首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moderate dietary or caloric restriction (DR) modulates animal physiology in a beneficial fashion. Previously, we have reported an equitoxic dose experiment where liver injury in DR male Sprague-Dawley rats exposed to a low dose of thioacetamide (TA, 50 mg/kg) was similar to that observed in ad libitum fed (AL) rats exposed to a 12-fold higher dose (600 mg/kg). Paradoxically, the AL rats experienced 90% mortality while all of the DR rats, with the same amount of initial bioactivation-mediated liver injury, survived. The protection observed in the DR rats was due to efficient compensatory liver tissue repair, which was delayed and attenuated in the AL rats, leading to progression of liver injury. The objective of the present study was to investigate the molecular mechanisms of the enhanced tissue repair in the DR rats upon equitoxic challenge with TA. Promitogenic mechanisms and mediators such as proinflammatory cytokines (TNF-alpha and IL-6), growth factors (TGF-alpha and HGF), and inducible nitric oxide synthase (iNOS) were estimated over a time course after equitoxic challenge (50 mg/kg to DR vs. 600 mg/kg to AL rats). Except for TNF-alpha, all other molecules were expressed earlier and in greater amount in the DR rats. IL-6 was 10-fold greater and peaked 12 h earlier; HGF also peaked 12 h sooner in the DR rats, when it was 2.5-fold greater than the value in the AL rats. TGF-alpha expression in livers of DR rats increased after TA administration and peaked at 24 h. In the AL rats, it was lower and peaked at 36 h. Diet restriction alone induced iNOS 2-fold in the DR rats and remained elevated until 12 h after TA administration, then declined thereafter. The lower iNOS activity in the AL rats further decreased after TA injection. DR rats exhibited higher apoptosis after thioacetamide administration, which further increased the efficiency of tissue repair. Taken together, these data indicate that even though the liver injury is near equal in AL and DR rats, sluggish signal transduction leads to delayed liver regeneration, progression of liver injury, and death in the AL rats. The equitoxic dose experiment indicates that stimulation of tissue repair is independent of the extent of initial liver injury and is governed by physiology of diet restriction. DR stimulates promitogenic signaling leading to a quick and timely response upon liver injury, arrest of progressive injury on one hand, and recovery from injury on the other, paving the way for survival of the DR rats.  相似文献   

2.
The environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) produces cleft palate (CP) and hydronephrosis (HN) in mice. The etiology of these defects involves hyperproliferation of epithelial cells of the secondary palatal shelf and ureter, respectively. These effects correlate with altered expression of the epidermal growth factor receptor (EGFR), epidermal growth factor (EGF), and transforming growth factor-alpha (TGF-alpha). In this study, the developmental toxicity of TCDD was examined in EGF, TGF-alpha, and double EGF + TGF-alpha knockout (-/-) and wild type (WT) mice. The influence of background genetics in responsiveness to TCDD was examined using liver 7-ethoxyresorufin-O-deethylase (EROD) activity. Animals were dosed by gavage with 0, 0.2, 1, 5, 24, 50, 100, or 150 micro g TCDD/kg (5 ml/kg) body weight on gestation day 12. The mixed genetic background of WT, EGF (-/-), and EGF + TGF-alpha (-/-) made these mice less responsive to TCDD relative to C57BL/6J and TGF-alpha (-/-), which have a C57BL background. These results show that EGF and TGF-alpha are not required for response to TCDD; however, the specific ligand available to bind EGFR affects the responsiveness to TCDD. EGF (-/-) mice are less responsive for CP, but more sensitive to HN. TGF-alpha (-/-) mice were similar to WT in sensitivity for induction of CP and HN. The responses of EGF + TGF-alpha (-/-) mice were like the WT except at higher doses where sensitivity to CP increased, suggesting that the responses may be mediated by alternative ligands for EGFR that are not functional equivalents of EGF or TGF-alpha. In conclusion, the EGFR pathway is mechanistically important in responses of the embryo to TCDD. Specific ligands confer sensitivity or resistance that are target tissue-dependent.  相似文献   

3.
4.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exposure produces hydronephrosis and cleft palate in mice. These responses are correlated with disruption of expression of epidermal growth factor (EGF) receptor ligands, primarily EGF and transforming growth factor-alpha (TGF-alpha), and altered epithelial cell proliferation and differentiation. This research examined the role of these growth factors in TCDD-induced teratogenicity by using wild type (WT) and knockout (-/-) mice that do not express EGF, TGF-alpha, or both EGF and TGF-alpha. Pregnant females were weighed on GD 12 and dosed by gavage with either corn oil or TCDD at 24 microg/kg, 5 ml/kg. On GD 17.5, the maternal parameters evaluated included body weight, body weight gain, liver weight (absolute and adjusted for body weight). The number of implantations, live and dead fetuses, early or late resorptions, the proportion of males, fetal body weight, fetal absolute and relative liver weight, placenta weight, incidence of cleft palate, and the severity and incidence of hydronephrosis were recorded. TCDD did not affect maternal weight gain, fetal weight, or survival, but maternal and fetal liver weights and liver-to-body weight ratios were increased in all genotypes. The WT and TGF-alpha (-/-), but not the EGF (-/-) and EGF + TGF-alpha (-/-) fetuses, developed cleft palate after exposure to 24 microg TCDD/kg. Hydronephrosis was induced by TCDD in all genotypes, with the incidence in EGF + TGF-alpha (-/-) fetuses comparable to that of the WT. The incidence and severity of this defect was substantially increased in EGF (-/-) and TGF-alpha (-/-). In conclusion, this study demonstrated that expression of EGF influences the induction of cleft palate by TCDD. Also, EGF and TGF-alpha are not required for the induction of hydronephrosis, but when either is absent the response of the fetal urinary tract to TCDD is enhanced.  相似文献   

5.
6.
Previous studies suggest that tumor necrosis factor alpha (TNF-alpha) and the TNFRI (p55) and TNFRRII (p75) receptors mediate the pulmonary fibrotic response to silica. In order to further define the role of the TNFRI (p55) receptor in induction of profibrotic chemokines by low-dose silica/crystalline silica (50 micro g/50 micro l/mouse) or control diluent saline was instilled into the trachea of TNFRI gene ablated ((-/-)) and C57BL/6 (WT) control mice. Lung tissue was harvested and bronchoalveolar lavage (BAL) performed 24 h and 28 days following silica administration. Selected profibrotic chemokine mRNAs were quantified by ribonuclease protection assay, normalized to ribosomal protein L32 mRNA content and expressed relative to saline control treated lungs. Induction of MIP-1beta, MIP-1alpha, MIP-2, IP-10, and MCP-1 mRNAs was attenuated in the TNFRI(-/-) mice, in comparison to WT mice, particularly at 28 days after exposure. ELISA assays for MIP-1alpha and MIP-2 in homogenized lung tissue similarly demonstrated marked induction of both chemokines 24 h after silica treatment, which was persistent at 28 days in WT but not in TNFRI(-/-) mice. The percentage of BAL cells that was neutrophils was comparably increased in WT and RI(-/-) lungs at 24 h (49 +/- 12% vs. 46 +/- 10%) and 28 days (6.2 +/- 1.5% vs. 4.5 +/- 1%). The increase in total lavagable cells and BAL protein was also independent of strain. Histology revealed mild alveolitis without granuloma formation in both strains, slightly decreased in TNFRI(-/-). This study demonstrates an increase in pro-fibrotic chemokines in response to a single intratracheal exposure to crystalline silica that was sustained at 28 days after treatment in WT but not in TNFRI(-/-) mice. Silica dependent recruitment of neutrophils to the alveolar space and alveolar protein leak were, however, not altered by the absence of the TNF receptor.  相似文献   

7.
tert-Butyl alcohol (TBA) has been shown to cause kidney tumors in male rats following chronic administration in drinking water. The objective of the present study was to determine whether TBA induces alpha 2u-globulin (alpha 2u) nephropathy (alpha 2u-N) and enhanced renal cell proliferation in male, but not female, F-344 rats, and whether the dosimetry of TBA to the kidney is gender specific. Male and female F-344 rats were exposed to 0, 250, 450, or 1750 ppm TBA vapors 6 h/day for 10 consecutive days to assess alpha 2u-nephropathy and renal cell proliferation and for 1 and 8 days to evaluate the dosimetry of TBA following a single and repeated exposure scenario. Protein droplet accumulation was observed in kidneys of male rats exposed to 1750 ppm TBA, with alpha 2u-globulin immunoreactivity present in these protein droplets. A statistically significant increase in alpha 2u concentration in the kidney, as measured by an enzyme-linked immunosorbent assay, was observed in male rats exposed to 1750 ppm TBA with a exposure-related increase in renal cell proliferation. Renal alpha 2u concentration was positively correlated with cell proliferation in male rat kidney. No histological lesions or increased renal cell proliferation was observed in female rats exposed to TBA compared to controls. The TBA kidney:blood ratio was higher at all concentrations and time points in male rats compared with female rats, which suggests that TBA is retained longer in male rat kidney compared with female rat kidney. Together these data suggest that TBA causes alpha 2u-N in male rats, which is responsible for the male rat-specific increase in renal cell proliferation.  相似文献   

8.
Ozone (O(3)) is a significant component of atmospheric air pollution and produces detrimental effects in the lung. Although the mechanism of O(3)-induced lung inflammation and injury is unclear, the increased release of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) by lung cells following O(3) exposure may shed some light on this subject. To investigate the role of TNF-alpha in the O(3)-induced pulmonary insult, we intraperitoneally injected rats with either rabbit preimmune serum or rabbit antirat TNF-alpha 1 h prior to O(3) exposure. Approximately 12 h after the end of O(3) exposure the animals were sacrificed, the lungs lavaged, and tissue samples collected for expression of cytokine genes relevant to inflammation. The bronchoalveolar lavage fluid (BALF) was analyzed for albumin as a marker of pulmonary epithelial permeability changes and for fibronectin for its role in lung injury and repair. The lavage cells were collected, counted, and identified to quantitate the inflammatory response. Ozone exposure resulted in a significant increase in BALF albumin and fibronectin as compared to air-exposed controls and a significant increase in BALF polymorphonuclear leukocytes (PMNs). Antibody treatment produced a significant decrease in BALF albumin and PMNs as compared to O(3)-exposed rats given preimmune serum. Antibody treatment did not affect the BALF fibronectin concentration or the total cell count in the BAL. Tissue analysis for gene arrays revealed an activation of IL-1alpha, IL-6, and IL-10 in animals exposed to O(3). The gene expression was downregulated in animals treated with anti-TNF-alpha antibody prior to O(3) exposure. The results suggest a central role for TNF-alpha in the mechanistic pathways critical to lung inflammation. The significance of TNF-alpha in the inflammation and epithelial injury produced by ozone exposure reflects its overall contribution through modulation of other cytokines.  相似文献   

9.
The toxicity of muraglitazar, an oxybenzylglycine, nonthiazolidinedione peroxisome proliferator-activated receptor (PPAR) alpha/gamma agonist, was evaluated in a comprehensive nonclinical toxicology program that included single-dose oral toxicity studies in mice, rats, and monkeys; repeat-dose toxicity studies in rats, dogs, and monkeys; a battery of in vitro and in vivo genetic toxicity studies; carcinogenicity studies in mice and rats; reproductive and developmental toxicity studies in rats and rabbits; and studies to investigate species-specific findings. Pharmacologically mediated changes, similar to those observed with other PPARgamma agonists, were observed following chronic administration and included subcutaneous edema, hematologic/hematopoietic and serum chemistry alterations, and morphologic findings in the heart and adipose tissue in rats and monkeys. In dogs, a species highly sensitive to PPARgamma agonists, muraglitazar caused pronounced species-specific clinical toxicity and degenerative changes in the brain, spinal cord, and testes at high doses and exposures. Muraglitazar was nongenotoxic in the standard battery of genotoxicity studies. Gallbladder adenomas in male mice and adipocyte neoplasms in male and female rats were seen at suprapharmacologic exposures, whereas urinary bladder tumors occurred in male rats at lower exposures. Subsequent investigative studies established that the urinary bladder carcinogenic effect was mediated by urolithiasis rather than a direct pharmacologic effect on urothelium. Muraglitazar had no effects on reproductive function in male and female rats at high systemic exposures, was not teratogenic in rats or rabbits, and demonstrated no selective developmental toxicity. Overall, there were no nonclinical findings that precluded the safe administration of muraglitazar to humans.  相似文献   

10.
tert-Butyl alcohol (TBA) is widely used in the manufacturing of certain perfumes, cosmetics, drugs, paint removers, methyl tert-butyl ether (MTBE), and industrial solvents. In both rodents and humans, TBA is a major metabolite of MTBE, an oxygenated fuel additive. Chronic TBA exposure causes protein droplet nephropathy, alpha2u-globulin (alpha2u) accumulation, renal cell proliferation, and with chronic exposure, renal tumors in male, but not female, rats. These effects suggest an alpha2u-mediated mechanism for renal tumors. The objective of the present study was to determine whether TBA or its metabolites bind to alpha2u. Mature male and female F-344 rats were administered a single gavage dose of 500 mg/kg TBA, 500 mg/kg (14)C-TBA, or corn oil. TBA equivalents/gram or ml of tissue in the male rat kidney, liver, and blood were higher than the levels measured in female rat tissue 12 h after (14)C-TBA administration. Gel filtration and anion-exchange chromatography demonstrated that (14)C-TBA-derived radioactivity co-eluted with alpha2u from male kidney cytosol. Protein dialysis studies demonstrated that the interaction between (14)C-TBA-derived radioactivity and alpha2u was reversible. Incubations of the low-molecular-weight protein fraction (LMWPF) isolated from (14)C-TBA-treated male rat kidneys with d-limonene oxide (a chemical with a high affinity to alpha2u) demonstrated that (14)C-TBA-derived radioactivity was displaced. Gas chromatography-mass spectrometry analysis confirmed that TBA was present in this LMWPF fraction. These results demonstrate that TBA interacts with alpha2u, which explains the accumulation of alpha2u in the male rat kidney following TBA exposure.  相似文献   

11.
Mitochondrial oxidant stress and peroxynitrite formation have been implicated in the pathophysiology of acetaminophen-induced (AAP-induced) liver injury. Therefore, we tested the hypothesis that lipid peroxidation (LPO) might be involved in the injury mechanism. Male C3Heb/FeJ mice fed a diet high in vitamin E (1 g d-alpha-tocopheryl acetate/kg diet) for 1 week had 6.7-fold higher hepatic tocopherol levels than animals on the control diet (8.2 +/- 0.1 nmol/g liver). Treatment of fasted mice with 300 mg/kg AAP caused centrilobular necrosis with high plasma alanine aminotransferase (ALT) activities at 6 h (3280 +/- 570 U/l) but no evidence of LPO (hepatic malondialdehyde, 4-hydroxynonenal). Animals on the vitamin E diet had similar injury and LPO as mice on the control diet. To verify a potential effect of the vitamin E diet on drug-induced liver injury, animals were pretreated with a combination of phorone, FeSO4, and allyl alcohol. We observed, 2 h after allyl alcohol, massive LPO and liver cell injury in the livers of animals on the control diet, as indicated by a 32-fold increase in malondialdehyde levels, extensive staining for 4-hydroxynonenal, and ALT activities of 2310 +/- 340 U/l. Animals on the vitamin E diet had 40% lower hepatic malondialdehyde levels and 85% lower ALT values. Similar results were obtained when animals were treated for 3 days with alpha- or gamma-tocopherol (0.19 mmol/kg, ip). Both treatments reduced LPO and injury after allyl alcohol but had no effect on AAP hepatotoxicity. Thus, despite the previously shown mitochondrial oxidant stress and peroxynitrite formation, LPO does not appear to be a critical event in AAP-induced hepatotoxicity.  相似文献   

12.
13.
Tumor necrosis factor a (TNFalpha) and manganese superoxide dismutase (MnSOD) are thought to play critical roles in the process of lung injury, repair, and disease. The induction of TNFalpha and MnSOD were examined in a model of progressive pulmonary fibrosis along the length of the alveolar duct in rats exposed for 1, 5, and 8 weeks to a combination of 0.8 ppm ozone and 14.4 ppm nitrogen dioxide. This oxidant injury model results in a triphasic response with an initial inflammatory stage during weeks 1-3, followed by a partial resolution at weeks 4-5, and a final stage of rapidly progressive fibrosis during weeks 6-8. Changes in TNFalpha and MnSOD labeling for the proximal and distal alveolar ducts of the lungs were quantified using immunohistochemistry and morphometric techniques at 1, 5, and 8 weeks of exposure. A significant elevation in MnSOD was noted in alveolar macrophages and interstitial cells of the proximal and distal portions of the alveolar duct following 8 weeks of exposure. Labeling for TNFalpha only in the proximal region of the alveolar duct, was significantly increased in alveolar macrophages after 1 and 8 weeks of exposure, while a significant increase in TNFalpha labeling of interstitial cells in proximal regions was noted at all time points. We conclude that MnSOD is elevated in areas of focal injury as well as the more distal protected areas of the lungs, while TNFalpha correlates strongly with both the temporal and spatial aspects of greatest cellular injury in the lungs.  相似文献   

14.
Murine double minute 2 (Mdm2) negatively regulates p53 by mediating its ubiquitination and proteosomal degradation, and Mdm2 is recognized as a proto-oncogene. In the present study, hepatic gene expression patterns induced by phenobarbital (PB; 100 mg/kg) and pregnenolone 16alpha-carbonitrile (PCN, 100 mg/kg) were evaluated in male and female Sprague-Dawley rats using Affymetrix Rat Genome U34A gene arrays. In addition to changes in the hepatic expression of well-characterized drug-metabolizing enzymes, an increase in Mdm2 mRNA was observed with both compounds after single or repeat dosing (5 days). However, gene array analyses did not reveal changes in other p53-dependent genes, suggesting that induction of Mdm2 occurred in a p53-independent manner. Real-time polymerase chain reaction confirmed the microarray results, as PB increased Mdm2 mRNA approximately twofold after single or repeat doses in male and female rats. PCN treatment increased Mdm2 mRNA levels up to 5- and 12-fold in male and female rats, respectively, after 5 days of dosing. Hepatic Mdm2 protein levels were increased, and immunohistochemical evaluation of rat liver demonstrated nuclear localization of Mdm2, suggesting an interaction with p53. Consequently, p53 protein levels were also decreased by approximately 35 and 50% after 5 days of PB and PCN treatment, respectively. In direct contrast to rats, PB and PCN (100 mg/kg) did not induce Mdm2 mRNA in mouse liver after 5 days of dosing. Finally, although Mdm2 in mice and humans is reported to migrate electrophoretically as two proteins with molecular weights of 76 and 90 kDa, rat Mdm2 protein was detected primarily as a 120-kDa species. Follow-up experiments indicated that rat hepatic Mdm2 was subject to posttranslational modification with small ubiquitin-modifying (SUMO) proteins. Although the molecular mechanisms controlling Mdm2 induction by PB and PCN in rats have not yet been determined, these results suggest that early effects on cell cycle regulation, response to DNA damage or cell transformation may contribute to liver tumor development.  相似文献   

15.
16.
17.
Long-term exposure of rodents to peroxisome proliferators leads to increases in peroxisomes, hepatocellular proliferation, oxidative damage, suppressed apoptosis, and ultimately results in the development of hepatic adenomas and carcinomas. Peroxisome proliferators-activated receptor (PPAR)alpha was shown to be required for these pleiotropic responses; however, Kupffer cells, resident liver macrophages, were also identified as playing a role in peroxisome proliferators-induced effects, independently of PPARalpha. Previous studies showed that oxidants from NADPH (nicotinamide adenine dinucleotide phosphate, reduced) oxidase mediate acute effects of peroxisome proliferators in rodent liver. To determine if Kupffer cell oxidants are also involved in chronic effects, NADPH oxidase-deficient (p47(phox)-null) mice were fed 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio acetic acid (WY-14,643)-containing diet (0.1% wt/wt) for 1 week, 5 weeks, or 5 months along with Pparalpha-null and wild type mice. As expected, no change in liver size, cell replication rates, or other phenotypic effects of peroxisome proliferators were observed in Pparalpha-null mice. Through 5 months of treatment, the p47(phox)-null and wild type mice exhibited peroxisome proliferators-induced adverse liver effects, along with increased oxidative DNA damage and increased cell proliferation, a response that is potentially mediated through nuclear factor kappa B (NFkB). Suppressed apoptosis caused by WY-14,643 was dependent on both NADPH oxidase and PPARalpha. Collectively, these findings suggest that involvement of Kupffer cells in WY-14,643-induced parenchymal cell proliferation and oxidative stress in rodent liver is an acute phenomenon that is not relevant to long-term exposure, but they are still involved in chronic apoptotic responses. These results provide new insight for understanding the mode of hepatocarcinogenic action of peroxisome proliferators.  相似文献   

18.
The environmentally prevalent arsenate (AsV) is reduced in the body to the much more toxic arsenite (AsIII). Recently, we have demonstrated that the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the reduction of AsV in the presence of glutathione, yet the role of GAPDH in AsV reduction in vivo is unknown. Therefore, we examined the effect of (S)-alpha-cholorhydrin (ACH), which forms a GAPDH-inhibitory metabolite, on the reduction of AsV in rats. These studies confirmed the in vitro role of GAPDH as an AsV reductase, inasmuch as 3 h after administration of ACH (100 or 200 mg/kg, ip) to rats both the cytosolic GAPDH activity and the AsV-reducing activity dramatically fell in the liver, moderately decreased in the kidneys, and remained unchanged in the muscle. Moreover, the AsV-reducing activity closely correlated with the GAPDH activity in the hepatic cytosols of control and ACH-treated rats. Two confounding effects of ACH (i.e., a slight fall in hepatic glutathione levels and a rise in urinary AsV excretion) prompted us to examine its influence on the disposition of injected AsV (50 micromol/kg, iv) in rats with ligated bile duct as well as in rats with ligated bile duct and renal pedicles. These experiments demonstrated that the hepatic retention of AsV significantly increased, and the combined levels of AsV metabolites (i.e., AsIII plus methylated arsenicals) in the liver decreased in response to ACH; however, ACH failed to delay the disappearance of AsV from the blood of rats with blocked excretory routes. Thus, the GAPDH inactivator ACH inhibits AsV reduction by the liver, but not by the whole body, probably because the impaired hepatic reduction is compensated for by hepatic and extrahepatic AsV-reducing mechanisms spared by ACH. It is most likely that ACH inhibits hepatic AsV reduction predominantly by inactivating GAPDH in the liver; however, a slight ACH-induced glutathione depletion may also contribute. While this study seems to support the conclusion that GAPDH in the liver is involved in AsV reduction in rats, confirmation of the in vivo role of GAPDH as an AsV reductase is desirable.  相似文献   

19.
20.
In this work, we evaluate whether in vitro systems are good predictors for in vivo estrogenic activity in fish. We focus on UV filters being used in sunscreens and in UV stabilization of materials. First, we determined the estrogenic activity of 23 UV filters and one UV filter metabolite employing a recombinant yeast carrying the estrogen receptor of rainbow trout (rtERalpha) and made comparisons with yeast carrying the human hERalpha for receptor specificity. Benzophenone-1 (BP1), benzophenone-2 (BP2), 4,4-dihydroxybenzophenone, 4-hydroxybenzophenone, 2,4,4-trihydroxy-benzophenone, and phenylsalicylate showed full dose-response curves with maximal responses of 81-115%, whereas 3-benzylidene camphor (3BC), octylsalicylate, benzylsalicylate, benzophenone-3, and benzophenone-4 displayed lower maximal responses of 15-74%. Whereas the activity of 17beta-estradiol was lower in the rtERalpha than the hERalpha assay, the activities of UV filters were similar or relatively higher in rtERalpha, indicating different relative binding activities of both ER. Subsequently, we analyzed whether the in vitro estrogenicity of eight UV filters is also displayed in vivo in fathead minnows by the induction potential of vitellogenin after 14 days of aqueous exposure. Of the three active compounds in vivo, 3BC induced vitellogenin at lower concentrations (435 microg/l) than BP1 (4919 microg/l) and BP2 (8783 microg/l). The study shows, for the first time, estrogenic activities of UV filters in fish both in vitro and in vivo. Thus we propose that receptor-based assays should be used for in vitro screening prior to in vivo testing, leading to environmental risk assessments based on combined, complementary, and appropriate species-related assays for hormonal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号