首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucocorticoids (GCs), the adrenal steroids secreted during stress, have numerous catabolic effects which include damage to neurons of the hippocampus, a principal neural target site for the steroids. In the rat, the extent of GC exposure over the lifespan is a major determinant of the rate of hippocampal neuron death during aging. GCs also modulate the severity of hippocampal damage in the rat following insults such as seizure or hypoxia-ischemia. As evidence, exogenous GCs exacerbate, while adrenalectomy attenuates hippocampal damage after these insults. Thus, it is possible that diminution of endogenous GC secretion might protect the human hippocampus after similar neurological insults; adrenalectomy under such circumstances is obviously not a viable clinical option. We demonstrate the protective effects of transient chemical adrenalectomy with the GC synthesis inhibitor, metyrapone. Rats were microinfused with the excitotoxin kainic acid in order to induce status epilepticus seizures; this insult caused a significant GC stress-response. Attenuation of that response with metyrapone reduced the CA3 hippocampal damage produced by kainic acid. Metyrapone did not change the intensity of seizures, but rather, apparently, changed the capacity of neurons to withstand the seizure. Thus, metyrapone, which is used safely and efficaciously in other clinical contexts, might prove protective of the brain following seizure in the human.  相似文献   

2.
In the present study, we examined nociceptive behaviors on various pain models after the pretreatment of kainic acid intracerebroventricularly. We found that intracerebroventricular administration of kainic acid shows significant neuronal damage on the hippocampal CA3 region in the brain slices stained with cresyl violet. Compared to the control group, intracerebroventricular pretreatment of kainic acid significantly attenuated nocifensive behaviors induced by intraplantar formalin (only in the 2nd phase), intrathecal glutamate, TNF-alpha or IL-1beta. However, nocifensive behaviors induced by intraperitoneal acetic acid (writhing test), intrathecal substance P or IFN-gamma were not affected by the pretreatment of kainic acid. These results suggest that (1) KA-induced alterations of nocifensive behaviors are related to the neuronal death of the hippocampal formation, especially CA3 pyramidal neurons and (2) nocifensive behaviors induced by formalin, acetic acid, SP, glutamate, and pro-inflammatory cytokines were modulated in a different manner.  相似文献   

3.
目的 分析苯甲酸雌二醇(estradiol benzoate,EB)预处理的去势大鼠经红藻氨酸(kainic acid,KA)诱导痫性发作后海马基因表达的图谱,探讨雌激素对痫性发作大鼠海马的影响.方法 应用含有10 000个基因的cDNA芯片,检测EB干预对KA诱导的去势大鼠痫性发作后海马组织基因表达的影响.应用功能富集分析,筛选有统计学差异的基因功能群.结果 EB逆转了KA致痫后有显著差异表达的基因共392个,其中下调的基因258个(65.82%),上调的基因134个(34.18%).经功能富集分析,共筛选出8个主要功能群,其中下调的功能群5个(共21个基因),主要涉及凋亡、抗凋亡与神经发生、长时程突触传递增强效应等;上调的功能群有3个(共4个基因),涉及细胞膜受体相关的信号转导等. 结论 EB能逆转KA诱导的去势大鼠痫性发作后海马神经元的基因表达,且可能以促进神经元凋亡为主.  相似文献   

4.
目的本实验观察依达拉奉对海人酸致痫大鼠海马神经元损伤的保护作用。方法选用成年健康雄性Wistar大鼠18只,体重260±20g。实验动物随机分为3组,①sham组(n=6):右侧海马CA3区注入等量的生理盐水;②KA模型组(n=6):右侧海马CA3区注入KA 4μg.kg-1(4μg/μl);③依达拉奉组(n=6):右侧海马CA3区注入KA 4μg.kg-1(4μg/μl)后,即刻给予依达拉奉10mg.kg-1.d-1腹腔注射。于大鼠注药或假手术后立即观察各组大鼠的行为学表现,于7d断头取脑,石蜡切片进行硫堇染色,于光学显微镜下观察注药对侧(左侧)海马CA1、CA3区及CA4门区组织形态学特征,并对其进行组织学分级。结果 Sham组大鼠注射对侧海马CA1、CA3和CA4门区无明显组织损伤,组织学分级多为0~1级,ND值为198±20.62和212±30.14;模型组KA致痫大鼠可见明显的组织损伤,组织学分级多为2~3级,ND值为79±13.72和90±14.98,与sham组相比,组织学分级显著升高(p<0.05),ND值显著降低(p<0.01)。依达拉奉组大鼠海马CA1区可见少量、散在性神经元坏死,组织学分级多1~2级,ND值为101±16.85和135±12.17。与模型组相比,组织学分级降低(p<0.05),ND值显著升高(p<0.05)。结论依达拉奉能够减轻KA致痫大鼠海马神经元的损伤,对神经元具有保护作用。  相似文献   

5.
Kainic acid (KA) lesions of the CA3 region of the hippocampus lead to denervation of ipsilateral CA1 neurons. To assess denervation-induced post-synaptic changes, intracellular physiological recordings were performed in the CA1 region in vitro, from both control and KA-treated tissue. The neurons were intracellularly stained with neurobiotin, reconstructed using a quantitative three-dimensional system and analyzed for morphometric and electrotonic parameters. Total dendritic length was slightly longer in the denervated CA1 cells and there was a selective and significant increase in both branches and terminals in the mid-stratum radiatum (300–500 μm from the soma using Sholl analysis) in the KA-treated rats compared to untreated controls, particularly for cells at 5 days post-lesion and later, which exhibited graded synaptically-evoked bursts. However, there was no significant difference in the basal dendritic arborization. Electrotonic modelling of the dendritic structure revealed specific membrane resistivity values of 33.4 kΩ·cm2 for the normal CA1 cells and 29.8 KΩ-cm2 for the KA-treated cells, assuming an internal resistivity of 200 Ω·cm2, shrinkage correction of 1.57 and a spatial distribution of dendritic spines. The number of dendritic terminals of these denervated CA1 neurons at electrotonic distances between 0.5λ and 0.7λ also significantly increased in the cells from KA-treated animals. These findings indicate that there is a selective and specific increase in the number of apical terminals and dendritic branches following the unilateral kainic acid lesion. These apical branch changes may represent dendritic sprouting as a post-synaptic response to the denervation, which was particularly marked in neurons exhibiting graded synaptic bursting behavior.  相似文献   

6.
7.
癫痫大鼠海马神经元和星形胶质细胞的病理演变   总被引:5,自引:1,他引:5  
目的 探讨癫痫大鼠海马神经元和星形胶质细胞在点燃后各期的病理特点、时序及机制。方法 针对匹罗卡品癫痫大鼠模型,行Nissl、免疫组化和HE染色,观察海马神经元及星形胶质细胞的病理变化。结果 癫痫持续状态后超急性期(4h),CA3区神经元呈嗜酸性变性、胞浆深染;急性期(24h),嗜酸性变性最为显著,神经元固缩、核仁消失、突起断裂,星形胶质细胞水肿;缄默期(7d),CA3、CA1区及门区神经元大量坏死、脱失,胶质增生肥大,海马构筑紊乱;慢性期(6w),CA3、CA1区出现胶质瘢痕,遗有形态正常的神经元,且颗粒细胞层增厚。结论 癫痫时海马神经元先于星形胶质细胞发生病理改变,二者均参与癫痫发生。  相似文献   

8.
On month after a unilateral intracerebroventricular injection of the neurotoxin kainic acid (KA) a prominent band of zinc-containing Timm's-stained terminals is present in the inner molecular layer of the ipsilateral dentate gyrus. At 3 months, mossy fibre reorganisation is also seen in the contralateral inner molecular layer of the dentate gyrus and in the infrapyramidal band in the contralateral CA3. The relationship of this reactive plasticity to the CA3 lesion is discussed.  相似文献   

9.
目的研究实验性癫痫发作大鼠海马结构内一氧化氮(NO)环磷酸鸟苷(cGMP)信使机制及其意义。方法雄性SD大鼠41只,随机分为对照组(5只)、红藻氨酸(KA)10、30、60分钟组(每组6只)和L硝基精氨酸甲酯(LNAME)+KA10、30、60分钟组(每组6只)。用放射免疫法测定KA诱导性癫痫发作中各时点海马结构内cGMP含量及LNAME的干预效应。结果KA注射引起大鼠海马结构内cGMP浓度升高,并加重大鼠癫痫发作(湿狗样摇动提早出现和发生次数增多);KA注射前30分钟给予LNAME可明显抑制KA10、30分钟组cGMP浓度的升高,但LNAME对KA60分钟组cGMP的抑制作用不显著。结论在KA发作早期,cGMP浓度升高与内源性NO有关;NO的抗发作效应可能与cGMP信使机制存在某种联系。  相似文献   

10.
目的 分析海马细胞外氨基酸递质在癫痫发生中的作用,探讨海人酸致痫模型大鼠癫痫发生的机制.方法 应用立体定向方法建立海人酸大鼠颞叶癫痫模型,观察大鼠行为学和电生理变化,应用电镜观察大鼠海马超微结构,应用微透析获取大鼠海马细胞外液,高压液相色谱法测定透析液中的兴奋性氨基酸谷氨酸、抑制性氨基酸牛磺酸及γ-氨基丁酸的含量.结果 海人酸注射后大鼠出现典型的颞叶癫痫发作,皮层脑电显示痫性发作,电镜显示兴奋性神经递质增加,高效液相色谱分析显示海马细胞外谷氨酸、牛磺酸和γ-氨基丁酸含量明显高于对照组(P<0.05),虽然谷氨酸、γ-氨基丁酸都升高,而谷氨酸升高的更明显.结论 兴奋性氨基酸与抑制性氨基酸的失衡在海人酸致痫大鼠模型的癫痫发生过程中发挥重要作用,是癫痫发生的原因之一.  相似文献   

11.
目的 探讨侧脑室注射海人酸(KA)致大鼠海马损伤后Noggin的表达变化及其与颗粒细胞增殖的关系.方法 健康雄性SD大鼠32只采用随机数字表法分为实验组(16只)及对照组(16只).对照组又分为生理盐水对照组和空白对照组,各8只.实验组大鼠侧脑室注射KA,生理盐水对照组注射等剂量生理盐水.空白对照组不作处理.侧脑室注射KA 1周内,尼氏染色检测海马神经元的丢失.免疫荧光染色与原位杂交的方法检测海马齿状回BrdU标记细胞与Noggin mRNA阳性细胞的变化.结果 在侧脑室注射KA致海马损伤后1周,海马CA3、CA4区神经元丢失明显.与生理盐水对照组比较,实验组海马齿状回BrdU阳性细胞升高,差异有统计学意义(P=0.006),其中注射侧较对侧更为明显.海马Noggin mRNA阳性细胞在第3天时升高,第7天时下降.结论 侧脑室注射KA致海马损伤后.成年大鼠海马齿状回颗粒细胞异常增殖可能与Noggin表达波动有关.  相似文献   

12.
Bragin A  Azizyan A  Almajano J  Wilson CL  Engel J 《Epilepsia》2005,46(10):1592-1598
PURPOSE: The goal of this study was to analyze the transition period between interictal and ictal activity in freely moving rats with recurrent spontaneous seizures after unilateral intrahippocampal kainic acid (KA) injection. METHODS: Pairs of tungsten electrodes (50 microm O/D) were implanted bilaterally under anesthesia at symmetrical points in the dentate gyrus (DG) and CA1 regions of anterior and posterior hippocampi and entorhinal cortex of adult Wistar rats. Stimulating electrodes were placed in the right angular bundle and KA was injected into the right posterior CA3 area of hippocampus after 1 week of baseline EEG recording. Beginning 24 h after injection, electrographic activity was recorded with video monitoring for seizures every day for 8 h/day for 60 days. RESULTS: Seventy percent of seizures started locally in the DG ipsilateral to injection, with an increase in frequency of interictal EEG spikes (hypersynchronous type, HYP), and 26% of seizures started with a decrease of EEG amplitude with parallel increase in frequency (low-voltage fast type, LVF). During HYP seizures, a significant increase was observed in amplitude of beta-gamma range frequencies, ripple frequency, and fast ripple (FR) frequency, whereas during LVF seizure, an increase was noted only in the beta-gamma range. In all cases but one, an EEG wave preceded ripple and FR oscillations. Before seizure onset, the amplitude of DG-evoked responses to single pulses decreased, whereas the amplitude of the response to the second pulse delivered at 30-ms interval increased. CONCLUSIONS: If ripple and FR oscillations indicate the seizure-generating neuronal substrate, these areas must be small and widespread, so that the probability of recording from them directly is very low. The decreased response to electrical stimulation before seizures could indicate a protective inhibitory mechanism that contains or prevents seizure occurrence. The presence of decreased paired-pulse suppression could indicate a network predisposition to follow an external input with a certain frequency.  相似文献   

13.
Amygdaloid kindling is a model of human temporal lobe epilepsy, in which excitability in limbic structures is permanently enhanced by repeated stimulations. We report here dendritic aberrations occurring in mice following kindled-seizures. Adult mice received a biphasic square wave pulse [495+/-25.5 (S.E.M.) microA 60 Hz, 200 micros duration, for 2 s] unilaterally in the basolateral amygdaloid complex once a day and mice with electrophysiologically and behaviorally verified seizures were used in the experiments. The hippocampus and amygdaloid complex contralateral to the lesions were observed by immunofluorescence histochemistry with a somatodendritic marker, microtubule-associated protein 2 (MAP2), showing that kindled-seizures caused hypertrophy of proximal dendrites in the granule cells of the dentate gyrus and in neurons of the amygdalohippocampal area. To further characterize the morphological changes of the dendrites, electron micrographic analysis was performed on the contralateral side. (1) In the granular layer of the dentate gyrus and the amygdalohippocampal area, kindled-seizures generated an increase in the number of dendrites containing polymerized microtubules and width of dendritic profiles showing the increase was in the range 0.2-3.0 and 0.2-1.4 microm, respectively. (2) In the granular layer, bundles between dendrites separated by the puncta adhaerentia increased. (3) In the granular layer, the seizure-induced dendritic aberration was more severe in the rostral than the caudal region. These results suggested that growth of dendrites with enriched-stable microtubules is part of the structural plasticity in response to seizure activity in specific areas of the adult brain.  相似文献   

14.
目的研究组成型一氧化氮合酶(cNOS)及诱导型一氧化氮合酶(iNOS)在红藻氨酸(KA)诱导癫痫发作中的变化及作用。方法采用免疫组织化学方法显示cNOS及iNOS的变化;Nissl染色显示神经元的损害。结果KA30分钟cNOS较对照组明显增加(P<0.05),随后下降至正常水平;KA诱导2小时iNOS明显升高,以CA1区为著,至KA6小时达高峰,然后在高水平缓慢下降;Nissl染色神经元变性坏死CA3=齿状回>CA1。结论KA诱导癫痫发作导致海马cNOS及iNOS表达增多,神经元的坏死与NOS表达增多无明显关系。  相似文献   

15.
The effects of unilateral intrahippocampal injection of kainic acid, a potent neuroexcitant and neurotoxin, on subsequent susceptibility to kindling of the contralateral hippocampus or contralateral amygdala were investigated in albino rats. At the chosen doses (0.20 to 1.25 micrograms dissolved in physiologic saline), the kainic acid-induced lesion was confined to the injected hippocampus and in two cases the ipsilateral entorhinal cortex; never were there contralateral lesions. Approximately 2 to 6 weeks post-injection, each animal received daily afterdischarge-producing electrical stimulations until stage 5 kindled limbic seizures occurred. Kindling in pretreated animals was significantly accelerated compared with controls; the hippocampal kindling rate decreased from 13.2 stimulations to 3.7, the amygdala kindling rate from 7.8 stimulations to 3.0. Many treated animals had first-stimulation stage 5 seizures, compared with none for controls. Importantly, this facilitation of kindling was not reversed by suppression of the acute, induced seizures with the anticonvulsants, diazepam and phenobarbital, which have repeatedly been demonstrated to effectively suppress limbic kindling. Such results, considered together with findings from the literature, suggest that partial kindling does not occur during kainic acid-induced seizures, and that the observed susceptibility to kindling and other epileptogenic agents subsequent to kainic acid treatment may in fact be related to neurophysiologic and neurochemical consequences of kainic acid-induced lesions.  相似文献   

16.
目的 观察G蛋白偶联内向整流钾通道 (GIRK)亚基GIRK2mRNA和蛋白在红藻氨酸致大鼠海马表达的时空变化 ,探讨其在癫发生发展中的作用。方法 采用红藻氨酸致颞叶癫大鼠模型 ,运用原位杂交和免疫细胞化学检测不同时间点大鼠海马齿状回 (DG)、CA1、CA3 区GIRK2mRNA和蛋白表达。结果 GIRK2mRNA和蛋白在大鼠海马内分布广泛 ,表达丰富 ;大鼠腹腔注射红藻氨酸后 ,GIRK2mRNA在DG区表达逐渐增多 ,12h(实验组 0 4 2 36± 0 0 380 ,对照组 0 3396±0 0 343)、2 4h(实验组 0 4 2 5 3± 0 0 4 37,对照组 0 3173± 0 0 315 )达到高峰 ,与对照组比较差异有显著性意义 (P <0 0 1) ;此后逐渐下降 ,但仍高于对照 ;30d又达到高峰 (P <0 0 1) ;致大鼠海马内GIRK2蛋白仅DG区在 30d时与对照组比较增高有显著意义 (P <0 0 1)。结论 GIRK2mRNA和蛋白在癫大鼠海马内表达增高 ,特别是在DG区 ,提示GIRK2增高是机体对神经元过度兴奋的代偿或适应性反应 ;其合成增加将降低神经元的兴奋性 ,阻止海马内过度兴奋在DG→CA3 →CA1方向的扩散。  相似文献   

17.
There is growing pharmacological evidence from several animal models of seizure disorder that adenosine possesses endogenous anticonvulsant activity. In order to further evaluate the role of adenosine in seizure activity, we monitored adenosine and its major biochemical metabolites inosine, xanthine, and hypoxanthine in the dorsal hippocampus by in vivo microdialysis before and during the induction of generalized seizures. Seizures were induced pharmacologically in groups of urethane-anesthetized rats by the administration of bicuculline (0.5 mg/kg, i.v.), kainic acid (12.0 mg/kg, i.v.) or pentylenetetrazol (100–250 mg/kg, i.p). Seizure activity was monitored electrophysiologically from the dorsal hippocampus. Dialysate hippocampal purine levels increased during all three seizure types. The largest increases were for the adenosine metabolites hypoxanthine and inosine, with smaller increases observed for adenosine and xanthine. Intra-hippocampal perfusion with the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl-adenine, (EHNA, 300 μM), only slightly increased basal hippocampal adenosine. Guanosine levels in the hippocampus, a purine not directly related to adenosine metabolism, were unaffected by all treatments. These findings demonstrate that an increase in hippocampal adenosine release and metabolism is associated with seizure activity and support the hypothesis that the increased adenosine levels may attenuate hippocampal seizure activity, possibly by terminating ongoing seizures and altering the pattern of subsequent seizures.  相似文献   

18.
Neuronal damage after seizure is correlated with blood–brain barrier (BBB) leakage. Adiponectin (Ad) has shown protective effects on endothelial function. In this study, we investigated the effects of Ad on cell survival and BBB integrity in the mouse hippocampus after kainic acid (KA) treatment. Twenty-four hours after intracerebroventricular injection of recombinant Ad, mice were treated with KA, and then sacrificed 48 h later. Decreased serum Ad and increased hippocampal Ad receptor 1 in the hippocampus of KA-treated mice were prevented by Ad pretreatment. Using cresyl violet staining, TUNEL analysis, and immunostaining for caspase-3, histological evaluation revealed that the marked cell death noted in the hippocampus of KA-treated mice was not observed in KA-treated mice pretreated with Ad. Impairment of the BBB, which was demonstrated by the presence of IgG, was inhibited by Ad pretreatment. Immunohistochemical analysis indicated that KA caused up-regulation of hippocampal VEGF, eNOS, and NF-κB levels, all of which were reduced in animals that received Ad pretreatment. These data indicate that Ad preserves the integrity of the BBB and has neuroprotective effects in an animal model of seizures.  相似文献   

19.
To determine whether maintained estrogen or progesterone levels affect kainic acid (KA) seizure patterns or the susceptibility of hippocampal neurons to death from seizures, ovariectomized Sprague-Dawley rats were implanted with estrogen pellets, 0.1 or 0.5 mg, that generated serum levels of 42.4 +/- 6.6 (mean +/- SEM) and 242.4 +/- 32.6 pg/ml or one to six capsules of progesterone that generated serum levels of 11.00 +/-.72 to 48.62 +/- 9.4 ng/ml. Seven days later, the rats were administered KA (8.5mg/kg, ip) and scored for seizure activity; 96 h later, the rats were killed and their brains processed for localization of neuron nuclear antigen (NeuN), a general neuronal marker. The hippocampus was scored for spread (the number of separate regions showing cell loss), and the area within the CA fields occupied by NeuN immunoreactivity was measured (indicating surviving neurons). Administration of estrogen or progesterone (independent of dose) significantly reduced mortality from KA seizures. Progesterone reduced seizure severity in animals that received one to four implants; compared with controls, no difference in seizure severity was noted for animals with six progesterone implants. The reduced seizures in progesterone-treated animals were accompanied by a reduction in the spread of hippocampal damage (r(2) = 0.87; P < 0.05). Likewise, in progesterone-treated rats, neuron survival and reduction in seizure scores were correlated (r(2) = 0.76; P < 0.0001). Estrogen had no effect on seizure severity (P > 0.05), but reduced both the spread (P < 0.05) and degree of neuronal loss (P < 0.05). Indeed, in the estrogen-treated rats, neuronal death was significantly lower than that observed in progesterone-treated animals with equally severe seizures (P < 0.05). These data are consistent with the hypothesis that progesterone produces its effects by reducing seizures, whereas estrogen has little beneficial effect on seizure behavior but protects the hippocampus from the damage seizures produce.  相似文献   

20.
The present study investigates the role of pharmacologic blockade of NMDA (N-methyl-d-aspartate) and non-NMDA receptors at deep prepiriform cortex (area tempestas, AT) in neuronal injury during prolonged seizures in rat. Status epilepticus was induced by intravenous kainate (15 mg/kg) and neuronal death was assessed in hippocampal CA3 sector 72 h following status epilepticus. Unilateral equimolar microinjections of 2-amino-7-phosphonoheptanoic acid (AP-7), an NMDA receptor antagonist, or 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX), a non-NMDA receptor antagonist, into AT were given prior to kainate administration. Counts of surviving cells in CA3 ipsilateral to NBQX-injected AT were significantly greater than on the contralateral control-side, but no significant difference between the AP-7-injected and saline-injected side was found. These results indicate that neurotransmission via non-NMDA receptors is more important than that via NMDA receptors at AT in the genesis of neuronal injury in hippocampus during kainate-induced status epilepticus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号