首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D F Reiff  E Guenther 《Neuroscience》1999,92(3):1103-1117
Ca2(+)-independent voltage-activated potassium currents were investigated during the differentiation of rat retinal ganglion cells. Whole-cell patch-clamp recordings of Ca2(+)-independent voltage-activated potassium currents and their individual current components, i.e. a sustained, tetraethylammonium-sensitive current, a transient, 4-aminopyridine-sensitive current, and a slowly decaying current that was blocked by Ba2+, revealed distinct ontogenetic modifications in current densities and in activation and inactivation parameters. All three current types were expressed simultaneously at embryonic day 17/18 and were present in all retinal ganglion cells thereafter without showing any significant changes until the end of the first postnatal week. Ca2(+)-independent voltage-activated potassium current densities then increased strongly from postnatal day 8 onwards. Tetraethylammonium-sensitive current density increased about eightfold from 74 pA/pF in embryonic stages to 586 pA/pF in adult cells, whereas the transient potassium currents blocked by 4-aminopyridine increased only about 2.5-fold from 174 pA/pF to 442 pA/pF. The Ba2(+)-sensitive current increased simultaneously from 35 pA/pF to 332 pA/pF. The much higher increase in the sustained current components during retinal ganglion cell differentiation accounted for the changes in decay kinetics of Ca2(+)-independent voltage-activated potassium current observed in later postnatal stages. Alterations in current densities were paralleled by pronounced changes in current kinetics. From postnatal day 8 onwards, activation of Ca2(+)-independent voltage-activated potassium current was right-shifted for about 10 mV owing to a shift in tetraethylammonium-sensitive current-activation, whereas activation of other K+ components remained unaltered. Tetraethylammonium-sensitive current steady-state inactivation was incomplete at all developmental stages. About 50% of the tetraethylammonium-sensitive current elicited by a depolarization to +36 mV did not inactivate after prepulse potentials positive to -10 mV. In contrast, transient potassium current blocked by 4-aminopyridine almost fully inactivated during embryonic stages, whereas in adult retinal ganglion cells about 40% of this current component did not inactivate after prepulse potentials positive to -20 mV. Parallel investigation of the resting membrane potential during retinal ganglion cells differentiation showed an exponential increase from -3 mV at embryonic day 15/16 when no voltage-activated ion currents were expressed to a final value of -58 mV at postnatal day 8. These results show that fundamental potassium current modifications occur relatively late in retinal ganglion cell development and only after the resting potential is at its final value.  相似文献   

2.
The development of multiple calcium channel activities was studied in mouse hippocampal neurons in culture, using the patch-clamp technique. A depolarizing pulse (40-50 ms duration) from the holding potential of -80 mV to levels more depolarized than -40 mV produced a low threshold T-type current. The T-type current was observed in 52% of four days in vitro neurons. The number of neurons which expressed T-type current decreased with age of culture, so that the current was detected in only 18% of neurons after 16 days in vitro. The T-type current densities varied between 1.9 pA/pF and 3.29 pA/pF in the mean values during the period studied (4-16 days in vitro). A depolarizing pulse from -80 mV to levels more depolarized than -35 mV evoked a high threshold calcium channel current. The high threshold current density increased in the mean values from 3.9 pA/pF in four days in vitro neurons to 28 pA/pF in 16 days in vitro neurons. We have then examined the effect of nifedipine, omega-Agatoxin IVA and omega-conotoxin GVIA on the high threshold current. Nifedipine (1-5 microM) sensitive current density stayed in the range of 1.9-2.1 pA/pF during 4-16 days in vitro, while omega-Agatoxin IVA (200 nM) sensitive current density increased in the mean values from 1.54 pA/pF in four days in vitro neurons to 21.5 pA/pF in 16 days in vitro neurons. The omega-conotoxin GVIA sensitive N-type channel current was maximum at eight days in vitro (5.44 pA/pF) and it reduced progressively to reach almost half (2.46 pA/pF) in 16 days in vitro neurons. These results showed that diverse subtypes of calcium channels change in density during the early period of culture. We suggest that the temporal expression of each type of channel may be linked to the development of neural activities.  相似文献   

3.
Rapid exposure of cardiac muscle to high concentrations of caffeine releases Ca(2+) from the sarcoplasmic reticulum (SR). This Ca(2+) is then extruded from the cell by the Na(+)/Ca(2+) exchanger. Measurement of the current carried by the exchanger (I(Na/Ca)) can therefore be used to estimate of the Ca(2+) content of the SR. Previous studies have shown that caffeine, however, can also inhibit K(+) currents. We therefore investigated whether the inhibitory effects of caffeine on these currents could contaminate measurements of I(Na/Ca). Caffeine caused partial inhibition of the inward rectifier K(+) current (I(K1)): the outward current at -40 mV was 1.15+/-0.24 pA/pF in control and decreased to 0.34+/-0.15 pA/pF in the presence of 10 mmol/l caffeine (P<0.05, n=15). This was similar to the effect of caffeine on the holding current observed at -40 mV in the absence of K(+) channel block and could therefore account for the contaminating effects of caffeine observed during measurements of I(Na/Ca). Moreover, caffeine also partially inhibited the transient outward ( I(to)) and the delayed rectifier (I(K)) K(+) currents.  相似文献   

4.
Carotid body chemoreceptors transduce a decrease in arterial oxygen tension into an increase in spiking activity on the sinus nerve, and this response increases with postnatal age over the first week or two of life. Previous work from our laboratory has suggested a major role of axonal Na(+) channels in the initiation of afferent spiking activity. Using RT-PCR of the petrosal ganglia we identified Na(+) channel TTX-S isoforms Na(v)1.1, Na(v)1.6, and Na(v)1.7 and the TTX-resistant (TTX-R) isoforms Na(v)1.8 and Na(v)1.9 at high levels. Electrophysiologic recordings (at 3 ages: 3 days, 9 days, 18-20 days) of neurons that project to the carotid body exhibited predominantly fast-inactivating sodium currents, with a bimodal recovery from inactivation at -80 mV (fast component approximately 8 ms; slow component approximately 90 ms). Developmental age had little effect with no change in peak current density (approximately 1.4 nA/pF) and was associated with a slight, but significant increase in the speed of recovery from inactivation at -140 and -120 mV but not at other potentials. Assuming that the same Na(+) channel complement is present at the nerve terminal as at the soma, the association of a sensory modality (chemoreception) with a relatively uniform Na(+) channel profile suggests that the rapid kinetics of TTX-S channels may be essential for some aspects of chemoreceptor function beyond mediating simple axonal conduction.  相似文献   

5.
Urbano FJ  Buño W 《Neuroscience》2000,96(2):439-443
Neurotrophins, acting through tyrosine kinase family genes, are essential for neuronal differentiation. The expression of tyrosine kinase family genes is prognostic in neuroblastoma, and neurotrophins reduce proliferation and induce differentiation, indicating that neuroblastomas are regulated by neurotrophins. We tested the effects of nerve growth factor and brain-derived neurotrophic factor on Na(+) and Ca(2+) currents, using the whole-cell patch-clamp technique, in human neuroblastoma NB69 cells. Control cells exhibited a slow tetrodotoxin-resistant (IC(50)=98 nM) Na(+) current and a high-voltage-activated Ca(2+) current. Exposure to nerve growth factor (50 ng/ml) and/or brain-derived neurotrophic factor (5 ng/ml) produced the expression of a fast tetrodotoxin-sensitive (IC(50)=10 nM) Na(+) current after day 3, and suppressed the slow tetrodotoxin-resistant variety. The same type of high-voltage-activated Ca(2+) current was expressed in control and treated cells. The treatment increased the surface density of both Na(+) and Ca(2+) currents with time after plating, from 17 pA/pF at days 3-5 and 1-5 to 34 and 30 pA/pF after days 6-10, respectively. Therefore, both nerve growth factor and brain-derived neurotrophic factor, acting through different receptors of the tyrosine kinase family and also possibly the tumor necrosis factor receptor-II, were able to regulate differentiation and the expression of Na(+) and Ca(2+) channels, partially reproducing the modifications induced by diffusible astroglial factors.We show that neurotrophins induced differentiation to a neuronal phenotype and modified the expression of Na(+) and Ca(2+) currents, partially reproducing the effects of diffusible astroglial factors.  相似文献   

6.
柯萨奇B3病毒对心肌细胞钙平衡的影响   总被引:4,自引:0,他引:4  
目的 探讨柯萨奇B3病毒(Coxsackievirus B3,CVB3)对膜离子通道及离子交换载体的影响,了解病毒感染导致细胞内钙超载的原因。方法 酶灌注法获得单个心肌细胞后用光聚焦显微镜和钙离子荧光探针(Fluo 3/AM)检测CVB3感染对心肌细胞内游离钙离子浓度的影响及利用模片钳全细胞电流记录技术观察CVB3对L型钙通道电流,钠通道电流和钠钙交换电流的影响。结果 CVB3感染使细胞内的游离钙  相似文献   

7.
Missense mutations in the human skeletal muscle Na+ channel α subunit (hSkM1) are responsible for a number of muscle excitability disorders. Among them, paramyotonia congenita (PC) is characterized by episodes of muscle stiffness induced by cold and aggravated by exercise. We have identified a new PC-associated mutation, which substitutes aspartic acid for a conserved alanine in the S4–S5 linker of domain III (A1152D). This residue is of particular interest since its homologue in the rat brain type II Na+ channel has been suggested as an essential receptor site for the fast inactivation particle. To identify the biophysical changes induced by the A1152D mutation, we stably expressed hSkM1 mutant or wild-type (WT) channels in HEK293 (human embryonic kidney) cells, and recorded whole-cell Na+ currents with the patch-clamp technique. Experiments were performed both at 21 and 11°C to better understand the sensitivity to cold of paramyotonia. The A1152D mutation disrupted channel fast inactivation. In comparison to the WT, mutant channels inactivated with slower kinetics and displayed a 5 mV depolarizing shift in the voltage dependence of the steady-state. The other noticeable defect of A1152D mutant channels was an accelerated rate of deactivation from the inactivated state. Decreasing temperature by 10°C amplified the differences in channel gating kinetics between mutant and WT, and unveiled differences in both the sustained current and channel deactivation from the open state. Overall, cold-exacerbated mutant defects may result in a sufficient excess of Na+ influx to produce repetitive firing and myotonia. In the light of previous reports, our data point to functional as well as phenotypic differences between mutations of conserved S4–S5 residues in domains II and III of the human skeletal muscle Na+ channel.  相似文献   

8.
To examine the effect of chronically elevated CO(2) on excitability and function of neurons, we exposed mice to 8 and 12% CO(2) for 4 wk (starting at 2 days of age), and examined the properties of freshly dissociated hippocampal neurons obtained from slices. Chronic CO(2)-treated neurons (CC) had a similar input resistance (R(m)) and resting membrane potential (V(m)) as control (CON). Although treatment with 8% CO(2) did not change the rheobase (64 +/- 11 pA, n = 9 vs. 47 +/- 12 pA, n = 8 for CC 8% vs. CON; means +/- SE), 12% CO(2) treatment increased it significantly (73 +/- 8 pA, n = 9, P = 0.05). Furthermore, the 12% CO(2) but not the 8% CO(2) treatment decreased the Na(+) channel current density (244 +/- 36 pA/pF, n = 17, vs. 436 +/- 56 pA/pF, n = 18, for CC vs. CON, P = 0.005). Recovery from inactivation was also lowered by 12% but not 8% CO(2). Other gating properties of Na(+) current, such as voltage-conductance curve, steady-state inactivation, and time constant for deactivation, were not modified by either treatment. Western blot analysis showed that the expression of Na(+) channel types I-III was not changed by 8% CO(2) treatment, but their expression was significantly decreased by 20-30% (P = 0.03) by the 12% treatment. We conclude from these data and others that neuronal excitability and Na(+) channel expression depend on the duration and level of CO(2) exposure and maturational changes occur in early life regarding neuronal responsiveness to CO(2).  相似文献   

9.
Missense mutations in the skeletal muscle sodium channel α-subunit gene ( SCN4A ) are associated with a group of clinically overlapping diseases caused by alterations in the excitability of the sarcolemma. Sodium channel defects may increase excitability and cause myotonic stiffness or may render fibres transiently inexcitable to produce periodic paralysis. A patient with cold-aggravated myotonia did not harbour any of the common SCN4A mutations. We therefore screened all 24 exons by denaturing high-performance liquid chromatography, followed by direct sequencing. Two novel missense changes were found with predicted amino acid substitutions: T323M in the DIS5-S6 loop and F1705I in the intracellular C-terminus. The functional impact of these substitutions was assessed by recording whole-cell Na+ currents from transiently transfected HEK293 cells. T323M currents were indistinguishable from wild-type (WT). Fast inactivation was impaired for F1705I channels, as demonstrated by an 8.6-mV rightwards shift in voltage dependence and a two-fold slowing in the rate of inactivation. Recovery from fast inactivation was not altered, nor was there an increase in the persistent current after a 50- ms depolarization. Activation and slow inactivation were not appreciably affected. These data suggest that T323M is a benign polymorphism, whereas F1705I results in fast inactivation defects, which are often observed for myotonia. This is the first example of a C-terminal mutation in SCN4A associated with human disease. Like the cardiac disorders (long QT syndrome type 3 or Brugada syndrome) and generalized epilepsy with febrile seizures plus (GEFS+) associated with C-terminal mutations in other NaV channels, the primary effect of F1705I was a partial disruption of fast inactivation.  相似文献   

10.
Nine mutations that cause generalized epilepsy with febrile seizures plus have been identified in the SCN1A gene encoding the alpha subunit of the Na(v)1.1 voltage-gated sodium channel. The functional properties of two of these mutations (T875M and R1648H) have previously been described. T875M was shown to enhance slow inactivation, while R1648H dramatically accelerated recovery from inactivation. In this report, we have cloned, expressed and characterized the functional effects of a third generalized epilepsy with febrile seizures plus mutation, W1204R (Am J Hum Genet 68 (2001) 866). The mutation was cloned into the orthologous rat channel, rNa(v)1.1, and at the same time a single base pair insertion at base 120 in the original rNa(v)1.1 clone was corrected. The level of expression of the corrected wild-type rNa(v)1.1 was approximately 1000-fold higher than that of the original clone and comparable to that achieved with other neuronal sodium channels expressed in Xenopus oocytes. The properties of the W1204R mutant in the corrected rNa(v)1.1 were determined in the absence and presence of the beta1 subunit in Xenopus oocytes. The W1204R mutation resulted in approximately 11 mV hyperpolarized shifts in the voltage-dependence of activation and steady-state inactivation when expressed as an alpha subunit alone. When the channels were coexpressed with the beta1 subunit, the hyperpolarized shifts were still present but smaller, approximately 5 mV in magnitude. All other properties that we examined were comparable for the mutant and wild-type channels. The negative shift in activation would increase channel excitability, whereas the negative shift in inactivation would decrease excitability. The negative shifts in both properties also shifted the window current, which is the voltage region in which sodium channels can continue to open because some percentage of channels are activated and not all of the channels are inactivated. The shift in window current for the W1204R mutation could result in hyperexcitability because the neuron's potential is more likely to reach the more negative range. These results demonstrate that a third SCN1A mutation that causes generalized epilepsy with febrile seizures plus 2 alters the properties of the sodium channel in a different manner than the previous two mutations that were studied. The diversity in functional effects for these three mutations indicates that a similar clinical phenotype can result from very different underlying sodium channel abnormalities.  相似文献   

11.
烧伤大鼠血清抑制瞬间外向钾电流   总被引:1,自引:0,他引:1       下载免费PDF全文
目的:研究心脏瞬间外向钾电流(Ito)在烧伤时的改变,探讨其在烧伤所致的心功能障碍中的作用。 方法: 将人类Ito通道的主要α亚基Kv4.3的cDNA转染到培养的CHO-K1细胞系,用膜片钳全细胞记录方式记录表达的通道电流,观察烧伤大鼠血清刺激对Kv4.3电流密度及门控动力学的影响。 结果: 体外表达的Kv4.3具有快速激活和快速失活的特性,与心肌细胞Ito电流相似。2%烧伤大鼠血清降低通道电流密度,+40 mV电压刺激下,对照组电流密度为(67.6±15.1)pA/pF,烧伤血清处理组为(32.3±9.7)pA/pF,P<0.05。电压依赖性Kv4.3失活发生负向移位,对照组半数最大失活膜电位(V0.5)为(-41.1±7.0)mV,而烧伤血清处理组为(-76.2±9.8)mV,P<0.05。烧伤血清使Kv4.3从失活中恢复的幅度和速率也有所降低。 结论: 严重烧伤时机体产生并释放抑制Ito功能物质入血,通过循环作用于心肌细胞Ito通道,引起APD延长,QT间期离散。  相似文献   

12.
Voltage-dependent Na(+) channels are usually expressed in neurons that use spikes as a means of signal coding. Retinal bipolar cells are commonly thought to be nonspiking neurons, a category of neurons in the CNS that uses graded potential for signal transmission. Here we report for the first time voltage-dependent Na(+) currents in acutely isolated mammalian retinal bipolar cells with whole cell patch-clamp recordings. Na(+) currents were observed in approximately 45% of recorded cone bipolar cells but not in rod bipolar cells. Both ON and OFF cone bipolar cells were found to express Na(+) channels. The Na(+) currents were activated at membrane potentials around -50 to -40 mV and reached their peak around -20 to 0 mV. The half-maximal activation and steady-state inactivation potentials were -24.7 and -68.0 mV, respectively. The time course of recovery from inactivation could be fitted by two time constants of 6.2 and 81 ms. The amplitude of the Na(+) currents ranged from a few to >300 pA with the current density in some cells close or comparable to that of retinal third neurons. In current-clamp recordings, Na(+)-dependent action potentials were evoked in Na(+)-current-bearing bipolar cells by current injections. These findings raise the possibility that voltage-dependent Na(+) currents may play a role in bipolar cell function.  相似文献   

13.
14.
Voltage-dependent K+ currents in rat cardiac dorsal root ganglion neurons   总被引:1,自引:0,他引:1  
We have assessed the expression and kinetics of voltage-gated K(+) currents in cardiac dorsal root ganglion (DRG) neurons in rats. The neurons were labelled by prior injection of a fluorescent tracer into the pericardial sack. Ninety-nine neurons were labelled: 24% small (diameter<30 microm), 66% medium-sized (diameter 30 microm>.48 microm) and 10% large (>48 microm) neurons. Current recordings were performed in small and medium-sized neurons. The kinetic and pharmacological properties of K(+) currents recorded in these two groups of neurons were identical and the results obtained from these neurons were pooled. Three types of K(+) currents were identified:a) I(As), slowly activating and slowly time-dependently inactivating current, with V(1/2) of activation -18 mV and current density at +30 mV equal to 164 pA/pF, V(1/2) of inactivation at -84 mV. b) I(Af) current, fast activating and fast time-dependently inactivating current, with V(1/2) of activation at two mV and current density at +30 mV equal to 180 pA/pF, V(1/2) of inactivation at -26 mV. At resting membrane potential I(As) was inactivated, whilst I(Af), available for activation. The I(As) currents recovered faster from inactivation than I(Af) current. 4-Aminopiridyne (4-AP) (10 mM) and tetraethylammonium (TEA) (100 mM) produced 98% and 92% reductions of I(Af) current, respectively and 27% and 66% of I(As) current, respectively. c) The I(K) current that did not inactivate over time. Its V(1/2) of activation was -11 mV and its current density equaled 67 pA/pF. This current was inhibited by 95% (100 mM) TEA, whilst 4-AP (10 mM) produced its 23% reduction. All three K(+) current components (I(As), I(Af) and I(K)) were present in every small and medium-sized cardiac DRG neuron.We suggest that at hyperpolarized membrane potentials the fast reactivating I(As) current limits the action potential firing rate of cardiac DRG neurons. At depolarised membrane potentials the I(Af) K(+) current, the reactivation of which is very slow, does not oppose the firing rate of cardiac DRG neurons.  相似文献   

15.
1. With the use of whole-cell patch-clamp recording. Na(+)-current expression was studied in hippocampal astrocytes in vitro, individually identified by filling with Lucifer yellow (LY) and staining for glial fibrillary acidic protein (GFAP) and vimentin. 2. The proportion of astrocytes that express Na+ currents in rat hippocampal cultures changes during development in vitro and decreases from approximately 75% at day 1 to approximately 30% after 10 days in culture. 3. The sodium currents expressed in astrocytes can be differentiated into two types on the basis of kinetics. At early times in culture the time course of Na+ currents is fast in both onset and decay with an average decay time constant of 1.27 ms, whereas after 6 days Na+ currents become comparatively slow and decayed with an average time constant of 1.86 ms. 4. As with the time-course of Na+ currents, the two age groups of astrocytes (i.e., days 1-5 and day 6 and older) differ with respect to their steady-state inactivation characteristics. Early after plating and up to day 5, the midpoint of the steady-state inactivation curve is close to -60 mV, as also observed in hippocampal neurons of various ages; in contrast, after 6 days in culture the curve is shifted by approximately 25 mV toward more hyperpolarized potentials with a midpoint close to -85 mV. 5. In contrast to h infinity-curves, current-voltage (I-V) curves of Na(+)-current activation were identical in all astrocytes studied and did not change with time in culture. 6. In astrocytes expressing Na+ currents, current densities (average of 35 pA/pF on day 1) decreased throughout the first 5 days and were almost abolished around days 4 and 5 in culture. Beginning on day 6, however, current densities increased again and maintained a steady level (average of 14 pA/pF) for the duration of the time period in culture (20 days). This biphasic time course closely correlates with the time course of changes in Na(+)-current kinetics and steady-state inactivation. 7. These data suggest that Na+ currents in cultured hippocampal astrocytes show characteristic changes with increasing time in culture. During the first 4-5 days in culture, hippocampal astrocytes display Na+ currents with properties similar to those of hippocampal neurons. Our data further suggest that Na+ currents with distinctive, "glial-type" characteristics are only expressed in hippocampal astrocytes after 6 days in culture.  相似文献   

16.
AIM: Brugada syndrome is an inherited cardiac disease with an increased risk of sudden cardiac death. Thus far Brugada syndrome has been linked only to mutations in SCN5A, the gene encoding the alpha-subunit of cardiac Na+ channel. In this study, a novel SCN5A gene mutation (D1714G) is reported, which has been found in a 57-year-old male patient. Since the mutation is located in a segment of the ion-conducting pore of the cardiac Na+ channel, which putatively determines ion selectivity, it may affect ion selectivity properties. METHODS: HEK-293 cells were transfected with wild-type (WT) or D1714G alpha-subunit and beta-subunit cDNA. Whole-cell configuration of the patch-clamp technique was used to study biophysical properties at room temperature (21 degrees C) and physiological temperature (36 degrees C). This study represents the first measurements of human Na+ channel kinetics at 36 degrees C. Ion selectivity, current density, and gating properties of WT and D1714G channel were studied. RESULTS: D1714G channel yielded nearly 80% reduction of Na+ current density at 21 and 36 degrees C. At both temperatures, no significant changes were observed in V(1/2) values and slope factors for voltage-dependent activation and inactivation. At 36 degrees C, but not at 21 degrees C, D1714G channel exhibited more slow inactivation compared with WT channel. Ion selectivity properties were not affected by the mutation at both temperatures, as assessed by either current or permeability ratio. CONCLUSION: This study shows no changes in ion selectivity properties of D1714G channel. However, the profoundly decreased current density associated with the D1714G mutation may explain the Brugada syndrome phenotype in our patient.  相似文献   

17.
 The F1473S mutation of the adult human skeletal muscle Na+ channel causes paramyotonia congenita, a disease characterized by muscle stiffness sometimes followed by weakness in a cold environment. The symptoms are relieved by the local anaesthetic mexiletine. This mutation, which resides in the cytoplasmic S4-S5 loop in domain IV of the α-subunit, was studied by heterologous expression in HEK293 cells using standard patch-clamp techniques. Compared to wild-type (WT) channels, those with the F1473S mutation exhibit a twofold slowing of fast inactivation, an increased persistent Na+ current, a +18-mV shift in steady-state inactivation and a fivefold acceleration of recovery from fast inactivation; slow inactivation was similar for both clones. Single-channel recordings for the F1473S mutation revealed a prolonged mean open time and an increased number of channel reopenings that increased further upon cooling. The pharmacological effects of mexiletine on cells expressing either WT, F1473S or G1306E channels were studied. G1306E is a myotonia-causing mutation located within the inactivation gate that displays similar but stronger inactivation defects than F1473S. The hyperpolarizing shift in steady-state inactivation induced by mexiletine was almost identical for all three clones. In contrast, this agent had a reduced effectiveness on the phasic (use-dependent) block of Na+ currents recorded from the mutants: the relative order of block was WT>F1473S>G1306E. We suggest that the relative effectiveness of mexiletine is associated with the degree of abnormal channel inactivation and that the relative binding affinity of mexiletine is not substantially different between the mutations or the WT. Received: 13 January 1998 / Received after revision: 11 May 1998 / Accepted: 19 May 1998  相似文献   

18.
The hyperpolarization-activated nonselective cation current, I(h), was investigated in neonatal and adult rat intracardiac neurons. I(h) was observed in all neurons studied and displayed slow time-dependent rectification. I(h) was isolated by blockade with external Cs(+) (2 mM) and was inhibited irreversibly by the bradycardic agent, ZD 7288. Current density of I(h) was approximately twofold greater in neurons from neonatal (-4.1 pA/pF at -130 mV) as compared with adult (-2.3 pA/pF) rats; however, the reversal potential and activation parameters were unchanged. The reversal potential and amplitude of I(h) was sensitive to changes in external Na(+) and K(+) concentrations. An inwardly rectifying K(+) current, I(K(IR)), was also present in intracardiac neurons from adult but not neonatal rats and was blocked by extracellular Ba(2+). I(K(IR)) was present in approximately one-third of the adult intracardiac neurons studied, with a current density of -0.6 pA/pF at -130 mV. I(K(IR)) displayed rapid activation kinetics and no time-dependent rectification consistent with the rapidly activating, inward K(+) rectifier described in other mammalian autonomic neurons. I(K(IR)) was sensitive to changes in external K(+), whereby raising the external K(+) concentration from 3 to 15 mM shifted the reversal potential by approximately +36 mV. Substitution of external Na(+) had no effect on the reversal potential or amplitude of I(K(IR)). I(K(IR)) density increases as a function of postnatal development in a population of rat intracardiac neurons, which together with a concomitant decrease in I(h) may contribute to changes in the modulation of neuronal excitability in adult versus neonatal rat intracardiac ganglia.  相似文献   

19.
Long-QT3 syndrome (LQT3) is linked to cardiac sodium channel gene ( SCN5A ) mutations. In this study, we used the 'dynamic action potential clamp' (dAPC) technique to effectively replace the native sodium current ( I Na) of the Priebe–Beuckelmann human ventricular cell model with wild-type (WT) or mutant I Na generated in a human embryonic kidney (HEK)-293 cell that is voltage clamped by the free-running action potential of the ventricular cell. We recorded I Na from HEK cells expressing either WT or LQT3-associated Y1795C or A1330P SCN5A at 35°C, and let this current generate and shape the action potential (AP) of subepicardial, mid-myocardial and subendocardial model cells. The HEK cell's endogenous background current was completely removed by a real-time digital subtraction procedure. With WT I Na, AP duration (APD) was longer than with the original Priebe–Beuckelmann model I Na, due to a late I Na component of ∼30 pA that could not be revealed with conventional voltage-clamp protocols. With mutant I Na, this late component was larger (∼100 pA), producing a marked increase in APD (∼70–80 ms at 1 Hz for the subepicardial model cell). The late I Na magnitude showed reverse frequency dependence, resulting in a significantly steeper APD–frequency relation in the mutant case. AP prolongation was more pronounced for the mid-myocardial cell type, resulting in increased APD dispersion for each of the mutants. For both mutants, a 2 s pause following rapid (2 Hz) pacing resulted in distorted AP morphology and beat-to-beat fluctuations of I Na. Our dAPC data directly demonstrate the arrhythmogenic nature of LQT3-associated SCN5A mutations.  相似文献   

20.
Starodub AM  Wood JD 《Neuroscience》2000,99(2):389-396
Biophysical properties of A-type K(+) currents (I(A)) in myenteric neurons from guinea-pig small intestine were studied. I(A) was present in both AH- and S-type myenteric neurons. Reduction of external Ca(2+) did not affect the current. Current density was 13.5+/-10.2 pA/pF in 68 AH-type neurons and 23.4+/-8.2 pA/pF in 31 S-type neurons. S-type neurons appeared to be a homogeneous group based on density of I(A). AH-type neurons were subdivided into two groups with current densities of 9.4+/-4.3 and 25.4+/-4.3 pA/pF. All other biophysical properties of the current were not statistically different for AH- and S-type neurons. Steady-state activation and inactivation curves showed half-activation potentials at -7 mV (k=15. 0 mV) and -86 mV (k=11.5 mV). The curves overlapped at potentials near the resting potential of approximately -55 mV. Time constants for activation ranged from 3.6 to 0.52 ms at test potentials between -20 and 50 mV. Inactivation time constants fell between 41.5 and 11 ms at test potentials between -20 and 50 mV. Time constants for recovery from inactivation fit a double-exponential curve with fast and slow recovery times of 11 and 550 ms. 4-Aminopyridine suppressed I(A) when it was activated at -20 mV following a pre-pulse to -110 mV. Addition of Zn(2+) in the external solution resulted in a concentration-dependent shift of the activation and inactivation curves in the depolarized direction. Zn(2+) slowed the activation and inactivation kinetics of I(A) by factors of 3.3- and 1.2-fold over a wide range of potentials. Elevation of external H(+) suppressed the effect of Zn(2+) with a pK of 7.3-7.4. The effects of Zn(2+) were interpreted as not being due to surface charge screening, because the affinity of Zn(2+) for its binding site on the A-channel was estimated to be between 170 and 312 microM, while the background concentration of Mg(2+) was 10 mM.The enteric nervous system is perceived as an independent integrative nervous system (brain-in-the-gut) that is responsible for local organizational control of motility and secretory patterns of gut behavior. AH- and S-type neurons are synaptically interconnected to form the microcircuits of the enteric nervous system. The results suggest that I(A) is a significant determinant of neuronal excitability for both the firing of nerve impulses and the various synaptic events in the two types of neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号