首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two presynaptic receptors play an important role in the regulation of serotonergic neurotransmission, i.e., the 5-HT(1A) and 5-HT(1B) receptor. The present study focuses on putative adaptive changes in the 5-HT(1A) receptor system in mice that lack 5-HT(1B) receptors (5-HT(1B) KO). 5-HT(1A) receptor sensitivity was assessed in vivo in two models of presynaptic 5-HT(1A) receptor activity: agonist-induced hypothermia and prevention of stress-induced hyperthermia. The effects of 5-HT(1A) receptor activation by flesinoxan (0.1-3.0 mg/kg s.c.) were determined telemetrically on body temperature and heart rate in 5-HT(1B) KO and wild-type (WT) mice. Flesinoxan induced hypothermia dose-dependently without affecting heart rate and prevented stress-induced hyperthermia and tachycardia equipotently in both genotypes. Specificity of these responses was confirmed by blockade with the selective 5-HT(1A) receptor antagonist WAY100635 (1.0 mg/kg s.c.). The importance of continuous sampling in freely moving subjects to improve appropriate characterization of mutants is discussed. 5-HT(1B) KO mice showed no shift in 5-HT(1A) receptor sensitivity compared to WT mice. This study found no indications for adaptive changes in presynaptic 5-HT(1A) receptor function in 5-HT(1B) KO mice as measured telemetrically on body temperature and heart rate responses.  相似文献   

2.
To investigate whether the hyperreactivity to mild environmental and novel stimuli in 5-HT1B receptor knockout (1BKO) mice, as suggested by measures of exploratory, aggressive, and impulsive behaviors, can be extended to phasic stimuli, 1BKO and wildtype mice were tested in acoustic startle reactivity and plasticity paradigms, including habituation, prepulse inhibition, and footshock-induced sensitization of the startle response. Furthermore, we compared 5-HT1A receptor knockout (1AKO) and 1BKO mice to further test the suggested opposite behavioral profiles in these two genotypes. Results show that startle reactivity and footshock-induced sensitization was reduced in 1BKO mice, with no changes in habituation or PPI. In contrast, 1AKO mice did not differ from WT mice in any of the measures. These results indicate that an absence of 5-HT1B receptors, but not of 5-HT1A receptors, affects the modulation of startle reactivity and footshock-induced sensitization, without influencing startle plasticity. Moreover, this study suggests that 1AKO mice display a distinct, but not opposite behavioral profile from 1BKO mice. Furthermore, it is concluded that the hyperreactivity in 1BKO mice cannot be generalized to all stimuli, including the startling stimuli used in this study, but is probably restricted to mild environmental stimuli only.  相似文献   

3.
Previous studies with mice lacking 5-HT(1A) (1AKO) and 5-HT(1B) (1BKO) receptors in hippocampus-dependent learning and memory paradigms, suggest that these receptors play an important role in learning and memory, although their precise role is unclear. In the present study, 1AKO and 1BKO mice were studied in operant behavioural paradigms of decision making and response inhibition, to further study the putative involvement of these receptors in prefrontal cortex-dependent learning and memory. Moreover, because 1AKO mice have been shown to exhibit an antidepressant-like phenotype and 1BKO mice to be more impulsive in ethological studies, mice were trained in a differential-reinforcement-of-low-rates (DRL) procedure. Overall, results indicate that 1AKO and 1BKO mice display subtle differences in operant paradigms of decision making and response inhibition compared to wild type (WT) mice. In addition, when responding under a DRL 36-s schedule had stabilised, 1BKO mice showed a phenotype indicative of increased impulsivity, whereas 1AKO mice did not differ from WT mice. In conclusion, 5-HT(1B) receptors appear to play an important role in impulsivity and a minor role in prefrontal cortex-dependent learning and memory as shown by the results obtained in serial reversal learning and extinction. In contrast, 5-HT(1A) receptors appear to be involved in facilitation of autoshaping, but their role in impulsivity and prefrontal cortex-dependent learning and memory appears to be limited.  相似文献   

4.
Relative to wildtype mice, mice lacking 5-HT1B receptors (5-HT1B KO) exhibit exaggerated heart rate and body temperature responses to environmental stimuli. In contrast, acoustic startle reactivity is reduced in 5-HT1B KO mice. We combined heart rate and temperature measurement with startle response paradigms in order to elucidate this apparent contradiction. Habituation and footshock-induced sensitization paradigms modulate startle reactivity. Reduced startle reactivity and unaltered habituation in 5-HT1B KO mice were replicated. Heart rate and temperature were unaffected by startle stimuli, but increased markedly in response to transportation and handling procedures. Footshocks caused a mild startle-sensitization and tachycardia in both genotypes. The physiological hyper-reactivity in 5-HT1B KO mice is a subtle phenotypic difference that contrasts with the phenotypic decrease in startle reactivity.  相似文献   

5.
The peptide somatostatin can modulate the functional output of the basal ganglia. The exact sites and mechanisms of this action, however, are poorly understood, and the physiological context in which somatostatin acts is unknown. Somatostatin acts as a neuromodulator via a family of five 7-transmembrane G protein-coupled receptors, SSTR1-5, one of which, SSTR2, is known to be functional in the striatum. We have investigated the role of SSTR2 in basal ganglia function using mice in which Sstr2 has been inactivated and replaced by the lacZ reporter gene. Analysis of Sstr2lacZ expression in the brain by beta-galactosidase histochemistry demonstrated a widespread pattern of expression. By comparison to previously published in situ hybridization and immunohistochemical data, Sstr2lacZ expression was shown to accurately recapitulate that of Sstr2 and thus provided a highly sensitive model to investigate cell-type-specific expression of Sstr2. In the striatum, Sstr2 expression was identified in medium spiny projection neurons restricted to the matrix compartment and in cholinergic interneurons. Sstr2 expression was not detected in any other nuclei of the basal ganglia except for a sparse number of nondopaminergic neurons in the substantia nigra. Microdialysis in the striatum showed Sstr2-null mice were selectively refractory to somatostatin-induced dopamine and glutamate release. In behavioural tests, Sstr2-null mice showed normal levels of locomotor activity and normal coordination in undemanding tasks. However, in beam-walking, a test of fine motor control, Sstr2-null mice were severely impaired. Together these data implicate an important neuromodulatory role for SSTR2 in the striatum.  相似文献   

6.
BACKGROUND: This study introduces a laboratory model of compulsive behavior based on persistence in the context of rewarded spatial alternation. METHODS: Rats were screened for spontaneous persistence during T-maze reinforced alternation. Experiment 1: One high and one low spontaneous persistence group (n = 8) received 20 injections of fluoxetine, a matched pair saline, both followed by 4 days of meta-chlorophenylpiperazine (mCPP) challenge. Experiment 2: Five matched groups of rats (n = 9) received pretreatment (20 injections) with fluoxetine, mCPP, desipramine, diazepam or saline, followed by 4 days of mCPP challenge (fluoxetine in mCPP group). After washout, animals received 2 days of naratriptan, followed by another 2-day mCPP challenge. RESULTS: In both experiments mCPP significantly increased persistence in saline controls. Fluoxetine also acutely increased persistence scores: after a gradual return to baseline, these scores showed tolerance to mCPP. Experiment 1: This pattern was significant in high but not low initial persistence groups. Experiment 2: Fluoxetine and mCPP showed cross-tolerance. Neither desipramine nor diazepam protected against mCPP challenge. Persistence scores returned to baseline during washout and naratriptan and were thereafter increased by another mCPP challenge in all but the fluoxetine and mCPP groups, suggesting 5-HT2C receptor mediation. CONCLUSIONS: This model is based on spontaneous persistence behavior showing pharmacological responses concordant with those of compulsive symptomatology.  相似文献   

7.
Repeated administration of nicotine produces behavioral sensitization. However, the possible mechanism of behavioral sensitization to nicotine remains unclear. The present study was undertaken in micro-opioid receptor knockout mice, to examine the hypothesis that micro-opioid receptors play a crucial role in behavioral sensitization to nicotine. All mice received saline or nicotine (0.05 mg/kg, s.c) twice a day for 7 consecutive days. The mice remained drug free for 3 days and on day 11 each group was challenged with saline or nicotine (0.05 mg/kg, s.c.). On day 1, it was observed that the single injection of nicotine (0.05 mg/kg, s.c.) did not influence locomotor activity in either micro-opioid receptor knockout or in wildtype mice. On day 7 (24 h after mice had been treated twice daily for 6 consecutive days with an injection of 0.05 mg/kg of nicotine), the mice were challenged with a single injection of nicotine, which produced behavioral sensitization in the wildtype but not in micro-opioid receptor knockout mice. On day 11, following 3 days of withdrawal after the second injection of nicotine on day 7, nicotine-treated mice were challenged with a single injection of nicotine and showed the behavioral sensitization of wildtype. However, nicotine challenge did not induce behavioral sensitization in micro-opioid receptor knockout mice. Our data indicate that a lack of micro-opioid receptors can inhibit the effects of nicotine-induced behavioral sensitization. This result strongly suggests that the micro-opioid receptor plays an important role in behavioral sensitization to nicotine.  相似文献   

8.
Summary. The potent and long acting D-1 receptor agonist, A-77636 reverses motor deficits in MPTP treated common marmosets following subcutaneous or oral administration. We now explore the effects of acute versus repeated administration of A-77636 and the relative roles of D-1 and D-2 receptor involvement in its antiparkinsonian actions. Acute oral administration (0.18–9.0 mg/kg) or subcutaneous administration (0.036–1.08 mg/kg) of A-77636 produced well co-ordinated bouts of discontinuous locomotor activity. There was no evidence of repetitive or stereotyped movements. However, oral administration of A-77636 (1.44 mg/kg) on alternate days for 10 days produced tolerance to the increase in locomotor activity and improvement of disability. Pretreatment with the D-1 antagonist SCH 23390 (0.625, 2.5 or 5.0 mg/kg, intraperitoneally), produced a dose dependent reduction in locomotor activity and antagonised the reduction in disability scores following administration of A-77636 (0.36 mg/kg, subcutaneously). The inhibitory effects of SCH 23390 lasted for some 2–5 hours after which the activity of A-77636 was gradually restored. Unexpectedly, pretreatment with the D-2 antagonist raclopride (1.25, 5.0 or 20.0 mg/kg, intraperitoneally), dramatically diminished the antiparkinsonian effects of A-77636 (0.36 mg/kg, subcutaneously) in a dose dependent manner. The dependence of the antiparkinsonian activity of A-77636 on intact D-2 receptor function, suggests a need for endogenous D-2 receptor tone to express D-1 mediated locomotor activity. Received June 5, 2001; accepted October 18, 2001  相似文献   

9.
BACKGROUND: Serotonin (5-HT) plays a complex regulatory role in processes like anxiety, depression, aggression, and impulse control. Due to the large amount of serotonergic receptors, knockout mice offer an important opportunity to investigate the role of specific receptors. The 5-HT(1B) receptor is thought to mediate aggression and impulse control. This was studied here in mice lacking 5-HT(1B) receptors (5-HT(1B) KO). METHODS: Wild type and 5-HT(1B) KO mice were exposed to several types of entrained and nonentrained stimuli. With telemetry, body temperature, heart rate, and locomotor activity were measured continuously during the different experiments. RESULTS: To nonentrained stimuli like disturbance stress and confrontation with an intruder, 5-HT(1B) KO mice showed exaggerated physiologic and behavioral responses. These mice displayed behavioral disinhibition, measured as increased social interest and aggression to an intruder mouse. However, in response to well-entrained stimuli like daily light transitions, responses were smaller in 5-HT(1B) KO than in wild type mice, suggesting that hyperreactivity is stimulus specific. CONCLUSIONS: Serotonin 1B receptors are essential in impulse control by inhibiting responses to nonentrained stimuli. Therefore, the 5-HT(1B) KO mouse might be an important additional model for studying aspects of disinhibition in aggression and impulse control.  相似文献   

10.
Behavioral and biochemical studies have suggested a functional link between the endogenous cannabinoid and opioid systems. Different hypotheses have been proposed to explain the interactions between opioid and cannabinoid systems such as a common pathway stimulating the dopaminergic system, a facilitation of signal-transduction- and/or a cannabinoid-induced enhancement of opioid peptide release. However, at this time, all the studies have been performed with exogenous agonists (delta-9-tetrahydrocannabinol or morphine), leading to a generally excessive stimulation of receptors normally stimulated by endogenous effectors (anandamide or opioid peptides) in various brain structures. To overcome this problem, we have measured various behavioral responses induced by the stimulation of the endogenous opioid system using the dual inhibitor of enkephalin-degrading enzymes, RB101, in CB1 receptor knockout mice. Thus, analgesia, locomotor activity, anxiety and antidepressant-like effects were measured after RB101 administration (80 and 120 mg/kg i.p. or 10 mg/kg, i.v.) in CB1 receptor knockout mice and their wild-type littermates. In all the experiments, inhibition of enkephalin catabolism produced similar modifications in behavior observed in CB1 knockout and wild-type mice. These results suggest limited physiological interaction between cannabinoid and opioid systems.  相似文献   

11.
The serotonin transporter (5-HTT) is the target of most antidepressant drugs, whose therapeutic action is related to their facilitatory influence on 5-HT neurotransmission. In this study, we investigated the functional adaptive properties of 5-HT1A autoreceptors, which regulate serotonergic neuronal firing, in knockout mice deficient in 5-HTT. Neurons of the dorsal raphe nucleus (DRN) were recorded extracellularly under chloral hydrate anaesthesia in male and female knockout 5-HTT mice and their wild-type counterparts. The inhibitory response of DRN neurons to intravenous injection of the 5-HT1A agonist 8-OH-DPAT was dramatically reduced in knockout 5-HTT compared with wild-type mice, especially in females. Changes in 8-OH-DPAT-induced hypothermia and autoradiographic labelling of 5-HT1A sites in the DRN confirmed a greater level of desensitization/down-regulation of 5-HT1A autoreceptors in female than in male knockout 5-HTT mice. After gonadectomy, the functional status of 5-HT1A autoreceptors was unchanged in wild-type mice, whereas in knockout 5-HTT, castrated males exhibited a down-regulation, and ovariectomized females an up-regulation of these receptors, as shown by electrophysiological recording and autoradiographic labelling in the DRN, as well as by changes in 8-OH-DPAT-induced hypothermia. Finally, in gonadectomized knockout 5-HTT mice, treatment with testosterone or estradiol restored the DRN neuronal firing sensitivity to 8-OH-DPAT back to sham control level in males or females, respectively. These data indicate that sexual hormones participate in the mechanisms responsible for the desensitization of 5-HT1A autoreceptors in knockout 5-HTT mice. The differential effects of testosterone and estradiol on 5-HT1A-mediated control of 5-HT neurotransmission might be related to the well-established gender differences in the vulnerability to depression.  相似文献   

12.
In the present study, we investigated the participation of central 5-HT(2B/2C) and 5-HT(3) receptors in the salt intake induced by sodium depletion in Wistar male rats. Sodium depletion was produced by the administration of furosemide associated with a low salt diet. Third ventricle injections of mCPP, a 5-HT(2B/2C) agonist, at doses of 80, 160 and 240 nmol, promoted a dose-dependent reduction in salt intake in sodium-depleted rats. The inhibitory effect produced by central administration of mCPP was abolished by the central pretreatment with SDZ SER 082, a 5-HT(2B/2C) antagonist. Similar results were obtained with third ventricle injections of m-CPBG (80, 160 and 240 nmol), a selective 5-HT(3) agonist that also induced a dose-related decrease in salt intake in sodium-depleted rats. The central pretreatment with LY-278,584, a selective 5-HT(3) receptor antagonist, was able to impair the salt intake inhibition elicited by third ventricle injections of m-CPBG. Central administration of each one of the antagonists alone or a combination of both antagonists together did not significantly change salt intake after sodium depletion. On the other hand, the central administration of both mCPP and m-CPBG, in the highest dose used to test their effect on salt intake (240 nmol), was unable to modify blood pressure in sodium-depleted rats. It is concluded that: (1) pharmacological activation of central 5-HT(2B/2C) and 5-HT(3) receptors diminishes salt intake during sodium depletion, (2) an inhibitory endogenous drive exerted by central 5-HT(2B/2C) and 5-HT(3) receptors does not seem to exist and (3) the reduction in salt intake generated by the pharmacological activation of these central receptors is not produced by an acute hypertensive response.  相似文献   

13.
The effects induced by serotonergic (5-HT) agonists of the 5-HT1 and 5-HT2 subclasses were examined on hindlimb movement generation in adult mice completely spinal cord transected at the low thoracic level. One week postspinalization, intraperitoneal injection (0.5-10 mg/kg) of meta-chlorophenylpiperazine (m-CPP; 5-HT(2B/2C) agonist) or trifluoromethylpiperazine (TFMPP; 5-HT(1B) agonist) failed to induce locomotor-like movements. However, dose-dependent nonlocomotor movements were induced in air-stepping condition or on a motor-driven treadmill. In contrast, hindlimb locomotor-like movements were found after the injection of quipazine (5-HT(2A/2C) agonist; 1-2 mg/kg). Combined with L-DOPA (50 mg/kg, i.p.), low doses of quipazine but not of m-CPP and TFMPP produced locomotor-like and nonlocomotor movements in air-stepping condition or on the treadmill. Subsequent administration of m-CPP or TFMPP significantly reduced and often completely abolished the hindlimb movements induced by quipazine and L-DOPA. Altogether, these results demonstrate that 5-HT(2A/2C) receptor agonists promote locomotion while 5-HT(1B) and 5-HT(2B/2C) receptor agonists interfere with locomotor genesis in the hindlimbs of complete paraplegic mice. These results suggest that only subsets of spinal 5-HT receptors are specific to locomotor rhythmogenesis and should be activated to successfully induce stepping movements after spinal cord injury.  相似文献   

14.
BACKGROUND: The human 5-HT (2C) receptor gene has been localized on the X chromosome and is expressed in two genetic variants. Whereas previous investigations have suggested that the 5-HT (2C) receptor gene polymorphism is critically involved in the pathogenesis of affective and eating disorders, as yet the functional consequences being associated with the rare serine variant of the 5-HT (2C) receptor in humans are unclear. METHODS: We explored by HMPAO-SPECT if a challenge with the serotonin agonist mCPP, that interacts mainly with the 5-HT (2C) receptor, provokes different patterns of regional cerebral bloodflow (rCBF) as a function of the genetic variant of the receptor. Thus we studied its action in 16 healthy male volunteers carrying the common 5-HT (2C)-cys-23 receptor gene and 16 healthy male volunteers carrying the less frequent 5-HT (2C)-ser-23 receptor gene. RESULTS: We found significant differences in rCBF between the two genotypes after mCPP infusion compared to placebo: In the cysteine group rCBF was increased in the left medial prefrontal cortex and decreased in the left anterior cingulate and right medio-temporal cortex, whereas the serine group showed an increase of rCBF in the left medio- and superior-temporal cortex and in cerebellum and a reduced rCBF in the right medial prefrontal cortex. In addition, there was a significant disordinal interaction of the genotype factors and challenge with an increase of rCBF in the serine group and a decrease in the cysteine group in the left motor cortex and calcarine cortex. Additionally, a decrease of rCBF in the serine-group and a simultaneous increase in the cysteine group was found in the right anterior and the left posterior cingulate cortex. CONCLUSION: These findings suggest that differences in the 5-HT (2C) receptor gene polymorphism has functional consequences due to a different responsiveness of the expressed 5-HT (2C) receptor variants.  相似文献   

15.
The antiplatelet and antithrombotic activity of SL65.0472 (7-fluoro-2-oxo-4-[2-[4-(thieno [3,2-c]pyrin-4-yl) piperazin-1-yl]ethyl]-1,2-di-hydroquinoline-acetamide), a mixed 5-HT1B/5-HT2A receptor antagonist was investigated on 5HT-induced human platelet activation in vitro, and in rat, rabbit and canine platelet dependent thrombosis models. SL65.0472 inhibited 5-HT-induced platelet shape change in the presence of EDTA (IC50 values = 35, 69 and 225 nM in rabbit, rat and human platelet rich plasma (PRP)), and also inhibited aggregation induced in human PRP by 3-5 microM 5-HT + threshold concentrations of ADP (0.5-1 microM) or collagen (0.3 microg/ml) with mean IC50 values of 49 +/- 13 and 48 +/- 6 nM respectively. SL65.0472 inhibited thrombus formation when given both intravenously 5 min and orally 2 h prior to assembly of an arterio-venous (A-V) shunt in rats as from 0.1 and 0.3 mg/kg respectively. It was active in a rabbit A-V shunt model with significant decreases in thrombus weight as from 0.1 mg/kg i. v. and at 10 mg/kg p.o. The delay to occlusion in an electric current-induced rabbit femoral artery thrombosis model was increased by 251% (p <0.05) after 20 mg/kg p.o. SL65.0472 (30 microg/kg i.v.) virtually abolished coronary cyclic flow variations (7.2 +/- 1.0/h to 0.6 +/- 0.6/h, p <0.05) and increased minimum coronary blood flow (1.2 +/- 0.8 ml/min to 31.8 +/- 8.4 ml/min, p <0.05) in a coronary artery thrombosis model in the anaesthetised dog. Finally, SL65.0472 significantly increased the amount of blood lost after rat tail transection at 3 mg/kg p.o. Thus the anti-5-HT2A component of SL65.0472 is reflected by its ability to inhibit 5-HT-induced platelet activation, and platelet-rich thrombus formation.  相似文献   

16.
The effects of 7- and 21-day haloperidol treatment on the spinal serotonergic system were examined in vivo in acutely spinalized adult rats. Intravenous administration of a selective 5-HT(2A/2C) receptor agonist, (+/-)-2,5-Dimethoxy-4-iodoamphetamine hydrochloride (0.1 mg/kg) significantly increased the excitability of spinal motoneurones as reflected by increased monosynaptic mass reflex amplitude. This was significantly reduced in rats treated with haloperidol (1 mg/kg/day, i.p.) for 7 and 21 days. Administration of a 5-HT(1A/7) receptor agonist, (+/-)-8-Hydroxy dipropylaminotetraline hydrobromide (0.1 mg/kg, i.v.) significantly inhibited the monosynaptic mass reflex. This inhibition was greatly prolonged in haloperidol treated animals. These results demonstrate that the effects of haloperidol on the activation and desensitization of 5-HT(1A) and 5-HT(2A/2C) receptors respectively, may be mediated via intracellular mechanisms shared by these receptors with dopamine D(2) receptors in the mammalian spinal cord. The above serotonergic mechanisms may be partly responsible for haloperidol-induced extrapyramidal motor dysfunction.  相似文献   

17.
Anxiety and depression alterations have been reported in micro-opioid receptor knockout mice after exon 2 disruption. However, emotional behaviors, such as novelty and emergence responses have not been reported in micro-opioid receptor knockout mice due to the disruptions of exon 2 and 3. Here, we report that mu-opioid receptor knockout mice, with deletion of exon 2 and 3, display significant emotional behavior changes; they showed less anxiety in the elevated plus maze and emergence tests, reduced response to novel stimuli in the novelty test, and less depressive-like behavior in the forced-swim test. Analysis of the compensatory mechanism in mu-opioid receptor knockout mice revealed that the M1 mRNA levels were reduced in the cortex, caudate putamen, nucleus accumbens, and hippocampus, and that M1 receptor levels were reduced in the nucleus accumbens, CA1, and the dentate gyrus of the hippocampus, versus the wild-type. However, 5-HT1A receptor levels were significantly elevated in the cerebral cortex and in the hypothalamus of mu-opioid receptor knockout mice versus the wild-type. These aberrant emotional behavioral phenotypes are possibly related to M1 and 5-HT1A receptor alterations in the micro-opioid receptor knockout mice. Overall, our study suggests that micro-opioid receptor may play a role in the modification of emotional responses to novelty, anxiety, and depression.  相似文献   

18.
The presence of a sexually receptive female behind a partition that prevents physical contact, but not seeing or smelling, increases blood testosterone level and induces the specific behavior in CBA male mice so that they more frequently approach the partition and spend more time near it in an attempt to make their way to the female. Treatment with the selective 5-HT(1A) serotonin receptor agonist 8-OH-DPAT (0.1, 0.25, 0.5 and 2.0 mg/kg) induced a dose-dependent decrease in the amount of time spent by the males near the partition, or "partition time", which is considered the main pattern of sexual motivation. The activating effect of female exposure on the male's pituitary-testicular system was totally blocked, as no increase in plasma testosterone level was observed. The 5-HT(1A) antagonist p-MPPI (0.1, 0.2 and 0.4 mg/kg) itself did not affect behavior or alter plasma testosterone, but attenuated the inhibiting effect of 8-OH-DPAT on behavior and totally antagonised the effect of the 5-HT(1A) agonist on testosterone response. The 5-HT(1B) agonist CGS-12066A (1.0 and 2.0 mg/kg) has no influence on the plasma testosterone increase exhibited by the male in response to female exposure. At the same time, either dose of CGS-12066A significantly reduced the partition time. The conclusion was made that the 5-HT(1A) subtype is involved in controlling both behavioral and hormonal indices of sexual arousal in male mice, while the 5-HT(1B) receptors antagonise sexual motivation, but do not modify the hypothalamic-pituitary-testicular response.  相似文献   

19.
In newborn mice of the control [C3H/HeJ (C3H)] and monoamine oxidase A-deficient (Tg8) strains, in which levels of endogenous serotonin (5-HT) were drastically increased, we investigated how 5-HT system dysregulation affected the maturation of phrenic motoneurons (PhMns), which innervate the diaphragm. First, using immunocytochemistry and confocal microscopy, we observed a 5-HT(2A) receptor (5-HT(2A)-R) expression in PhMns of both C3H and Tg8 neonates at the somatic and dendritic levels, whereas 5-HT(1B) receptor (5-HT(1B)-R) expression was observed only in Tg8 PhMns at the somatic level. We investigated the interactions between 5-HT(2A)-R and 5-HT(1B)-R during maturation by treating pregnant C3H mice with a 5-HT(2A)-R agonist (2,5-dimethoxy-4-iodoamphetamine hydrochloride). This pharmacological overactivation of 5-HT(2A)-R induced a somatic expression of 5-HT(1B)-R in PhMns of their progeny. Conversely, treatment of pregnant Tg8 mice with a 5-HT(2A)-R antagonist (ketanserin) decreased the 5-HT(1B)-R density in PhMns of their progeny. Second, using retrograde transneuronal tracing with rabies virus injected into the diaphragm of Tg8 and C3H neonates, we studied the organization of the premotor network driving PhMns. The interneuronal network monosynaptically connected to PhMns was much more extensive in Tg8 than in C3H neonates. However, treatment of pregnant C3H mice with 2,5-dimethoxy-4-iodoamphetamine hydrochloride switched the premotoneuronal network of their progeny from a C3H- to a Tg8-like pattern. These results show that a prenatal 5-HT excess affects, via the overactivation of 5-HT(2A)-R, the expression of 5-HT(1B)-R in PhMns and the organization of their premotor network.  相似文献   

20.
Although nicotine is generally considered as the main compound responsible for addictive properties of tobacco, some experimental data indicate that nicotine does not exhibit all the characteristics of other substances of misuse such as psychostimulants and opiates. For example, nicotine generally fails to induce locomotor response in mice and self-administration of nicotine is difficult to obtain in rats. We have shown recently that a pretreatment with mixed irreversible monoamine oxidase inhibitors (MAOIs), such as tranylcypromine, triggers a locomotor response to nicotine in mice and induces a robust self-administration of nicotine in rats. We show here that when mice were pretreated with enhancers of extracellular levels of noradrenaline, dopamine or serotonin (D-amphetamine, GBR12783 or para-chloro-amphetamine, respectively) and injected with nicotine (1 mg/kg), only those animals pretreated with para-chloro-amphetamine exhibited a specific locomotor response to nicotine. These data indicate a critical role of serotonin in nicotine-induced locomotor activity in mice. This was further confirmed in microdialysis experiments showing that nicotine induces an increase in extracellular serotonin levels in the ventral striatum in mice pretreated with tranylcypromine. This effect of nicotine on extracellular serotonin levels was absent in mice lacking the beta2-subunit of the nicotinic acetylcholine receptor. Our data suggest that mixed irreversible MAOIs contained in tobacco facilitate the effects of nicotine on serotonin release, thus allowing the locomotor and rewarding effects of nicotine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号