首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu ZZ  Pan HL 《Neuroscience letters》2004,368(1):96-101
Voltage-gated Ca(2+) channels in the primary sensory neurons are important for neurotransmitter release and regulation of nociceptive transmission. Although multiple classes of Ca(2+) channels are expressed in the dorsal root ganglion (DRG) neurons, little is known about the difference in the specific channel subtypes among the different types of DRG neurons. In this study, we determined the possible difference in high voltage-activated Ca(2+) channel currents between isolectin B(4) (IB(4))-positive and IB(4)-negative small-sized (15-30 microm) DRG neurons. Rat DRG neurons were acutely isolated and labeled with IB(4) conjugated to a fluorescent dye. Whole-cell patch clamp recordings of barium currents flowing through calcium channels were performed on neurons with and without IB(4). The peak current density of voltage-gated Ca(2+) currents was not significantly different between IB(4)-positive and IB(4)-negative neurons. Also, both nimodipine and omega-agatoxin IVA produced similar inhibitory effects on Ca(2+) currents in these two types of neurons. However, block of N-type Ca(2+) channels with omega-conotoxin GVIA produced a significantly greater reduction of Ca(2+) currents in IB(4)-positive than IB(4)-negative neurons. Furthermore, the IB(4)-positive neurons had a significantly smaller residual Ca(2+) currents than IB(4)-negative neurons. These data suggest that a higher density of N-type Ca(2+) channels is present in IB(4)-positive than IB(4)-negative small-sized DRG neurons. This differential expression of the subtypes of high voltage-activated Ca(2+) channels may contribute to the different function of these two classes of nociceptive neurons.  相似文献   

2.
Voltage-gated K+ channels (Kv) in primary sensory neurons are important for regulation of neuronal excitability. The dorsal root ganglion (DRG) neurons are heterogeneous, and the types of native Kv currents in different groups of nociceptive DRG neurons are not fully known. In this study, we determined the difference in the A-type Kv current and its influence on the firing properties between isolectin B4 (IB4)-positive and -negative DRG neurons. Whole cell voltage- and current-clamp recordings were performed on acutely dissociated small DRG neurons of rats. The total Kv current density was significantly higher in IB+-positive than that in IB(4)-negative neurons. Also, 4-aminopyridine (4-AP) produced a significantly greater reduction in Kv currents in IB4-positive than in IB4-negative neurons. In contrast, IB4-negative neurons exhibited a larger proportion of tetraethylammonium-sensitive Kv currents. Furthermore, IB4-positive neurons showed a longer latency of firing and required a significantly larger amount of current injection to evoke action potentials. 4-AP significantly decreased the latency of firing and increased the firing frequency in IB4-positive but not in IB4-negative neurons. Additionally, IB4-positive neurons are immunoreactive to Kv1.4 but not to Kv1.1 and Kv1.2 subunits. Collectively, this study provides new information that 4-AP-sensitive A-type Kv currents are mainly present in IB4-positive DRG neurons and preferentially dampen the initiation of action potentials of this subpopulation of nociceptors. The difference in the density of A-type Kv currents contributes to the distinct electrophysiological properties of IB4-positive and -negative DRG neurons.  相似文献   

3.
Wu ZZ  Chen SR  Pan HL 《Neuroscience》2006,141(1):407-419
Olvanil ((N-vanillyl)-9-oleamide), a non-pungent transient receptor potential vanilloid type 1 agonist, desensitizes nociceptors and alleviates pain. But its molecular targets and signaling mechanisms are little known. Calcium influx through voltage-activated Ca(2+) channels plays an important role in neurotransmitter release and synaptic transmission. Here we determined the effect of olvanil on voltage-activated Ca(2+) channel currents and the signaling pathways in primary sensory neurons. Whole-cell voltage-clamp recordings were performed in acutely isolated rat dorsal root ganglion neurons. Olvanil (1 microM) elicited a delayed but sustained inward current, and caused a profound inhibition (approximately 60%) of N-, P/Q-, L-, and R-type voltage-activated Ca(2+) channel current. Pretreatment with a specific transient receptor potential vanilloid type 1 antagonist or intracellular application of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid abolished the inhibitory effect of olvanil on voltage-activated Ca(2+) channel current. Calmodulin antagonists (ophiobolin-A and calmodulin inhibitory peptide) largely blocked the effect of olvanil and capsaicin on voltage-activated Ca(2+) channel current. Furthermore, calcineurin (protein phosphatase 2B) inhibitors (deltamethrin and FK-506) eliminated the effect of olvanil on voltage-activated Ca(2+) channel current. Notably, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, calmodulin antagonists, and calcineurin inhibitors each alone significantly increased the amplitude of voltage-activated Ca(2+) channel current. In addition, double immunofluorescence labeling revealed that olvanil induced a rapid internalization of Ca(V)2.2 immunoreactivity from the membrane surface of dorsal root ganglion neurons. Collectively, this study suggests that stimulation of non-pungent transient receptor potential vanilloid type 1 inhibits voltage-activated Ca(2+) channels through a biochemical pathway involving intracellular Ca(2+)-calmodulin and calcineurin in nociceptive neurons. This new information is important for our understanding of the signaling mechanisms of desensitization of nociceptors by transient receptor potential vanilloid type 1 analogues and the feedback regulation of intracellular Ca(2+) and voltage-activated Ca(2+) channels in nociceptive sensory neurons.  相似文献   

4.
Opioid receptors can couple to K(+) and Ca(2+) channels, adenylyl cyclase, and phosphatidyl inositol turnover. Any of these actions may be important in the regulation of neurotransmitter and hormone release from excitable cells. GH(3) cells exhibit spontaneous oscillations of intracellular Ca(2+) concentration ([Ca(2+)](i)) and prolactin release. Activation of cloned delta-opioid receptors stably expressed in GH(3) cells inhibits both spontaneous Ca(2+) signaling and basal prolactin release. The objective of this study was to examine a possible role for K(+) channels in these processes using the patch-clamp technique, fluorescence imaging, and a sensitive ELISA for prolactin. The selective delta receptor agonist [D-Pen(2), D-Pen(2)]enkephalin (DPDPE) inhibited [Ca(2+)](i) oscillations in GH(3) cells expressing both mu and delta receptors (GH(3)MORDOR cells) but had no effect on control GH(3) cells or cells expressing mu receptors alone (GH(3)MOR cells). The inhibition of [Ca(2+)](i) oscillations by DPDPE was unaffected by thapsigargin pretreatment, suggesting that this effect is independent of inositol 1,4,5-triphosphate-sensitive Ca(2+) stores. DPDPE caused a concentration-dependent inhibition of prolactin release from GH(3)MORDOR cells with an IC(50) of 4 nM. DPDPE increased inward K(+) current recorded from GH(3)MORDOR cells but had no significant effect on K(+) currents recorded from control GH(3) cells or GH(3)MOR cells. The mu receptor agonist morphine also had no effect on currents recorded from control cells but activated inward K(+) currents recorded from GH(3)MOR and GH(3)MORDOR cells. Somatostatin activated inward currents recorded from all three cell lines. The DPDPE-sensitive K(+) current was inwardly rectifying and was inhibited by Ba(2+) but not TEA. DPDPE had no effect on delayed rectifier-, Ca(2+)-, and voltage-activated or A-type K(+) currents, recorded from GH(3)MORDOR cells. Ba(2+) attenuated the inhibition of [Ca(2+)](i) and prolactin release by DPDPE, whereas TEA had no effect, consistent with an involvement of K(IR) channels in these actions of the opioid.  相似文献   

5.
Propagation of odor-induced Ca(2+) transients from the cilia/knob to the soma in mammalian olfactory receptor neurons (ORNs) is thought to be mediated exclusively by high-voltage-activated Ca(2+) channels. However, using confocal Ca(2+) imaging and immunocytochemistry we identified functional T-type Ca(2+) channels in rat ORNs. Here we show that T-type Ca(2+) channels in ORNs also mediate propagation of odor-induced Ca(2+) transients from the knob to the soma. In the presence of the selective inhibitor of T-type Ca(2+) channels mibefradil (10-15 microM) or Ni(2+) (100 microM), odor- and forskolin/3-isobutyl-1-methyl-xanthine (IBMX)-induced Ca(2+) transients in the soma and dendrite were either strongly inhibited or abolished. The percentage of inhibition of the Ca(2+) transients in the knob, however, was 40-50% less than that in the soma. Ca(2+) transients induced by 30 mM K(+) were partially inhibited by mibefradil, but without a significant difference in the extent of inhibition between the knob and soma. Furthermore, an increase of as little as 2.5 mM in the extracellular K(+) concentration (7.5 mM K(+)) was found to induce Ca(2+) transients in ORNs, and such responses were completely inhibited by mibefradil or Ni(2+). Total replacement of extracellular Na(+) with N-methyl-d-glutamate inhibited none of the odor-, forskolin/IBMX- or 7.5 mM K(+)-induced Ca(2+) transients. Positive immunoreactivity to the Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3 subunits of the T-type Ca(2+) channel was observed throughout the soma, dendrite and knob. These data suggest that involvement of T-type Ca(2+) channels in the propagation of odor-induced Ca(2+) transients in ORNs may contribute to signal transduction and odor sensitivity.  相似文献   

6.
Electrically excitable cells have voltage-dependent ion channels on the plasma membrane that regulate membrane permeability to specific ions. Voltage-gated Ca(2+) channels (VGCCs) are especially important as Ca(2+) serves as both a charge carrier and second messenger. Zebrafish (Danio rerio) are an important model vertebrate for studies of neuronal excitability, circuits, and behavior. However, electrophysiological properties of zebrafish VGCCs remain largely unexplored because a suitable preparation for whole cell voltage-clamp studies is lacking. Rohon-Beard (R-B) sensory neurons represent an attractive candidate for this purpose because of their relatively large somata and functional homology to mammalian dorsal root ganglia (DRG) neurons. Transgenic zebrafish expressing green fluorescent protein in R-B neurons, (Isl2b:EGFP)(ZC7), were used to identify dissociated neurons suitable for whole cell patch-clamp experiments. Based on biophysical and pharmacological properties, zebrafish R-B neurons express both high- and low-voltage-gated Ca(2+) current (HVA- and LVA-I(Ca), respectively). Ni(+)-sensitive LVA-I(Ca) occur in the minority of R-B neurons (30%) and ω-conotoxin GVIA-sensitive Ca(V)2.2 (N-type) Ca(2+) channels underlie the vast majority (90%) of HVA-I(Ca). To identify G protein coupled receptors (GPCRs) that modulate HVA-I(Ca), a panel of neurotransmitters was screened. Application of GABA/baclofen or serotonin produced a voltage-dependent inhibition while application of the mu-opioid agonist DAMGO resulted in a voltage-independent inhibition. Unlike in mammalian neurons, GPCR-mediated voltage-dependent modulation of I(Ca) appears to be transduced primarily via a cholera toxin-sensitive Gα subunit. These results provide the basis for using the zebrafish model system to understanding Ca(2+) channel function, and in turn, how Ca(2+) channels contribute to mechanosensory function.  相似文献   

7.
Geniculate ganglion (GG) cell bodies of chorda tympani (CT), greater superficial petrosal (GSP), and posterior auricular (PA) nerves transmit orofacial sensory information to the rostral nucleus of the solitary tract (rNST). We used whole cell recording to study the characteristics of the Ca(2+) channels in isolated Fluorogold-labeled GG neurons that innervate different peripheral receptive fields. PA neurons were significantly larger than CT and GSP neurons, and CT neurons could be further subdivided based on soma diameter. Although all GG neurons possess both low voltage-activated (LVA) "T-type" and high voltage-activated (HVA) Ca(2+) currents, CT, GSP, and PA neurons have distinctly different Ca(2+) current expression patterns. Of GG neurons that express T-type currents, the CT and GSP neurons had moderate and PA neurons had larger amplitude T-type currents. HVA Ca(2+) currents in the GG neurons were separated into several groups using specific Ca(2+) channel blockers. Sequential applications of L, N, and P/Q-type channel antagonists inhibited portions of Ca(2+) current in all CT, GSP, and PA neurons to a different extent in each neuron group. No difference was observed in the percentage of L- and N-type Ca(2+) currents reduced by the antagonists in CT, GSP, and PA neurons. Action potentials in GG neurons are followed by a Ca(2+) current initiated after depolarization (ADP) that may influence intrinsic firing patterns. These results show that based on Ca(2+) channel expression the GG contains a heterogeneous population of sensory neurons possibly related to the type of sensory information they relay to the rNST.  相似文献   

8.
Activation of ionotropic gamma-aminobutyric acid type A (GABA(A)) receptors depolarizes neurons that have high intracellular [Cl(-)], causing inhibition or excitation in different cell types. The depolarization often leads to inactivation of voltage-gated Na channels, but additional ionic mechanisms may also be affected. Previously, a simulated model of spider VS-3 mechanosensory neurons suggested that although voltage-activated Na(+) current is partially inactivated during GABA-induced depolarization, a slowly activating and inactivating component remains and may contribute to the depolarization. Here, we confirmed experimentally, by blocking Na channels prior to GABA application, that Na(+) current contributes to GABA-induced depolarization in VS-3 neurons. Ratiometric Ca(2+) imaging experiments combined with intracellular recordings revealed a significant increase in intracellular [Ca(2+)] when GABA(A) receptors were activated, synchronous with the depolarization and probably due to Ca(2+) influx via low-voltage-activated (LVA) Ca channels. In contrast, GABA(B)-receptor activation in these neurons was previously shown to inhibit LVA current. Blockade of voltage-gated K channels delayed membrane repolarization, extending GABA-induced depolarization. However, inhibition of Ca channels significantly increased the amplitude of GABA-induced depolarization, indicating that Ca(2+)-activated K(+) current has an even stronger repolarizing effect. Regulation of intracellular [Ca(2+)] is important for many cellular processes and Ca(2+) control of K(+) currents may be particularly important for some functions of mechanosensory neurons, such as frequency tuning. These data show that GABA(A)-receptor activation participates in this regulation.  相似文献   

9.
T-type Ca(2+) channels are low-voltage-activated Ca(2+) channels that control Ca(2+) entry in excitable cells during small depolarization above resting potentials. Using Ca(2+) imaging with a laser scanning confocal microscope we investigated the involvement of T-type Ca(2+) channels in IBMX/forskolin- and sparingly elevated extracellular K(+)-induced Ca(2+) transients in freshly isolated porcine olfactory receptor neurons (ORNs). In the presence of mibefradil (10microM) or Ni(2+) (100microM), the selective T-type Ca(2+) channel inhibitors, IBMX/forskolin-induced Ca(2+) transients in the soma were either strongly (>60%) inhibited or abolished completely. However, the Ca(2+) transients in the knob were only partially (<60%) inhibited. Ca(2+) transients induced by 30mM K(+) were also partially ( approximately 60%) inhibited at both the knob and soma. Furthermore, ORNs responded to as little as a 2.5mM increase in the extracellular K(+) concentration (7.5mM K(+)), and such responses were completely inhibited by mibefradil or Ni(2+). These results reveal functional expression of T-type Ca(2+) channels in porcine ORNs, and suggest a role for these channels in the spread Ca(2+) transients from the knob to the soma during activation of the cAMP cascade following odorant binding to G-protein-coupled receptors on the cilia/knob of ORNs.  相似文献   

10.
The effect of a nitric oxide (NO) donor on high-voltage-activated Ca(2+) channel currents (I(Ca)) was examined using the whole cell patch-clamp technique in L(6)-S(1) dorsal root ganglion (DRG) neurons innervating the urinary bladder. The neurons were labeled by axonal transport of a fluorescent dye, Fast Blue, injected into the bladder wall. Approximately 70% of bladder afferent neurons exhibited tetrodotoxin (TTX)-resistant action potentials (APs), and 93% of these neurons were sensitive to capsaicin, while the remaining neurons had TTX-sensitive spikes and were insensitive to capsaicin. The peak current density of nimodipine-sensitive L-type Ca(2+) channels activated by depolarizing pulses (0 mV) from a holding potential of -60 mV was greater in bladder afferent neurons with TTX-resistant APs (39.2 pA/pF) than in bladder afferent neurons with TTX-sensitive APs (28.9 pA/pF), while the current density of omega-conotoxin GVIA-sensitive N-type Ca(2+) channels was similar (43-45 pA/pF) in both types of neurons. In both types of neurons, the NO donor, S-nitroso-N-acetylpenicillamine (SNAP) (500 microM), reversibly reduced (23.4-26.6%) the amplitude of I(Ca) elicited by depolarizing pulses to 0 mV from a holding potential of -60 mV. SNAP-induced inhibition of I(Ca) was reduced by 90% in the presence of omega-conotoxin GVIA but was unaffected in the presence of nimodipine, indicating that NO-induced inhibition of I(Ca) is mainly confined to N-type Ca(2+) channels. Exposure of the neurons for 30 min to 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM), an inhibitor of NO-stimulated guanylyl cyclase, prevented the SNAP-induced reduction in I(Ca). Extracellular application of 8-bromo-cGMP (1 mM) mimicked the effects of NO donors by reducing the peak amplitude of I(Ca) (28.6% of reduction). Action potential configuration and firing frequency during depolarizing current pulses were not altered by the application of SNAP (500 microM) in bladder afferent neurons with TTX-resistant and -sensitive APs. These results indicate that NO acting via a cGMP signaling pathway can modulate N-type Ca(2+) channels in DRG neurons innervating the urinary bladder.  相似文献   

11.
Protons play a key role in nociception caused by inflammation and ischaemia, but little is known about the relative sensitivities of different dorsal root ganglion (DRG) neurons. We have therefore examined the responses in vitro of rat DRG cells classified according to whether or not they bind Griffonia simplicifolia IB4 (IB4), a lectin which is widely used to distinguish between two major populations of small diameter neurons. Under voltage-clamp conditions, proton-activated inward currents were found in approximately 90% of small DRG neurons and showed one of three waveforms: transient, sustained or mixed. The majority of IB4-positive (IB4+) neurons (63%) gave rise to sustained inward currents that were sensitive to capsazepine. In contrast, the most prevalent waveform in small IB4-negative (IB4-) neurons (69%) was a mixed response containing transient and sustained components. The transient component was inhibited by amiloride whilst the sustained component showed a variable sensitivity to capsazepine. We also found that more IB4+ cells responded to capsaicin and, on average, gave rise to a larger magnitude of response than small IB4- neurons, consistent with their higher prevalence and greater amplitude of vanilloid receptor 1 (TRPV1)-like acid responses. The increase in intracellular Ca(2+) induced by capsaicin was also slightly greater in IB4+ neurons and in these cells its magnitude correlated with the level of TRPV1 immunoreactivity. Our data suggest that acid-sensing ion channels (ASICs) and TRPV1 are the major acid-sensitive receptors in small IB4- neurons, whilst TRPV1 is the predominant one in IB4+ neurons. Because ASIC-like responses were approximately 10-fold more sensitive to changes in H(+) than TRPV1-like responses, we speculate that small IB4- rather than IB4+ neurons play an essential role in sensing acid. Our results also highlight differences in capsaicin responses between IB4+ and IB4- small neurons and reveal the close link between capsaicin responses and levels of TRPV1 expression.  相似文献   

12.
Hyperpolarization-activated cyclic nucleotide-gated channels (HCN) are responsible for the functional hyperpolarization-activated current (I(h)) in dorsal root ganglion (DRG) neurons. We studied HCN1-4 channel mRNA and protein expression and correlated these findings with I(h) functional properties in rat DRG neurons of different size. Quantitative RT-PCR (TaqMan) analysis demonstrated that HCN2 and HCN1 mRNAs were more abundantly expressed in large diameter (55-80 microm) neurons, while HCN3 mRNA was preferentially expressed in small diameter (20-30 microm) neurons. HCN4 mRNA expression was very low in neurons of all sizes. At the protein level, subunit-selective polyclonal antibodies and immunofluorescence indicated that HCN1 and HCN3 are present in large diameter neurons and small diameter neurons. Staining in small diameter neurons was in IB4-positive (non-peptidergic) and IB4-negative (peptidergic) cells. HCN2 immunofluorescent staining was heterogeneous and predominantly in large diameter neurons and in small diameter IB4-negative neurons. HCN4 was poorly expressed in all neurons. Functionally, I(h) amplitude and density were significantly larger, and activation kinetics faster, in large diameter neurons when compared with small neurons. I(h) activation rates in small and large diameter DRG neurons were consistent with the relative abundance of HCN subunits in the respective cell type, considering the reported HCN channel activation rates in heterologous systems (HCN1>HCN2 approximately HCN3>HCN4), suggesting exclusivity of roles of different HCN subunits contributing to the excitability of DRG neurons of different size. Additionally, a functional role of I(h) in small DRG neuron excitability was evaluated using a computational model.  相似文献   

13.
The effect of interleukin-1β (IL-1β) on the electrical properties of sensory neurons was assessed at levels and exposure times comparable to those found in animal models of neuropathic pain. Experiments involved whole cell current-clamp recordings from rat dorsal root ganglion (DRG) neurons in defined-medium, neuron-enriched cultures. Five- to six-day exposure to 100 pM IL-1β produced subpopulation-dependent effects on DRG neurons. These included an increase in the excitability of medium-diameter and small-diameter isolectin B(4) (IB(4))-positive neurons that was comparable to that found after peripheral nerve injury. By contrast, a reduction in excitability was observed in large-diameter neurons, while no effect was found in small-diameter IB(4)-negative neurons. Further characterization of changes in medium and small IB(4)-positive neurons revealed that some, but not all, effects of IL-1β were mediated through its receptor, IL-1RI. Although the acute actions of IL-1β on sensory neurons have been well studied and related to acute and/or inflammatory pain, the present study shows how sensory neurons respond to long-term cytokine exposure. Such effects are relevant to understanding processes that contribute to the onset of neuropathic pain.  相似文献   

14.
Voltage-gated Ca(2+) (Ca(v))1.3 α-subunits of high voltage-activated Ca(2+) channels (HVACCs) are essential for Ca(2+) influx and transmitter release in cochlear inner hair cells and therefore for signal transmission into the central auditory pathway. Their absence leads to deafness and to striking structural changes in the auditory brain stem, particularly in the lateral superior olive (LSO). Here, we analyzed the contribution of various types of HVACCs to the total Ca(2+) current (I(Ca)) in developing mouse LSO neurons to address several questions: do LSO neurons express functional Ca(v)1.3 channels? What other types of HVACCs are expressed? Are there developmental changes? Do LSO neurons of Ca(v)1.3(-/-) mice show any compensatory responses, namely, upregulation of other HVACCs? Our electrophysiological and pharmacological results showed the presence of functional Ca(v)1.3 and Ca(v)1.2 channels at both postnatal days 4 and 12. Aside from these L-type channels, LSO neurons also expressed functional P/Q-type, N-type, and, most likely, R-type channels. The relative contribution of the four different subtypes to I(Ca) appeared to be 45%, 29%, 22%, and 4% at postnatal day 12, respectively. The physiological results were flanked and extended by quantitative RT-PCR data. Altogether, LSO neurons displayed a broad repertoire of HVACC subtypes. Genetic ablation of Ca(v)1.3 resulted in functional reorganization of some other HVACCs but did not restore normal I(Ca) properties. Together, our results suggest that several types of HVACCs are of functional relevance for the developing LSO. Whether on-site loss of Ca(v)1.3, i.e., in LSO neurons, contributes to the recently described malformation of the LSO needs to be determined by using tissue-specific Ca(v)1.3(-/-) animals.  相似文献   

15.
Among autonomic neurons, sympathetic neurons of the major pelvic ganglia (MPG) are unique by expressing low-voltage-activated T-type Ca2+ channels. To date, the T-type Ca2+ channels have been poorly characterized, although they are believed to be potentially important for functions of the MPG neurons. In the present study, thus we investigated characteristics and molecular identity of the T-type Ca2+ channels using patch-clamp and RT-PCR techniques. When the external solution contained 10 mM Ca2+ as a charge carrier, T-type Ca2+ currents were first activated at -50 mV and peaked around -20 mV. Besides the low-voltage activation, T-type Ca2+ currents displayed typical characteristics including transient activation/inactivation and voltage-dependent slow deactivation. Overlap of the activation and inactivation curves generated a prominent window current around resting membrane potentials. Replacement of the external Ca2+ with 10 mM Ba2+ did not affect the amplitudes of T-type Ca2+ currents. Mibefradil, a known T-type Ca2+ channel antagonist, depressed T-type Ca2+ currents in a concentration-dependent manner (IC50 = 3 microM). Application of Ni2+ also produced a concentration-dependent blockade of T-type Ca2+ currents with an IC50 of 10 microM. The high sensitivity to Ni2+ implicates alpha1H in generating the T-type Ca2+ currents in MPG neurons. RT-PCR experiments showed that MPG neurons predominantly express mRNAs encoding splicing variants of alpha1H (called pelvic Ta and Tb, short and long forms of alpha1H, respectively). Finally, we tested whether the low-threshold spikes could be generated in sympathetic MPG neurons expressing T-type Ca2+ channels. When hyperpolarizing currents were injected under a current-clamp mode, sympathetic neurons produced postanodal rebound spikes, while parasympathetic neurons were silent. The number of the rebound spikes was reduced by 10 microM Ni2+ that blocked 50% of T-type Ca2+ currents and had a little effect on HVA Ca2+ currents in sympathetic MPG neurons. Furthermore, generation of the rebound spikes was completely prevented by 100 microM Ni2+ that blocked most of the T-type Ca2+ currents. In conclusions, T-type Ca2+ currents in MPG neurons mainly arise from alpha1H among the three isoforms (alpha1G, alpha1H, and alpha1I) and may contribute to generation of low-threshold spikes in sympathetic MPG neurons.  相似文献   

16.
17.
N-acetylcysteine (NAC) is a thiol-containing (sulphydryl donor) antioxidant, which contributes to regeneration of glutathione (GSH) and also acts through a direct reaction with free radicals. Thiol depletion has been implicated in the neurobiology of sensory neurons and pain. We reported recently an activator role of intracellular GSH depletion on calcium influx through transient receptor potential melastatin-like 2 (TRPM2) channels in rat dorsal root ganglion (DRG). NAC may have a protective role on calcium influx through regulation of TRPM2 channels in the neurons. Therefore, we tested the effects of NAC on TRPM2 channel currents in cytosolic GSH depleted DRG in rats. DRG neurons were freshly isolated from rats and the neurons were incubated for 24 h with buthionine sulfoximine (BSO). In whole-cell patch clamp experiments, TRPM2 currents in the DRG incubated with BSO were gated by H(2)O(2). TRPM2 channels current densities, cytosolic free Ca(2+) content, and lipid peroxidation values in the neurons were higher in H(2)O(2) and BSO + H(2)O(2) group than in controls; however GSH and GSH peroxidase (GSH-Px) values were decreased. BSO + H(2)O(2)-induced TRPM2 channel gating was totally inhibited by extracellular NAC and partially inhibited by 2-aminoethyl diphenylborinate. GSH-Px activity, lipid peroxidation and GSH levels in the DRG neurons were also modulated by NAC. In conclusion, we observed a modulator role of NAC on Ca(2+) influx through a TRPM2 channel in intracellular GSH depleted DRG neurons. NAC incubation before BSO exposure appears to be more protective than NAC incubation after BSO exposure. Since cytosolic thiol group depletion is a common feature of neuropathic pain, our findings are relevant to the etiology and treatment of pain neuropathology in DRG neurons.  相似文献   

18.
T-type Ca2+ channels are expressed in a wide variety of central and peripheral neurons and play an important role in neuronal firing and rhythmicity. Here we examined the effects of hypoxia on the recently cloned T-type Ca2+ channel alpha1G, alpha1H and alpha1I subunits, stably expressed in HEK 293 cells. In cells expressing the human alpha1H or the rat alpha1I subunit, Ca2+ channel currents were inhibited reversibly by hypoxia (PO2<110 mm Hg). The degree of inhibition was more marked in cells expressing the a1H subunit. This hypoxic inhibition was not voltage dependent. In cells expressing the rat alpha1G subunit, hypoxia caused no detectable reduction in Ca2+ channel activity. Regardless of the channel type examined, hypoxia was without effect on the kinetic properties of the Ca2+ current (activation, inactivation and deactivation) or on steady-state inactivation. Ca2+ current through the alpha1H subunit was enhanced by the reducing agent reduced glutathione (GSH; 2 mM) and inhibited by oxidised glutathione (GSSG; 2 mM). In contrast, Ca2+ current through the alpha1G subunit was unaffected by GSH. In alpha1H cells, neither GSH nor GSSG had any effect on the ability of hypoxia to reduce Ca2+ current amplitudes. Thus, different members of the T-type Ca2+ channel family are differently regulated by hypoxia and redox agents. Hypoxic regulation of the alpha1H subunit appears to be independent of changes in levels of the intracellular redox couple GSSG:GSH.  相似文献   

19.
The modulatory effect of D(2) dopamine receptor activation on calcium currents was studied in neostriatal projection neurons at two stages of rat development: postnatal day (PD)14 and PD40. D(2)-class receptor agonists reduced whole cell calcium currents by about 35% at both stages, and this effect was blocked by the D(2) receptor antagonist sulpiride. Nitrendipine partially occluded this modulation at both stages, indicating that modulation of Ca(V)1 channels was present throughout this developmental interval. Nevertheless, modulation of Ca(V)1 channels was significantly larger in PD40 neurons. omega-Conotoxin GVIA occluded most of the Ca(2+) current modulation in PD14 neurons. However, this occlusion was greatly decreased in PD40 neurons. omega-Agatoxin TK occluded a great part of the modulation in PD40 neurons but had a negligible effect in PD14 neurons. The data indicate that dopaminergic D(2)-mediated modulation undergoes a change in target during development: from Ca(V)2.2 to Ca(V)2.1 Ca(2+) channels. This change occurred while Ca(V)2.2 channels were being down-regulated and Ca(V)2.1 channels were being up-regulated. Presynaptic modulation mediated by D(2) receptors reflected these changes; Ca(V)2.2 type channels were used for release in young animals but very little in mature animals, suggesting that changes took place simultaneously at the somatodendritic and the synaptic membranes.  相似文献   

20.
Sciatic nerve section (axotomy) increases the excitability of rat dorsal root ganglion (DRG) neurons. The changes in Ca2+ currents, K+ currents, Ca2+ sensitive K+ current, and hyperpolarization-activated cation current (I(H)) that may be associated with this effect were examined by whole cell recording. Axotomy affected the same conductances in all types of DRG neuron. In general, the largest changes were seen in "small" cells and the smallest changes were seen in "large" cells. High-voltage-activated Ca2+ channel current (HVA-I(Ba)) was reduced by axotomy. Although currents recorded in axotomized neurons exhibited increased inactivation, this did not account for all of the reduction in HVA-I(Ba). Activation kinetics were unchanged, and experiments with nifedipine and/or omega-conotoxin GVIA showed that there was no change in the percentage contribution of L-type, N-type, or "other" HVA-I(Ba) to the total current after axotomy. T-type (low-voltage-activated) I(Ba) was not affected by axotomy. Ca2+ sensitive K+ conductance (g(K,Ca)) appeared to be reduced, but when voltage protocols were adjusted to elicit similar amounts of Ca2+ influx into control and axotomized cells, I(K,Ca)(s) were unchanged. After axotomy, Cd2+ insensitive, steady-state K+ channel current, which primarily comprised delayed rectifier K+ current (I(K)), was reduced by about 60% in small, medium, and large cells. These data suggest that axotomy-induced increases in excitability are associated with decreases in I(K) and/or decreases in g(K,Ca) that are secondary to decreased Ca2+ influx. Because I(H) was reduced by axotomy, changes in this current do not contribute to increased excitability. The amplitude and inactivation of I(Ba) in all cell types was changed more profoundly in animals that exhibited self-mutilatory behavior (autotomy). The onset of this behavior corresponded with significant reduction in I(Ba) of large neurons. This finding supports the hypothesis that autotomy, that may be related to human neuropathic pain, is associated with changes in the properties of large myelinated sensory neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号