首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PURPOSE: To determine whether prolonged treatment with vigabatrin (VGB), an antiepileptic drug (AED) that acts by elevating brain gamma-aminobutyric acid (GABA) levels, interferes with age-related changes of in vivo GABA(A)-receptor binding in children with epilepsy. METHODS: Using [11C]flumazenil (FMZ)-positron emission tomography (PET) imaging, 15 children (aged 1-8 years) with medically intractable epilepsy were studied. Seven of these children were treated with VGB (1,000-2,500 mg/day) for > or =3 months before the FMZ-PET study. The remaining eight patients were medicated with other drugs that are known not to act directly on the GABAergic system. Absolute quantification of PET data was performed by using the volume of distribution (VD) of FMZ in brain tissue representing FMZ ligand binding. RESULTS: After controlling for age, hemispheric FMZ VD values were significantly lower in children treated with VGB as compared with the non-VGB group (p = 0.012). Regional FMZ VD values of the VGB-treated patients were significantly lower in all cortical regions and the cerebellum, whereas the difference was not significant in the thalamus and basal ganglia. No significant drug effect or drug-by-region interaction could be determined when the patients were separated according to treatment with carbamazepine (p = 0.97) or valproate (p = 0.55). CONCLUSIONS: VGB induces a decrease in GABA(A)-receptor binding in the cortex and cerebellum of the developing epileptic brain. A similar effect of other drugs and substances of abuse targeting the GABAergic system may be hypothesized. Because of the important role of the GABAergic system in developmental plasticity, the reversibility and functional consequences of this age-specific drug effect should be further studied.  相似文献   

2.
OBJECTIVE: To compare abnormalities determined in 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and [11C]flumazenil (FMZ) PET images with intracranial EEG data in patients with extratemporal lobe epilepsy. BACKGROUND: Although PET studies with FDG and FMZ are being used clinically to localize epileptogenic regions in patients with refractory epilepsy, the electrophysiologic significance of the identified PET abnormalities remains poorly understood. METHODS: We studied 10 patients, mostly children (4 boys, 6 girls, aged 2 to 19 years; mean age, 11 years), who underwent FDG and FMZ PET scans, intracranial EEG monitoring, and cortical resection for intractable epilepsy. EEG electrode positions relative to the brain surface were determined from MRI image volumes. Cortical areas of abnormal glucose metabolism or FMZ binding were determined objectively based on asymmetry measures derived from homotopic cortical areas at three asymmetry thresholds. PET data were then coregistered with the MRI and overlaid on the MRI surface. A receiver operating characteristics (ROC) analysis was performed to determine the specificity and sensitivity of PET-defined abnormalities against the gold standard of intracranial EEG data. RESULTS: FMZ PET detected at least part of the seizure onset zone in all subjects, whereas FDG PET failed to detect the seizure onset region in two of 10 patients. The area under the ROC curves was higher for FMZ than FDG PET for both seizure onset (p = 0.01) and frequent interictal spiking (p = 0.04). Both FMZ and FDG PET showed poor performance for detection of rapid seizure spread (area under the ROC curve not significantly different from 0.5). CONCLUSIONS: [11C]flumazenil (FMZ) PET is significantly more sensitive than 2-deoxy-2-[18F]fluoro-D-glucose (FDG) PET for the detection of cortical regions of seizure onset and frequent spiking in patients with extratemporal lobe epilepsy, whereas both FDG and FMZ PET show low sensitivity in the detection of cortical areas of rapid seizure spread. The application of PET, in particular FMZ PET, in guiding subdural electrode placement in refractory extratemporal lobe epilepsy will enhance coverage of the epileptogenic zone.  相似文献   

3.
The success of cortical resection for intractable epilepsy of neocortical origin is highly dependent on the accurate presurgical delineation of the regions responsible for generating seizures. In addition to EEG and structural imaging studies, functional neuroimaging such as positron emission tomography (PET) can assist lateralization and localization of epileptogenic cortical areas. In the presented studies, objectively delineated focal PET abnormalities have been analyzed in patients (mostly children) with intractable epilepsy, using two different tracers: 2-deoxy-2-[18F]fluoro-D-glucose (FDG), that measures regional brain glucose metabolism, and [11C]flumazenil (FMZ), that binds to GABAA receptors. The PET abnormalities were correlated with scalp and intracranial EEG findings, structural brain abnormalities, as well as surgical outcome data. In patients with extratemporal foci and no lesion on MRI, FMZ PET was more sensitive than FDG PET for identification of the seizure onset zone defined by intracranial EEG monitoring. In contrast, seizures commonly originated from the border of hypometabolic cortex detected by FDG PET suggesting that such areas are most likely epileptogenic, and should be addressed if subdural EEG is applied to delineate epileptic cortex. In patients with cortical lesions, perilesional cortex with decreased FMZ binding was significantly smaller than corresponding areas of glucose hypometabolism, and correlated well with spiking cortex. Extent of perilesional hypometabolism, on the other hand, showed a correlation with the life-time number of seizures suggesting a seizure-related progression of brain dysfunction. FMZ PET proved to be also very sensitive for detection of dual pathology (coexistence of an epileptogenic cortical lesion and hippocampal sclerosis). This has a major clinical importance since resection of both the cortical lesion and the atrophic hippocampus is required to achieve optimal surgical results. Finally, the author demonstrated that in patients with neocortical epilepsy, FDG PET abnormalities correctly regionalize the epileptogenic area, but their size is not related to the extent of epileptogenic tissue to be removed. In contrast, complete resection of cortex with decreased FMZ binding predicts good surgical outcome suggesting that application of FMZ PET can improve surgical results in selected patients with intractable epilepsy of neocortical origin.  相似文献   

4.
BACKGROUND: 11C-flumazenil (FMZ) positron emission tomography (PET) is a new entrant into the armamentarium for pre-surgical evaluation of patients with intractable temporal lobe epilepsy (TLE). AIMS: To analyze the clinical utility of FMZ PET to detect lesional and remote cortical areas of abnormal benzodiazepine receptor binding in relation to magnetic resonance imaging (MRI), 2-Deoxy-2 [18F] fluoro-D-glucose, (18F FDG) PET, electrophysiological findings and semiology of epilepsy in patients with intractable TLE. MATERIALS AND METHODS: Patients underwent a high resolution MRI, prolonged Video-EEG monitoring before 18F FDG and 11C FMZ PET studies. Regional cortical FMZ PET abnormalities were defined on co-registered PET images using an objective method based on definition of areas of abnormal asymmetry (asymmetry index {AI}>10%). SETTINGS AND DESIGN: Prospective. STATISTICAL ANALYSIS: Student's "t" test. RESULTS: Twenty patients (Mean age: 35.2 years [20-51]; M:F=12:8) completed the study. Mean age at seizure onset was 10.3 years (birth-38 years); mean duration, 23.9 years (6-50 years). Concordance with the MRI lesion was seen in 10 patients (nine with hippocampal sclerosis and one with tuberous sclerosis). In the other 10, with either normal or ambiguous MRI findings, FMZ and FDG uptake were abnormal in all, concordant with the electrophysiological localization of the epileptic foci. Remote FMZ PET abnormalities (n=18) were associated with early age of seizure onset (P=0.005) and long duration of epilepsy (P=0.01). CONCLUSIONS: FMZ-binding asymmetry is a sensitive method to detect regions of epileptic foci in patients with intractable TLE.  相似文献   

5.
Purpose: To determine the electroclinical significance and histopathological correlates of cortical γ‐aminobutyric acidA(GABAA) receptor abnormalities detected in and remote from human neocortical epileptic foci. Methods: Cortical areas with decreased11C‐flumazenil (FMZ) binding were objectively identified on positron emission tomography (PET) images and correlated to intracranial electroencephalography (EEG) findings, clinical seizure variables, histology findings, and surgical outcome in 20 patients (mean age, 9.9 years) with intractable partial epilepsy of neocortical origin and nonlocalizing magnetic resonance imaging (MRI). Results: Focal decrease of cortical FMZ binding was detected in the lobe of seizure onset in 17 (85%) patients. Eleven patients (55%) had 17 remote cortical areas with decreased FMZ binding outside the lobe of seizure onset. Thirteen of those 16 (81%) of the 17 remote cortical regions that were covered by subdural EEG were around cortex showing rapid seizure spread on intracranial EEG. Remote FMZ PET abnormalities were associated with high seizure frequency and, when resected, showed gliosis in all six cases where material was available. Higher number of unresected cortical regions with decreased FMZ binding was associated with poorer surgical outcome. Conclusions: Focal decreases of cortical GABAA receptor binding on PET may include cortical regions remote from the primary focus, particularly in patients with high seizure frequency, and these regions are commonly involved in rapid seizure propagation. Although these regions may not always need to be resected to achieve seizure freedom, a careful evaluation of cortex with decreased GABAA receptor binding prior to resection using intracranial EEG may facilitate optimal surgical outcome in patients with intractable neocortical epilepsy.  相似文献   

6.
OBJECTIVE: To analyze the clinical utility of [11C]flumazenil (FMZ) PET to detect perilesional and remote cortical areas of abnormal benzodiazepine receptor binding in relation to MRI, 2-deoxy-2-[18F]fluoro-d-glucose (FDG) PET, and electrocorticographic (ECoG) findings as well as clinical characteristics of the epilepsy in epileptic patients with brain lesion. BACKGROUND: The success of resective surgery in patients with medically intractable epilepsy and brain lesion depends not only on removal of the lesion itself but also on the reliable presurgical delineation of the epileptic cortex that commonly extends beyond it. PET could provide a noninvasive identification of such epileptogenic areas. METHODS: Seventeen patients underwent high resolution MRI, FDG and FMZ PET, and presurgical EEG evaluation, including chronic intracranial ECoG monitoring or intraoperative ECoG. Regional cortical FDG/FMZ PET abnormalities were defined on partial volume-corrected PET images using an objective method based on a semiautomated definition of areas with abnormal asymmetry. Structural lesions were defined on coregistered MRI. The marked PET abnormalities visualized on three-dimensional cortical surface were compared with each other, to the extent of MRI-defined lesion, as well as to ECoG findings. RESULTS: The mean surface extent of FMZ PET abnormalities was significantly larger than the corresponding structural lesions, but it was significantly smaller than areas of glucose hypometabolism. The size of perilesional FDG PET abnormalities showed a correlation with the lifetime number of seizures (r = 0.93, p = 0.001). The extent of perilesional FMZ PET abnormalities was independent of the seizure number and showed an excellent correspondence with spiking cortex, the resection of which resulted in seizure-free outcome in all but one operated patient. Remote FMZ PET abnormalities (n = 6) were associated with early age at seizure onset (p = 0.048) and appeared in ipsilateral synaptically connected regions from the lesion area. CONCLUSIONS: Three-dimensional surface-rendered FMZ PET is able to delineate perilesional epileptic cortex, and it may be especially useful to localize such areas in patients with extensive perilesional glucose hypometabolism associated with a large number of seizures. Remote FMZ PET abnormalities in patients with early onset and long duration of epilepsy might represent secondary epileptogenesis, but this requires further study.  相似文献   

7.
BACKGROUND: Cortical areas showing abnormal glucose metabolism and [(11)C]flumazenil (FMZ) binding are commonly seen on PET scans of patients with intractable partial epilepsy, but it is unclear whether these must be totally resected to achieve seizure control. OBJECTIVE: To analyze whether the extent of cortex showing 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) or FMZ PET abnormalities correlates with the outcome of resective epilepsy surgery. METHODS: Cortical FDG and FMZ PET abnormalities in 15 young patients (mean age, 12.2 +/- 7.0 years) with intractable partial epilepsy of neocortical origin were marked as regions with abnormal asymmetry using an objective semiautomated software package. These marked regions were then projected and measured on the brain surface reconstructed from the coregistered high-resolution MRI. Following cortical resection, the size of nonresected cortex with preoperative PET abnormalities was also measured (calculated separately for marked areas in the lobe of seizure onset as defined by long-term video EEG monitoring, and in remote cortical areas). Extent of preoperative PET abnormalities and postoperative nonresected cortex abnormalities on PET were correlated with outcome scores. RESULTS: Large preoperative FMZ PET abnormalities were associated with poor outcome (r = 0.57; p = 0.025). Larger areas of nonresected cortex with preoperative FMZ PET abnormalities in the lobe of seizure onset were also associated with worse outcome in the whole group (r = 0.66; p = 0.007) as well as in patients with extratemporal resection (r = 0.73; p = 0.007), and in those with no lesion on MRI (r = 0.60; p = 0.049). Patients with seizure-free outcome had significantly smaller nonresected cortex with preoperative FMZ PET abnormalities than those who continued to have seizures (p = 0.022). No significant correlations between nonresected FDG PET abnormalities and surgical outcome were found. CONCLUSIONS: Extensive cortical abnormalities on FMZ PET predict poor outcome in neocortical epilepsy surgery. Resection of FMZ abnormalities in the lobe of seizure onset is associated with excellent outcome even in the absence of a structural lesion. In contrast, although FDG PET abnormalities regionalized the epileptogenic area, their size was not related to the extent of epileptogenic tissue to be removed.  相似文献   

8.
PET measures of benzodiazepine receptors in progressive supranuclear palsy   总被引:2,自引:0,他引:2  
OBJECTIVE: To evaluate the integrity of neurons containing benzodiazepine receptors in metabolically affected regions of the brain in patients with clinically diagnosed progressive supranuclear palsy (PSP). METHODS: The cerebral distribution of [11C]flumazenil (FMZ), a ligand that binds to the gamma-aminobutyric acid A (GABAA) receptor, and [18F]fluorodeoxyglucose (FDG), a measure of local cerebral glucose metabolism, was determined with PET in 12 patients with PSP and 10 normal control subjects. Tracer kinetic analysis was applied to quantify data and analysis was performed using three-dimensional stereotactic surface projections and stereotactically determined volumes of interest. RESULTS: There was a global reduction in FMZ binding of 13%, with a reduction in the anterior cingulate gyrus of 20% (p = 0.004), where glucose metabolic rates also showed the greatest reduction. CONCLUSIONS: PSP causes loss of benzodiazepine receptors in the cerebral cortex. Consistent with postmortem studies, the authors did not find significant changes in FMZ binding in subcortical nuclei that exhibit the most pathologic change. This study suggests that both loss of intrinsic neurons containing benzodiazepine receptors and deafferentation of the cerebral cortex from distant brain regions contribute to cerebral cortical hypometabolism in PSP.  相似文献   

9.
Positron emission tomography (PET) is a relatively noninvasive neuroimaging method by means of which a large variety of human brain functions can be assessed. Localized neurochemical abnormalities detected by PET were found in patients with partial epilepsy and suggested the use of this modality for localizing epileptogenic regions of the brain. The clinical usefulness of PET is determined by its sensitivity and specificity for identifying epileptogenic areas as defined by ictal surface and intracranial EEG recordings. The findings obtained from comparative EEG and glucose PET data are reviewed with special emphasis on patients undergoing presurgical evaluation because of medically intractable temporal and extratemporal lobe epilepsy. The utility of glucose PET studies for identifying regions of seizure onset is presented, and the limited specificity of glucose metabolic abnormalities for the detection of various EEG patterns in clinical epilepsy is discussed. The authors review the available intracranial EEG and PET comparisons using [11C]flumazenil (FMZ) PET, a tracer for the assessment of tau-amino-butyric acid/benzodiazepine receptor function. They also summarize their experience with [11C]flumazenil PET in identifying cortical regions that show various ictal and interictal cortical EEG abnormalities in patients with extratemporal seizure origin. Finally, the authors demonstrate that further development of new PET tracers, such as alpha-[11C]methyl-L-tryptophan, is feasible and clinically useful and may increase the number of patients in whom PET studies can replace invasive EEG monitoring.  相似文献   

10.
In vitro and in vivo parameters of flumazenil (FMZ) binding were measured in spiking and nonspiking neocortex identified by intraoperative electrocorticography in epileptic patients who underwent cortical resection for seizure control. In vitro measures of receptor affinity (K(D)), number (Bmax) and laminar distribution for [3H]-FMZ binding in the epileptic focus (n = 38) were compared to nonspiking cortex from a subgroup of the patients (n = 12) and to tissue obtained from trauma patients (n = 5). The in vitro binding parameters were compared to in vivo [11C]-FMZ binding measured with positron emission tomography (PET) (n = 19). The Bmax was higher in the 38 spiking tissues as compared to the 12 nonspiking tissues (P = .012). Paired comparison of spiking versus nonspiking binding in the 12 patients from whom nonspiking tissue was available showed increases in both K(D) (P = .037) and Bmax (P = .0047) in spiking cortex. A positive correlation was found between K(D) and Bmax values for 38 patients (r = 0.55, P < .0001), the magnitude of the K(D) increase being twice that of the Bmax increase. In addition, there was a significant correlation between the asymmetry indices of the in vivo FMZ binding on PET and in vitro K(D) of spiking cortex (n = 19, r = 0.52, P = .02). The laminar distribution of [3H]-FMZ showed increased FMZ binding in cortical layers V-VI in spiking cortex compared to nonspiking and control cortex. The increased receptor number in spiking cortical layers V-VI may be a compensatory mechanism to decreased GABAergic input. The increased Bmax in spiking cortex was accompanied by a larger decrease in the affinity of FMZ for the receptor suggesting that decreased FMZ binding in the epileptic focus measured with PET is due to a decrease in the affinity of the tracer for the receptor.  相似文献   

11.
BACKGROUND AND PURPOSE: Central benzodiazepine receptor ligands, such as [(11)C]flumazenil (FMZ), are markers of neuronal integrity and therefore might be useful in the differentiation of functionally and morphologically damaged tissue early in ischemic stroke. We sought to assess the value of a benzodiazepine receptor ligand for the early identification of irreversible ischemic damage to cortical areas that cannot benefit from reperfusion. METHODS: Eleven patients (7 male, 4 female, aged 52 to 75 years) with acute, hemispheric ischemic stroke were treated with alteplase (recombinant tissue plasminogen activator; 0.9 mg/kg according to National Institute of Neurological Disorders and Stroke protocol) within 3 hours of onset of symptoms. At the beginning of thrombolysis, cortical cerebral blood flow ([(15)O]H(2)O) and FMZ binding were assessed by positron emission tomography (PET). Those early PET findings were related to the change in neurological deficit (National Institutes of Health Stroke Scale) and to the extent of cortical damage on MRI or CT 3 weeks after the stroke. RESULTS: Hypoperfusion was observed in all cases, and in 8 patients the values were below critical thresholds estimated at 12 mL/100 g per minute, comprising 1 to 174 cm(3) of cortical tissue. Substantial reperfusion was seen in most of these regions 24 hours after thrombolysis. In 4 cases, distinct areas of decreased FMZ binding were detected. Those patients suffered permanent lesions in cortical areas corresponding to their FMZ defects (112 versus 146, 3 versus 3, 2 versus 1, and 128 versus 136 cm(3)). In the other patients no morphological defects were detected on MRI or CT, although blood flow was critically decreased in areas ranging in size up to 78 cm(3) before thrombolysis. CONCLUSIONS: These findings suggest that imaging of benzodiazepine receptors by FMZ PET distinguishes between irreversibly damaged and viable penumbra tissue early after acute stroke.  相似文献   

12.
This paper compares the results of parallel positron emission tomography (PET) studies of regional cerebral glucose metabolism with the radiotracer 18F-fluorodeoxyglucose (FDG) and benzodiazepine receptor (BZR) density by PET using the BZR ligand 11C-flumazenil (FMZ), a tracer of neuronal integrity, in nine patients with acute vegetative state (AVS, duration <1 month). Overall glucose utilization was significantly reduced in AVS in comparison with age-matched controls (global metabolic rate for glucose 26 micromol/100 g/min in AVS vs. 31 micromol/100 g/min in controls). FMZ-PET demonstrated a considerable reduction of BZR binding sites in all cortical regions that grossly corresponded to the extent of reduction of cerebral glucose metabolism assessed with FDG-PET, whilst the cerebellum was spared from neuronal loss. In controls, cortical relative flumazenil binding was not lower than five times the average white matter activity, whilst in AVS, nearly all values were below this threshold. There was no relevant overlap of the data of relative flumazenil binding between both groups. The comparison of FDG- and FMZ-PET findings in AVS demonstrates that alterations of cerebral glucose consumption do not represent mere functional inactivation, but irreversible structural brain damage.  相似文献   

13.
[11ClFlumazenil PET in Patients with Epilepsy with Dual Pathology   总被引:1,自引:0,他引:1  
PURPOSE: Coexistence of hippocampal sclerosis and a potentially epileptogenic cortical lesion is referred to as dual pathology and can be responsible for poor surgical outcome in patients with medically intractable partial epilepsy. [11C]Flumazenil (FMZ) positron emission tomography (PET) is a sensitive method for visualizing epileptogenic foci. In this study of 12 patients with dual pathology, we addressed the sensitivity of FMZ PET to detect hippocampal abnormalities and compared magnetic resonance imaging (MRI) with visual as well as quantitative FMZ PET findings. METHODS: All patients underwent volumetric MRI, prolonged video-EEG monitoring, and glucose metabolism PET before the FMZ PET. MRI-coregistered partial volume-corrected PET images were used to measure FMZ-binding asymmetries by using asymmetry indices (AIs) in the whole hippocampus and in three (anterior, middle, and posterior) hippocampal subregions. Cortical sites of decreased FMZ binding also were evaluated by using AIs for regions with MRI-verified cortical lesions as well as for non-lesional areas with visually detected asymmetry. RESULTS: Abnormally decreased FMZ binding could be detected by quantitative analysis in the atrophic hippocampus of all 12 patients, including three patients with discordant or inconclusive EEG findings. Decreased FMZ binding was restricted to only one subregion of the hippocampus in three patients. Areas of decreased cortical FMZ binding were obvious visually in all patients. Decreased FMZ binding was detected visually in nonlesional cortical areas in four patients. The AIs for these nonlesional regions with visual asymmetry were significantly lower than those for regions showing MRI lesions (paired t test, p = 0.0075). CONCLUSIONS: Visual as well as quantitative analyses of FMZ-binding asymmetry are sensitive methods to detect decreased benzodiazepine-receptor binding in the hippocampus and neocortex of patients with dual pathology. MRI-defined hippocampal atrophy is always associated with decreased FMZ binding, although the latter may be localized to only one sub-region within the hippocampus. FMZ PET abnormalities can occur in areas with normal appearance on MRI, but FMZ-binding asymmetry of these regions is lower when compared with that of lesional areas. FMZ PET can be especially helpful when MRI and EEG findings of patients with intractable epilepsy are discordant.  相似文献   

14.
Advances in resuscitation and critical care management have resulted in the survival of many patients despite severe brain damage. These patients may remain in coma or in vegetative state. The probability of recovery of conscious function is dependent on the extent of structural brain damage, which is difficult to assess by clinical, laboratory or functional tests. Positron emission tomography (PET) of 18F‐fluordeoxyglucose (FDG) can be used to investigate metabolic and functional impairment of the brain. In acute vegetative state (AVS, duration < 1 month), overall glucose utilization was significantly reduced in comparison with age‐matched controls. In a few cases with locked‐in syndrome, cortical metabolism was in the normal range. 11C‐Flumazenil (FMZ) measures the density of benzodiazepine receptors (BZRs) and thereby furnishes an estimate of neuronal integrity. PET with this tracer demonstrated a considerable reduction in BZRs in cortical areas, but indicated that the cerebellum was spared from neuronal loss. The comparison of FDG‐ and FMZ‐PET findings in AVS demonstrates that alterations of cerebral glucose consumption do not represent mere functional inactivation, but also irreversible structural damage. In some cases with minimally conscious state, auditory stimuli with emotional valence induced more brain activation (investigated by H215O‐PET) than meaningless noise; such studies can be used to detect residual cortical function. To improve prognostication of chances for recovery, a combination of functional activation studies and assessment of the extent of neuronal damage might be the optimal procedure and should be tested in larger cohorts of patients with comatose states of different severity.  相似文献   

15.
We recently developed a two-compartment, two-parameter tracer kinetic model to estimate the in vivo ligand transport rate (K1) and distribution volume (DV) for the benzodiazepine antagonist [11C]flumazenil (FMZ) as measured by positron emission tomography (PET). The aim of the present study was to validate that this simplified model provides a stable measure of regional benzodiazepine receptor availability even when ligand delivery is altered. Six young normal volunteers underwent two PET studies subsequent to intravenous injections of [11C]FMZ. Each FMZ study was immediately preceded by measurements of CBF following injection of [15O]water. One set of scans (water/FMZ) was acquired under resting conditions and the other set during audiovisual stimulation. Six additional volunteers underwent two FMZ studies under identical resting conditions. Parametric images were analyzed and a comparison of test-retest studies in the stimulation group revealed a significant increase of CBF and K1 of FMZ in the occipital cortex evoked by visual activation, whereas no regional changes were noted for the DV of FMZ. No significant changes were noted for either K1 or DV of FMZ when comparing studies in the rest-rest setting. The results indicate that the use of a simple two-compartment model for the tracer kinetic analysis of [11C]FMZ makes it possible to separate high-affinity binding from altered radio-ligand delivery to the human brain.  相似文献   

16.
Reduced signal on [(11)C]]flumazenil (FMZ) positron emission tomography (PET) is associated with epileptogenic foci. Linear correlations within individuals between parametric and nonparametric images of FMZ binding have been shown, and various methods have been used, without comparison of diagnostic usefulness. Using hippocampal sclerosis (HS) as a test case, we formally compare the diagnostic yield of parametric images obtained either with a parent tracer arterial plasma input function and spectral analysis (yielding volume-of-distribution (VD) images), or with an image-based input function and the simplified reference tissue model (binding potential images, BP-SRTM) with the diagnostic yield of semiquantitative-integrated (ADD) images from 10 to 20 or 20 to 40 mins (ADD1020 and ADD2040). Dynamic 90-min [(11)C]FMZ PET datasets and arterial plasma input functions were available for 15 patients with medically refractory medial temporal lobe epilepsy (TLE) and histologically verified unilateral HS and for 13 control subjects. SPM2 was used for analysis. ADD1020 and ADD2040 images showed decreased FMZ uptake ipsilateral to the epileptogenic hippocampus in 13/15 cases; 6/13 had bilateral decreases in the ADD1020 analysis and 5/13 in the ADD2040 analysis. BP-SRTM images detected ipsilateral decreases in 12/15 cases, with bilateral decreases in three. In contrast, VD images showed ipsilateral hippocampal decreases in all 15 patients, with bilateral decreases in three patients. Bilateral decreases in the ADD images tended to be more symmetrical and in one case were more marked contralaterally. Full quantification with an image-independent input should ideally be used in the evaluation of FMZ PET; at least in TLE, intrasubject correlations do not predict equivalent clinical usefulness.  相似文献   

17.
OBJECTIVES: To analyze interictal patterns of thalamic nuclei glucose metabolism and benzodiazepine receptor binding in patients with medically intractable temporal lobe epilepsy (TLE) using high-resolution 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and [11C]flumazenil (FMZ) PET. BACKGROUND: Structural and glucose metabolic abnormalities of the thalamus are considered important in the pathophysiology of TLE. The differential involvement of various thalamic nuclei in humans is not known. METHODS: Twelve patients with TLE underwent volumetric MRI, FDG and FMZ PET, and prolonged video-EEG monitoring. Normalized values and asymmetries of glucose metabolism and FMZ binding were obtained in three thalamic regions (dorsomedial nucleus [DMN], pulvinar, and lateral thalamus [LAT]) defined on MRI and copied to coregistered, partial-volume-corrected FDG and FMZ PET images. Hippocampal and amygdaloid FMZ binding asymmetries and thalamic volumes also were measured. RESULTS: The DMN showed significantly lower glucose metabolism and FMZ binding on the side of the epileptic focus. The LAT showed bilateral hypermetabolism and increased FMZ binding. There was a significant correlation between the FMZ binding asymmetries of the DMN and amygdala. The PET abnormalities were associated with a significant volume loss of the thalamus ipsilateral to the seizure focus. CONCLUSIONS: Decreased [11C]flumazenil (FMZ) binding and glucose metabolism of the dorsomedial nucleus (DMN) are common and have strong lateralization value for the seizure focus in human temporal lobe epilepsy. Decreased benzodiazepine receptor binding can be due to neuronal loss, as suggested by volume loss, but also may indicate impaired gamma-aminobutyric acid (GABA)ergic transmission in the DMN, which has strong reciprocal connections with other parts of the limbic system. Increased glucose metabolism and FMZ binding in the lateral thalamus could represent an upregulation of GABA-mediated inhibitory circuits.  相似文献   

18.
Summary. The purpose of this study is to identify the underlying differences between patients with white matter lesions (WMLs) who manifested gait disturbance suggestive of vascular parkinsonism (VaP) and those who did not, using the PET scan. Fourteen patients with extensive WMLs, as determined by MRI, were divided into two groups – 7 with gait disturbance and 7 without it. Neuronal integrity was evaluated with a PET scan using [11C]flumazenil (FMZ) by calculating the distribution volume of FMZ (FMZ-Vd) in various regions of interest by non-linear curve fitting. Additionally, tracer kinetic analysis was applied for voxel-by-voxel quantification of FMZ-Vd and data analysis was performed using statistical parametric mapping. The striatal FMZ-Vd values were inversely correlated with the motor UPDRS scores (r = 0.70, p < 0.005), and their reductions were associated with the presence of gait disturbance. Therefore, differences in neuronal integrity in the striatum may determine whether patients with WMLs develop VaP or not.  相似文献   

19.
The peri‐infarct cortex (PIC) is the site of long‐term physiologic changes after ischemic stroke. Traditional methods for delineating the peri‐infarct gray matter (GM) have used a volumetric Euclidean distance metric to define its extent around the infarct. This metric has limitations in the case of cortical stroke, i.e., those where ischemia leads to infarction in the cortical GM, because the vascularization of the cerebral cortex follows the complex, folded topology of the cortical surface. Instead, we used a geodesic distance metric along the cortical surface to subdivide the PIC into equidistant rings emanating from the infarct border and compared this new approach to a Euclidean distance metric definition. This was done in 11 patients with [F‐18]‐Flumazenil ([18‐F]‐FMZ) positron emission tomography (PET) scans at 2 weeks post‐stroke and at 6 month follow‐up. FMZ is a PET radiotracer with specific binding to the alpha subunits of the type A γ‐aminobutyric acid (GABAA) receptor. Additionally, we used partial‐volume correction (PVC) of the PET images to compensate for potential cortical thinning and long‐term neuronal loss in follow‐up images. The difference in non‐displaceable binding potential (BPND) between the stroke unaffected and affected hemispheres was 35% larger in the geodesic versus the Euclidean peri‐infarct models in initial PET images and 48% larger in follow‐up PET images. The inter‐hemispheric BPND difference was approximately 17–20% larger after PVC when compared to uncorrected PET images. PET studies of peri‐infarct GM in cortical strokes should use a geodesic model and include PVC as a preprocessing step. Hum Brain Mapp 38:326–338, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
The in vivo kinetic behavior of [11C]flumazenil ([11C]FMZ), a non-subtype-specific central benzodiazepine antagonist, is characterized using compartmental analysis with the aim of producing an optimized data acquisition protocol and tracer kinetic model configuration for the assessment of [11C]FMZ binding to benzodiazepine receptors (BZRs) in human brain. The approach presented is simple, requiring only a single radioligand injection. Dynamic positron emission tomography data were acquired on 18 normal volunteers using a 60- to 90-min sequence of scans and were analyzed with model configurations that included a three-compartment, four-parameter model, a three-compartment, three-parameter model, with a fixed value for free plus nonspecific binding; and a two-compartment, two-parameter model. Statistical analysis indicated that a four-parameter model did not yield significantly better fits than a three-parameter model. Goodness of fit was improved for three- versus two-parameter configurations in regions with low receptor density, but not in regions with moderate to high receptor density. Thus, a two-compartment, two-parameter configuration was found to adequately describe the kinetic behavior of [11C]FMZ in human brain, with stable estimates of the model parameters obtainable from as little as 20-30 min of data. Pixel-by-pixel analysis yields functional images of transport rate (K1) and ligand distribution volume (DV"), and thus provides independent estimates of ligand delivery and BZR binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号