首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rodent malaria Plasmodium yoelii is a useful model to study protective immunity to pre-erythrocytic stages of infection, pathogenesis of erythrocytic stages, and vaccine development. However, the utility of the P. yoelii model system has not been fully realized because transfection and genetic manipulation methodologies for this rodent species are less developed than that of another rodent species Plasmodium berghei. Here we report improved transfection efficiency using the AMAXA nucleofector system compared to conventional transfection methodologies. We also show that heterologous promoters from P. berghei can be used to drive expression of a green fluorescent protein (GFP) reporter protein in P. yoelii. In an effort to develop additional selectable markers for this parasite, we also tested positive selectable markers that have been used successfully in P. falciparum and P. berghei. Human dihydrofolate reductase (hdhfr) and Toxoplasma gondii dihydrofolate reductase-thymidylate synthase (Tgdhfr-ts) conferred drug resistance to WR99210 and pyrimethamine, respectively, when introduced as episomes. These improvements should make genetic manipulation of P. yoelii more amenable and facilitate further studies of host-parasite interactions using this attractive rodent model.  相似文献   

2.
In this report, we describe a cloning procedure for gene replacement by double homologous recombination in Plasmodium yoelii, which requires only one digestion and ligation step. This significantly shortens the time required to complete the production of the targeting vector. Furthermore, for more efficient phenotypic evaluation of the gene knockout parasites, we have also introduced a fluorescent protein cassette into the targeting vector. This allows for a more rapid assessment of parasite growth in all of its developmental stages. In addition, the introduction of the fluorescent marker via the replacement strategy confers the stable integration of the marker.  相似文献   

3.
Inbred BALB/c mice were either immunized with Triton X-100-extracted antigens of blood-stage Plasmodium yoelii or infected with P. yoelii and cured in three successive schedules. Whereas the immunized BALB/c became only partially protected from subsequent challenge infection with blood-stage P. yoelii, the convalescent mice acquired total immunity. When total P. yoelii antigen extract was resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose, and immunoblotted with anti-P. yoelii serum, five major protein bands of 150, 84, 40, 19, and 16 kDa were recognized by the sera of fully protected convalescent mice but not by the sera of partially protected mice. The utility of comparing reactivities of sera from fully protected and partially protected malaria hosts and the possibility that antigens uniquely recognized by the convalescent mouse sera may contribute to immunity against P. yoelii infection are discussed. Although previously reported to be an effective adjuvant for immunization against P. yoelii infection in (BALB/c x C57BL)F1 hybrid mice, saponin did not promote protection any better than did Freund adjuvant in BALB/c mice immunized with detergent-extracted P. yoelii antigen. Most of the P. yoelii proteins (14 to 250 kDa) found in Triton X-100 extracts of P. yoelii-parasitized erythrocytes isoelectrofocused as a single peak in the pH region 4.4 to 4.6, suggesting a rationale for previous findings that the most anti-P. yoelii protective and T-helper activities are induced by antigens isoelectrically focused in a fraction of similar pH.  相似文献   

4.
We have cloned two gene (aldo-1 and aldo-2) encoding the glycolytic enzyme aldolase of the rodent malaria parasite Plasmodium berghei. The amino acid sequence of one gene product, ALDO-1, is virtually identical to P. falciparum aldolase whereas ALDO-2, the second gene product, is different and has 13% sequence diversity to ALDO-1. We expressed ALDO-2 as an active enzyme in Escherichia coli and compared the biochemical and kinetic properties to that of P. falciparum recombinant aldolase (ALDO-1 type). Based on the Km and Vmax constants for FMP and FBP, neither ALDO-1 nor ALDO-2 can be clearly assigned to any of the known mammalian isoenzyme classes. We demonstrate that expression of the two isoenzymes is developmentally regulated: specific antibody probes detect ALDO-1 in sporozoite stages of P. berghei and ALDO-2 is found in blood stage parasites.  相似文献   

5.
6.
We have investigated the immunogenicity of defined sequences of the circumsporozoite (CS) protein of the murine malaria parasite, Plasmodium yoelii. A 21-ner synthetic peptide from the nonrepetitive region of the CS protein (position 59-79, referred to as Py1) induced T cell proliferative responses in H-2d and, to a lesser extent, in H-2b mice. Conversely, a synthetic peptide (referred to as Py4) consisting of four (QGPGAP) repeats of the P. yoelii CS protein, induced an antibody response only in H-2b mice. No antibody response was observed when the Py3 peptide, consisting of three (QGPGAP) repeats, was used as an immunogen. When cross-linked to the Py4 repetitive peptide, the Py1 sequence behaved as a T helper epitope allowing the production of anti-Py4 antibodies in H-2d mice. Several long-term T cell lines and clones specific for the nonrepetitive Py1 peptide were originated in vitro from both H-2d and H-2b mice. These lines and clones were CD4+ and proliferated in a major histocompatibility complex-restricted fashion. Furthermore, Py1-specific T cell lines and clones did not proliferate in the presence of synthetic peptides from an analogous region of another rodent malaria parasite, P. berghei, despite the high degree of homology existing in this sequence of the two CS proteins. Finally, supernatants from 7 out of 13 clones (from BALB/c mice) produced detectable amounts of interleukin 2 and interferon-gamma; whereas supernatants from the 4 clones from C57BL/6 and 2 from BALB/c mice contained detectable amounts of interleukin 5. These results show that functionally heterogenous CD4+ T cell populations, belonging to either TH1 or TH2 subset, are activated upon immunization of mice with the P. yoelii Py1 synthetic peptide. It is not yet known what differential role these CD4+ subsets play during the malaria infection or after immunization with different malaria T cell epitopes. This knowledge may have a particular impact in the design of effective subunit vaccines against malaria.  相似文献   

7.
Important to malaria vaccine design is the phenomenon of "strain-specific" immunity. Using an accurate and sensitive assay of parasite genotype, real-time quantitative PCR, we have investigated protective immunity against mixed infections of genetically distinct cloned "strains" of the rodent malaria parasite Plasmodium chabaudi chabaudi in mice. Four strains of P. c. chabaudi, AS, AJ, AQ, and CB, were studied. One round of blood infection and drug cure with a single strain resulted in a partial reduction in parasitemia, compared with levels for na?ve mice, in challenge infections with mixed inocula of the immunizing (homologous) strain and a heterologous strain. In all cases, the numbers of blood-stage parasites of each genotype were reduced to similar degrees. After a second, homologous round of infection and drug cure followed by challenge with homologous and heterologous strains, the parasitemias were reduced even further. In these circumstances, moreover, the homologous strain was reduced much faster than the heterologous strain in all of the combinations tested. That the immunity induced by a single infection did not show "strain specificity," while the immunity following a second, homologous infection did, suggests that the "strain-specific" component of protective immunity in malaria may be dependent upon immune memory. The results show that strong, protective immunity induced by and effective against malaria parasites from a single parasite species has a significant "strain-specific" component and that this immunity operates differentially against genetically distinct parasites within the same infection.  相似文献   

8.
9.
Eighteen hybridoma cell lines were used to study species-specific, stage-specific, and serological cross-reactive antigens of the rodent malarial parasite, Plasmodium yoelii. Specificity and location of plasmodial antigens were determined by indirect fluorescent-antibody analysis. Results showed that a minimum of 12 distinct plasmodial antigens could be distinguished by the 18 hybridomas. Antigens were found on the surface or within the cytoplasm of the parasite, but not on the surface of erythrocytes from infected animals. The majority (11 of 12) of antigens were present in all erythrocytic stages of the parasite, but one was stage-specific for merozoites. Additional studies showed that 6 of 18 of the monoclonal antibodies identified species-specific antigens, 2 of 18 recognized antigens confined to related rodent malarial parasites (Plasmodium berghei, Plasmodium vinckei, and Plasmodium chabaudi), whereas 8 of 18 detected cross-reactive antigens common to rodent, primate (Plasmodium knowlesi, Plasmodium falciparum), and avian (Plasmodium gallinaceum) malarias.  相似文献   

10.
11.
The regulation of intracellular Ca(2+) in the intraerythrocytic form of the human malaria parasite, Plasmodium falciparum, was investigated using parasites 'isolated' from their host cells by saponin-permeabilisation of the erythrocyte membrane. The isolated parasites maintained tight control over their resting cytosolic Ca(2+) concentration which ranged from approximately 100 nM in the absence of extracellular Ca(2+) to approximately 700 nM in the presence of 1 mM extracellular Ca(2+). The parasite has two functionally discrete intracellular Ca(2+) stores. One is an 'endoplasmic reticulum (ER)-like' store, the other an 'acidic store'. The ER-like store was discharged by cyclopiazonic acid (CPA), an inhibitor of sarco/endoplasmic reticulum Ca(2+)-ATPases (SERCAs) of animal and plant cells, but not by thapsigargin (TG), a more specific inhibitor of SERCAs of animal cells. The acidic store was discharged by nigericin and by NH(4)(+). The amount of Ca(2+) in the ER-like store increased with increasing extracellular Ca(2+) concentration, whereas the amount of Ca(2+) in the acidic store did not. Ca(2+) released from the ER-like store by CPA was cleared from the parasite cytosol by uptake into the acidic store (over a range of extracellular Ca(2+) concentrations), consistent with the acidic store serving as a Ca(2+) reservoir within the intracellular parasite.  相似文献   

12.
13.
14.
 We investigated the induction of T-helper cell subsets during the course of lethal or nonlethal blood-stage Plasmodium yoelii 17X infection in C57BL/6 mice, which are relatively susceptible to these intraerythrocytic parasites. C57BL/6 mice infected with the nonlethal variant (PyNL) showed a moderate level of parasitemia and resolution of primary acute infection by week 4. Mice infected with the lethal variant (PyL) developed fulminating parasitemia and ultimately died. T-helper subset function was assessed during infection by determining the kinetics of in vitro production of the Th1-derived cytokine interferon-γ (IFN-γ) and the Th2-derived cytokine interleukin 10 (IL-10) by means of bioassay and enzyme-linked immunosorbent assay (ELISA), respectively. Spleen cells obtained from mice infected with PyL within the 1st week of infection produced high levels of IL-10 and IFN-γ in response to malaria antigen. IL-10 also appeared in sera from PyL-infected mice at the same time at which the in vitro IL-10 response peaked. In contrast, spleen cells from mice infected with PyNL failed to produce IL-10 during the course of infection. CD4+ T-lymphocytes from mice infected with the lethal variant were a major source of IL-10, although non T-cells were also involved in the production of IL-10 during this malaria infection. In addition, the initial burst of IL-10 in response to malaria antigens was seen concomitantly with the production of IFN-γ within the 1st week of infection. These results indicate that both Th1 and Th2 subsets of T-helper lymphocytes are activated during infection with the lethal variant of P. yoelii and support the contention of other investigators that a strong Th2 response early in infection is associated with the lethal outcome of malaria. Received: 20 June 1995 / Accepted: 3 November 1995  相似文献   

15.
Many anti-bacterial drugs inhibit growth of malaria parasites by targeting their bacterium-derived endosymbiotic organelles, the mitochondrion and plastid. Several of these drugs are either in use or being developed as therapeutics or prophylactics, so it is paramount to understand more about their target of action and modality. To this end, we measured in vitro growth and visualized nuclear division and the development of the mitochondrion and apicoplast in Plasmodium falciparum treated with five drugs targeting bacterial housekeeping pathways. This revealed two distinct classes of drug effect. Ciprofloxacin, rifampicin, and thiostrepton had an immediate effect: slowing parasite growth, retarding organellar development and preventing nuclear division. Classic delayed-death, in which the drug has no apparent effect until division and reinvasion of a new host by the daughter merozoites, was only observed for two drugs: clindamycin and tetracycline. These cells had apparently normal division and segregation of organelles in the first cycle but severe defects in apicoplast growth, subtle changes in the mitochondrion and a failure to complete cytokinesis during the second cycle. In two cases, the drug response in P. falciparum directly conflicted with reported responses for the related parasite Toxoplasma gondii, suggesting significant differences in apicoplast biology between the two parasites.  相似文献   

16.
17.
We have previously demonstrated a correlation between clinical paroxysms in Plasmodium vivax malarial infections and the appearance in patients' plasma of factors that kill blood stage parasites (gametocytes). This activity was, as previously shown, dependent on the presence in paroxysm plasma of tumour necrosis factor-alpha (TNF-α), which acts in conjunction with other ‘complementary' factors. Here we have identified a parasite component which is essential for this activity and functions as a ‘complementary' factor together with TNF, and a third component of unknown origin. The P. vivax parasite component present in paroxysm plasma can be substituted for by a blood-stage schizont extract of either P. vivax or P. falciparum. This was demonstrated by restoring the parasite-killing activity to post-paroxysm plasma (from which it was absent) with the addition of the extracts together with TNF. The active materials in these extracts, however, are different from the natural components in P. vivax paroxysm plasma, i.e. while the schizont extracts are immunologically cross-reactive between species, the activity of the natural P. vivax toxin(s) in patients' plasma is neutralized only by the homologous antisera. Plasmodium falciparum infections have neither distinct paroxysms nor parasite-killing activity in plasma. The pronounced paroxysms of P. vivax infections may thus be due in part to a species-specific toxin(s).  相似文献   

18.
The early role of natural killer cells and gamma delta T cells in the development of protective immunity to the blood stage of nonlethal Plasmodium yoelii infection was studied. Splenic cytokine levels were measured 24 h after infection of natural killer cell-depleted immunodeficient and littermate mice or transiently T-cell-depleted normal mice. Splenic gamma interferon levels were significantly increased above background in immunodeficient and littermate mice 24 h after infection. Depletion of natural killer cells resulted in markedly depressed gamma interferon levels and poor control of parasitemia, particularly in severe combined immunodeficient mice. In the littermates, gamma interferon levels were partially reduced, but parasitemias were resolved normally. However, in athymic mice, natural killer cell depletion had no effect on gamma interferon production. Levels of tumor necrosis factor alpha were increased in all animals 24 h after infection, and responses were not affected by natural killer cell depletion. However, in T-cell-depleted animals, both gamma interferon and tumor necrosis factor alpha levels were decreased 24 h after infection, and depleted mice were unable to control their parasitemia. These results suggest that the early production of both cytokines is important in the early control of parasitemia and that both natural killer and gamma delta T cells contribute equally towards their production. The data also suggest that the subsequent resolution of infection requires early production of gamma interferon, which might act by switching on the appropriate T-helper-cell subsets and other essential parasitotoxic effector mechanisms.  相似文献   

19.
The mature human erythrocyte is a simple haemoglobin-containing cell with no internal organelles and no protein synthesis machinery. The malaria parasite invades this cell and develops inside a parasitophorous vacuole (PV). The parasite exports proteins into the erythrocyte to bring about extensive remodelling of its adopted cellular home. Plasmodial homologues of two COPII proteins, PfSar1p and PfSec31p, are exported to the erythrocyte cytosol where they appear to play a role in the trafficking of proteins across the erythrocyte cytoplasm [Eur. J. Cell Biol. 78 (1999) 453; J. Cell Sci. 114 (2001) 3377]. We have now characterised a homologue of the COPI protein, delta-COP. A recombinant protein corresponding to 90% of the Pfdelta-COP sequence was used to raise antibodies. The affinity-purified antiserum recognised a protein with an apparent M(r) of 58 x 10(3) on Western blots of malaria parasite-infected erythrocytes but not on blots of uninfected erythrocytes. Pfdelta-COP was shown to be largely insoluble in non-ionic detergent, possibly suggesting cytoskeletal attachment. Confocal immunofluorescence microscopy of parasitised erythrocytes was used to show that, in contrast to the COPII proteins, Pfdelta-COP is located entirely within the parasite. The location of Pfdelta-COP partly overlaps that of the endoplasmic reticulum (ER)-located protein, PfERC, and partly that of the trans-Golgi-associated protein, PfRab6. Treatment of ring-stage plasmodium-infected erythrocytes with brefeldin A (BFA) inhibited development of the ER structure within the parasite cytosol and prevented the trafficking of the P. falciparum erythrocyte membrane protein-1, PfEMP1, to the erythrocyte cytosol. The Pfdelta-COP and PfSec31p populations each appear to be associated with the restricted ER structure in brefeldin-treated rings. When more mature stage parasites were treated with BFA, erythrocyte cytosol-located populations of parasite proteins were not reorganised, however, the overlap between Pfdelta-COP and PfERC in parasite cytosol was more complete suggesting a possible redistribution of the Golgi compartment into the ER. These data support the suggestion that both COPI and COPII proteins are involved in the trafficking of proteins within the parasite cytoplasm. However, only COPII proteins are exported to the erythrocyte cytosol to establish a vesicle-mediated protein trafficking pathway to the erythrocyte membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号