarian cancer. Women who have inherited a mutation in one of these genes are at increased risk to develop breast and/or ovarian cancer, although there is variability in the manifestation of tumors by age and site. This variability may be explained, in part, by the BRCA1/2 mutation type or location. However, it is also possible that risk-modifying factors exist that explain interindividual variability in cancer risk. These factors include genes at other loci and endogenous or exogenous exposures. A more complete understanding of factors that modify cancer risk in BRCA1 and BRCA2 mutation carriers may help to refine estimates of cancer risk. A number of exposures, including reproductive history and exogenous hormone use, have been implicated as BRCA1/2-associated cancer risk modifiers. Similarly, genes involved in hormone metabolism, including the AIB1 and AR genes, have been linked with altered breast cancer risk. Therefore, although germline BRCA1/2 mutations raise a woman's breast and ovarian cancer risk, other factors may interact with BRCA1/2 mutations to modulate this risk.  相似文献   

11.
We have screened index cases from 25 Russian breast/ovarian cancer families for germ‐line mutations in all coding exons of the BRCA1 and BRCA2 genes, using multiplex heteroduplex analysis. In addition we tested 22 patients with breast cancer diagnosed before age 40 without family history and 6 patients with bilateral breast cancer. The frequency of families with germline mutations in BRCA was 16% (4/25). One BRCA1 mutation, 5382insC, was found in three families. The results of present study, and those of a separate study of 19 breast‐ovarian cancer families, suggest that BRCA1 5382insC is a founder mutation in the Russian population. Three BRCA2 mutations were found in patients with breast cancer without family history: two in young patients and one in patients with bilateral breast cancer. Four novel BRCA2 mutations were identified: three frameshift (695insT, 1528del4, 9318del4) and one nonsense (S1099X). © 2002 Wiley‐Liss, Inc.  相似文献   

12.
In this report, we describe a patient with a de novo BRCA2 gene mutation (5301insA) who developed early onset breast cancer with no strong family history of the disease. Only three similar instances have been reported previously. Subsequent site-specific analysis in her parents showed that neither carried the mutation previously identified in their daughter. Various possible explanations for this finding were excluded. Paternity was confirmed using 13 highly polymorphic markers, thereby illustrating that the patient carried a de novo mutation in the BRCA2 gene. The 5301insA mutation has been well described and reported many times in the Breast Cancer Information Core online Breast Cancer Mutation database. This finding illustrates the importance of determining the incidence of de novo BRCA mutations and is of significant clinical value to breast cancer prevention and management. Our case report presents the fourth case in which a de novo germline mutation in a BRCA1/2 gene has been identified.  相似文献   

13.
BACKGROUND: Mutations in the BRCA1 or BRCA2 genes are responsible for up to 95% of hereditary ovarian cancer cases. Both genes function as tumour suppressor genes, and development of a cancer is thought to require an accumulation of somatic genetic events in addition to the inherited germline predisposition. It is unknown whether these somatic events in BRCA associated ovarian cancer are similar to or distinct from those in sporadic cases. The most frequent somatic genetic event in ovarian cancer is a mutation of the p53 gene. AIM: To study the role of p53 in hereditary ovarian cancer, by analysing accumulation of the p53 protein in ovarian cancers which occurred in BRCA1 or BRCA2 germline mutation carriers and comparing the results with a panel of ovarian cancers from patients who tested negative for both BRCA1 and BRCA2. METHODS: The study group consisted of 39 ovarian cancer patients in whom a BRCA mutation had been confirmed previously. p53 Immunohistochemistry was performed on archival tissue using a standard microwave antigen retrieval technique. The rate of p53 accumulation was compared with 40 ovarian cancer cases who tested negative for BRCA1 and BRCA2 germline mutations. RESULTS: P53 Accumulation was similar in BRCA related ovarian cancers and BRCA negative controls. Overall 27 of 39 BRCA1 or BRCA2 positive cases (69%) had evidence of p53 accumulation, compared with 24 of 40 invasive ovarian cancer cases (60%) which tested negative for BRCA1 and BRCA2 germline mutations. BRCA1 related ovarian cancers showed p53 accumulation in 22 of 30 cases (73%); p53 accumulation was present in five of nine BRCA2 related ovarian cancers. CONCLUSIONS: In addition to germline BRCA1 and BRCA2 mutations, somatic p53 alterations leading to p53 accumulation are an important event in hereditary ovarian cancer and are as frequent as in non-BRCA-related ovarian cancer.  相似文献   

14.
15.
Familial aggregation is thought to account for 5-10% of all breast cancer cases, and high penetrance breast and ovarian cancer susceptibility genes BRCA1 and BRCA2 explain < or =20% of these. Hundreds of mutations among breast/ovarian cancer families have been found in these two genes. The mutation spectrum and prevalence, however, varies widely among populations. Thirty-six breast/ovarian cancer families were identified from a population sample of breast and ovarian cancer cases among a relatively isolated population in Eastern Finland, and the frequency of BRCA1/BRCA2 germline mutations were screened using heteroduplex analysis, protein truncation test and sequencing. Five different mutations were detected in seven families (19.4%). Two mutations were found in BRCA1 and three in BRCA2. One of the mutations (BRCA2 4088insA) has not been detected elsewhere in Finland while the other four, 4216-2nt A-->G and 5370 C-->T in BRCA1 and 999del5 and 6503delTT in BRCA2, are recurrent Finnish founder mutations. These results add to the evidence of the geographical differences in distribution of Finnish BRCA1/BRCA2 mutations. This screen also provides further evidence for the presumption that the majority of Finnish BRCA1/BRCA2 founder mutations have been found and that the proportion of BRCA1/BRCA2 mutations in Finnish breast/ovarian cancer families is around 20%.  相似文献   

16.
《Genetics in medicine》2010,12(5):245-259
Hereditary breast and ovarian cancer due to mutations in the BRCA1 and BRCA2 genes is the most common cause of hereditary forms of both breast and ovarian cancer. The overall prevalence of BRCA1/2 mutations is estimated to be from 1 in 400 to 1 in 800 with a higher prevalence in the Ashkenazi Jewish population (1 in 40). Estimates of penetrance (cancer risk) vary considerably depending on the context in which they were derived and have been shown to vary within families with the same BRCA1/2 mutation. This suggests there is no exact risk estimate that can be applied to all individuals with a BRCA1/2 mutation. The likelihood of harboring a BRCA1 or BRCA2 mutation is dependent on one's personal and/or family history of cancer and can be estimated using various mutation probability models. For those individuals who have a BRCA1 or BRCA2 mutation, several screening and primary prevention options have been suggested, including prophylactic surgery and chemoprevention. Once a BRCA1 or BRCA2 mutation has been identified in a family, testing of at-risk relatives can identify those family members who also have the familial mutation and thus need increased surveillance and early intervention when a cancer is diagnosed.  相似文献   

17.
To optimize the molecular diagnosis of hereditary breast and ovarian cancer (HBOC), we developed a next-generation sequencing (NGS)-based screening based on the capture of a panel of genes involved, or suspected to be involved in HBOC, on pooling of indexed DNA and on paired-end sequencing in an Illumina GAIIx platform, followed by confirmation by Sanger sequencing or MLPA/QMPSF. The bioinformatic pipeline included CASAVA, NextGENe, CNVseq and Alamut-HT. We validated this procedure by the analysis of 59 patients'' DNAs harbouring SNVs, indels or large genomic rearrangements of BRCA1 or BRCA2. We also conducted a blind study in 168 patients comparing NGS versus Sanger sequencing or MLPA analyses of BRCA1 and BRCA2. All mutations detected by conventional procedures were detected by NGS. We then screened, using three different versions of the capture set, a large series of 708 consecutive patients. We detected in these patients 69 germline deleterious alterations within BRCA1 and BRCA2, and 4 TP53 mutations in 468 patients also tested for this gene. We also found 36 variations inducing either a premature codon stop or a splicing defect among other genes: 5/708 in CHEK2, 3/708 in RAD51C, 1/708 in RAD50, 7/708 in PALB2, 3/708 in MRE11A, 5/708 in ATM, 3/708 in NBS1, 1/708 in CDH1, 3/468 in MSH2, 2/468 in PMS2, 1/708 in BARD1, 1/468 in PMS1 and 1/468 in MLH3. These results demonstrate the efficiency of NGS in performing molecular diagnosis of HBOC. Detection of mutations within other genes than BRCA1 and BRCA2 highlights the genetic heterogeneity of HBOC.  相似文献   

18.
Mutations of the PTEN gene are associated with hamartoma-neoplasia syndromes. While germline mutations at this chromosome 10q22-23 locus have been observed in patients with Cowden syndrome (CS) and Bannayan-Riley-Ruvalcaba syndrome (BRR), both of which phenotypes are associated with hamartomata and neoplasia, somatic mutation of PTEN has been established in a wide variety of sporadically occurring neoplasia. CS and BRR share some clinical features, specifically hamartomata and lipomatosis. Investigation of other clinically distinct syndromes associated with lipomatosis and overgrowth has established germline and germline mosaic PTEN mutations in several patients with Proteus syndrome. To this expanding array of clinically distinct phenotypes associated with PTEN mutations, we now report a novel heterozygous germline mutation, H61D, in a patient with features of VATER association with macrocephaly and ventriculomegaly.


Keywords: VATER; hydrocephalus; PTEN  相似文献   

19.
BRCA1 mutation research in ovarian and breast cancer 17q21-linked families has yielded a large number of germline sequence variations. Somatic mutations have been uncommonly reported. We screened 81 probands with primary ovarian, peritoneal, or fallopian tube carcinoma for BRCA1 mutations. The study group was intentionally biased by the inclusion of 29 probands with a family history of ovarian and/or breast carcinoma, 13 probands diagnosed on or before age 45, seven individuals with a metachronous breast cancer and 51 tumors with BRCA1 LOH. Tumor and/or germline DNA was screened by modified techniques of single-strand confirmation polymorphism analysis, and abnormal banding patterns were sequenced to confirm mutations. Twenty-one (25.9%) BRCA1 sequence variations were identified. Eight mutations were somatic including seven null mutations. Apart from classical hereditary ovarian/breast cancer, a family history of ovarian/breast cancer defines a subset of ovarian cancer individuals with a significant likelihood of either a germline or a somatic BRCA1 gene sequence variation.  相似文献   

20.
BACKGROUND—Primary pulmonary hypertension (PPH), resulting from occlusion of small pulmonary arteries, is a devastating condition. Mutations of the bone morphogenetic protein receptor type II gene (BMPR2), a component of the transforming growth factor beta (TGF-β) family which plays a key role in cell growth, have recently been identified as causing familial PPH. We have searched for BMPR2 gene mutations in sporadic PPH patients to determine whether the same genetic defect underlies the more common form of the disorder.
METHODS—We investigated 50 unrelated patients, with a clinical diagnosis of PPH and no identifiable family history of pulmonary hypertension, by direct sequencing of the entire coding region and intron/exon boundaries of the BMPR2 gene. DNA from available parent pairs (n=5) was used to assess the occurrence of spontaneous (de novo) mutations contributing to sporadic PPH.
RESULTS—We found a total of 11 different heterozygous germline mutations of the BMPR2 gene in 13 of the 50 PPH patients studied, including missense (n=3), nonsense (n=3), and frameshift (n=5) mutations each predicted to alter the cell signalling response to specific ligands. Parental analysis showed three occurrences of paternal transmission and two of de novo mutation of the BMPR2 gene in sporadic PPH.
CONCLUSION—The sporadic form of PPH is associated with germline mutations of the gene encoding the receptor protein BMPR-II in at least 26% of cases. A molecular classification of PPH, based upon the presence or absence of BMPR2 mutations, has important implications for patient management and screening of relatives.


  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号