首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary virus infection often elicits a large CD8(+) T cell response which subsequently contracts to a smaller memory T cell pool; the relationship between these two virus-specific populations is not well understood. Here we follow the human CD8(+) T cell response to Epstein-Barr virus (EBV) from its primary phase in infectious mononucleosis (IM) through to the persistent carrier state. Using HLA-A2.1 or B8 tetramers specific for four lytic cycle and three latent cycle epitopes, we find marked differences in the epitope-specific composition of the T cell populations between the two phases of infection. The primary response is dominated by lytic epitope specificities which are severely culled (and in one case extinguished) with resolution of the acute infection; in contrast latent epitope specificities are less abundant, if present at all, in acute IM but often then increase their percentage representation in the CD8 pool. Even comparing epitopes of the same type, the relative size of responses seen in primary infection does not necessarily correlate with that seen in the longer term. We also follow the evolution of phenotypic change in these populations and show that, from a uniform CD45RA(-)RO(+)CCR7(-) phenotype in IM, lytic epitope responses show greater reversion to a CD45RA(+)RO(-) phenotype whereas latent epitope responses remain CD45RA(-)RO(+) with a greater tendency to acquire CCR7. Interestingly these phenotypic distinctions reflect the source of the epitope as lytic or latent, and not the extent to which the response has been amplified in vivo.  相似文献   

2.
The importance of cytotoxic T lymphocytes (CTLs) in the immunosurveillance of Epstein-Barr virus (EBV)-infected B cells is firmly established, and the viral antigens of CTL recognition in latent infection are well defined. The epitopes targeted by CTLs during primary infection have not been identified, however, and there is only limited information about T cell receptor (TCR) selection. In the present report, we have monitored the development of memory TCR-beta clonotypes selected in response to natural EBV infection in a longitudinal study of an HLA-B8+ individual with acute infectious mononucleosis (IM). By stimulating peripheral blood lymphocytes with HLA-B8+ EBV-transformed B lymphoblastoid cells, the primary virus- specific CTL response was shown to include specificities for two HLA-B8- restricted antigenic determinants, FLRGRAYGL and QAKWRLQTL, which are encoded within the latent EBV nuclear antigen EBNA-3. TCR-beta sequence analysis of CTL clones specific for each epitope showed polyclonal TCR- beta repertoire selection, with structural restrictions on recognition that indicated antigen-driven selection. Furthermore, longitudinal repertoire analysis revealed long-term preservation of a multiclonal effector response throughout convalescence, with the reemergence of distinct memory T cell clonotypes sharing similar structural restrictions. Tracking the progression of specific TCR-beta clonotypes and antigen-specific TCR-V beta family gene expression in the peripheral repertoire ex vivo using semiquantitative PCR strongly suggested that selective TCR-beta expansions were present at the clonotype level, but not at the TCR-V beta family level. Overall, in this first analysis of antigen-specific TCR development in IM, a picture of polyclonal TCR stimulation is apparent. This diversity may be especially important in the establishment of an effective CTL control during acute EBV infection and in recovery from disease.  相似文献   

3.
Epstein-Barr virus (EBV), a human γ-herpesvirus, can establish both nonproductive (latent) and productive (lytic) infections. Although the CD8+ cytotoxic T lymphocyte (CTL) response to latently infected cells is well characterized, very little is known about T cell controls over lytic infection; this imbalance in our understanding belies the importance of virus-replicative lesions in several aspects of EBV disease pathogenesis. The present work shows that the primary CD8+ CTL response to EBV in infectious mononucleosis patients contains multiple lytic antigen-specific reactivities at levels at least as high as those seen against latent antigens; similar reactivities are also detectable in CTL memory. Clonal analysis revealed individual responses to the two immediate early proteins BZLF1 and BRLF1, and to three (BMLF1, BMRF1, and BALF2) of the six early proteins tested. In several cases, the peptide epitope and HLA-restricting determinant recognized by these CTLs has been defined, one unusual feature being the number of responses restricted through HLA-C alleles. The work strongly suggests that EBVreplicative lesions are subject to direct CTL control in vivo and that immediate early and early proteins are frequently the immunodominant targets. This contrasts with findings in α- and β-herpesvirus systems (herpes simplex, cytomegalovirus) where viral interference with the antigen-processing pathway during lytic infection renders immediate early and early proteins much less immunogenic. The unique capacity of γ-herpesvirus to amplify the viral load in vivo through a latent growth-transforming infection may have rendered these agents less dependent upon viral replication as a means of successfully colonizing their hosts.  相似文献   

4.
Long-lived memory T lymphocyte responses after hantavirus infection   总被引:12,自引:0,他引:12       下载免费PDF全文
Puumala virus (PUUV) is a hantavirus that causes hemorrhagic fever with renal syndrome (HFRS), which is an important public health problem in large parts of Europe. We examined the memory cytolytic T lymphocyte (CTL) responses in 13 Finnish individuals who had HFRS between 1984 and 1995. In seven of these donors, we detected virus-specific CTL responses against the PUUV nucleocapsid (N) protein after in vitro stimulation with PUUV. Six novel CD8(+) CTL epitopes were defined on the N protein and were found to be restricted by various HLA alleles including A2, A28, B7, and B8. This is the first demonstration of PUUV-specific CTL responses in humans, and the first identification of CTL epitopes on PUUV. In addition, this study provides one of the few characterizations of a human antiviral memory T cell response, without the complicating issues of virus persistence or reinfection. Interferon (IFN)-gamma ELISPOT analysis showed that memory CTL specific for these epitopes were present at high frequency in PUUV-immune individuals many years after acute infection in the absence of detectable viral RNA. The frequencies of PUUV-specific CTL were comparable to or exceeded those found in other viral systems including influenza, EBV and HIV, in which CTL responses may be boosted by periodic reinfection or virus persistence.  相似文献   

5.
Epstein-Barr virus (EBV) provides one of the most informative systems for analysing cytotoxic T lymphocyte responses in humans. The viral infection and its persistence are the results of an alternation of lytic and latent phases that are controlled by the immune response. Using a transient COS transfection assay that permits semi-quantitative estimation of CD8 T cell responses against a large number of HLA/viral protein combinations, we analyzed responses to EBV within a large number of polyclonal T cell lines. This allowed a rapid identification of major epitopes and the demonstration that EBV-specificT cells were mainly directed against a restricted set of immunodominant epitopes, primarily generated during the early lytic cycle. Knowledge of the antigen specificity of CDB T cell responses against EBV should help generate cytotoxic T cell lines to this herpesvirus, and more generally to study the molecular basis of immunodominance.  相似文献   

6.
It was known that double-stranded RNA (dsRNA) has vaccine adjuvant activity by acting through the dsRNA/toll-like receptor (TLR)3 signaling. More recently, it was reported that immunization of mice with a poly(I:C)-adjuvanted major histocompatibility (MHC) class I-restricted peptide epitope derived from a tumor-specific antigen protein induced strong tumor-killing CD8 CTL responses. However, it remains unclear whether the poly(I:C) can help an MHC class I-restricted peptide epitope to induce a strong and functional memory CD8 CTL response in the absence of a T helper (TH) response. By using in vivo CTL and direct tumor challenging assays, we demonstrated that, although poly(I:C) as a vaccine adjuvant significantly enhanced the immune responses induced by an MHC I-restricted peptide epitope, MHC class II-restricted TH cell responses were still required to generate memory CTL responses. The MHC class II-restricted TH epitopes can be cognate, noncognate, or even from the necrotic bodies of un-related tumor cells. Thus, future efforts of using synthetic dsRNA as an adjuvant to induce specific and long-lasting memory CTL immune responses should include the provision of an appropriate TH cell response.  相似文献   

7.
The marked proliferation of activated CD8+ T cells is pathognomonic of EBV-associated infectious mononucleosis (IM), common in young adults. Since the diversity and size of the memory CD8+ T cell population increase with age, we questioned whether IM was mediated by the reactivation of memory CD8+ T cells specific to previously encountered pathogens but cross-reactive with EBV. Of 8 HLA-A2+ IM patients, 5 had activated T cells specific to another common virus, as evidenced by a significantly higher number of peripheral blood influenza A virus M1(58-66)-specific T cells compared with healthy immune donors. Two patients with an augmented M1 response had tetramer-defined cross-reactive cells recognizing influenza M1 and EBV-BMLF1(280-288), which accounted for up to one-third of their BMLF1-specific population and likely contributed to a skewed M1-specific T cell receptor repertoire. These epitopes, with only 33% sequence similarity, mediated differential effects on the function of the cross-reactive T cells, which may contribute to alterations in disease outcome. EBV could potentially encode an extensive pool of T cell epitopes that activate other cross-reactive memory T cells. Our results support the concept that cross-reactive memory CD8+ T cells activated by EBV contribute to the characteristic lymphoproliferation of IM.  相似文献   

8.
The T cell receptor (TCR) repertoires of cytotoxic responses to the immunodominant and subdominant HLA A11–restricted epitopes in the Epstein-Barr virus (EBV) nuclear antigen-4 were investigated in four healthy virus carriers. The response to the subdominant epitope (EBNA4 399-408, designated AVF) was highly restricted with conserved Vβ usage and identical length and amino acid motifs in the third complementarity-determining regions (CDR3), while a broad repertoire using different combinations of TCR-α/β V and J segments and CDR3 regions was selected by the immunodominant epitope (EBNA4 416-424, designated IVT). Distinct patterns of interaction with the A11–peptide complex were revealed for each AVF- or IVT-specific TCR clonotype by alanine scanning mutagenesis analysis. Blocking of cytotoxic function by antibodies specific for the CD8 coreceptor indicated that, while AVF-specific TCRs are of high affinity, the oligoclonal response to the IVT epitope includes both low- and high-affinity TCRs. Thus, comparison of the memory response to two epitopes derived from the same viral antigen and presented through the same MHC class I allele suggests that immunodominance may correlate with the capacity to maintain a broad TCR repertoire.Recognition of MHC–peptide complexes by TCRs is an essential step in the establishment of protective immunity (1). The TCR is a heterodimer composed of two polypeptide chains, α and β or γ and δ, which contain a variable domain, involved in antigen recognition, and a constant domain which is important for membrane attachment and T cell activation (2). The variable domain is encoded by multiple variable (V), diversity (D), and joining (J) gene segments. Somatic DNA rearrangement during lymphocyte differentiation in the thymus juxtapose V-J or V-D-J segments that code for the α/γ and β/δ chains, respectively. This combinatorial capacity creates an array of unique TCRs capable of recognizing a large variety of epitopes. The diversity is further increased by several possible α/β or γ/δ pairings and by nucleotide additions and/or trimming at the V(D)J junctions. The size of the repertoire that may potentially interact with a given antigen is narrowed by positive and negative selection in the thymus (3, 4). Further restrictions are imposed on the peripheral repertoire by the nature of the antigenic stimulus where the antigenic load and the persistence of the stimulus over a long period of time are likely to be important parameters (5).CTLs expressing the TCR-α/β–heterodimer and CD8 coreceptor play a critical role in controlling infection by EBV, a widespread human herpes virus that persists in healthy carriers as a latent infection of B cells (6, 7). In spite of the large complexity of the virus, which encodes for at least 9 proteins expressed in latently infected B lymphocytes, the CTL response detected during primary EBV infection appears to be preferentially focused on only few epitopes that are mainly derived from the high molecular weight Epstein-Barr virus nuclear antigens (EBNA)1 3, 4, and 6 (also known as EBNA 3A, 3B, and 3C) (8, 9). The reason for this strong focusing is presently unknown, but it is remarkable that a very similar hierarchy of epitope choice is maintained in the memory CTL responses that can be reactivated by in vitro stimulation of lymphocytes from healthy virus carriers. We have previously reported that EBV-specific CTL responses of HLA A11+ Caucasians are frequently dominated by A11-restricted CTLs that are directed to several epitopes derived from EBNA4 (1012). The cognate peptides of two epitopes have been mapped within EBNA4 residues 416-424 (IVTDFSVIK, designated IVT) and 399-408 (AVFDRKSDAK, designated AVF) (11, 12). IVT-specific effectors may account for as much as 80% of the EBV-specific CTL clones isolated from these donors indicating that this is the immunodominant epitope (13). The immunodominance of the IVT epitope has recently been confirmed in a study that compared the frequency of specific CTL precursors in primary and memory response (14). Mutations affecting the anchor residues of the IVT peptide were shown to abrogate CTL recognition in EBV isolates from Southeast Asia, where HLA A11 is expressed in >50% of the population. Only half of the Southeast Asian isolates carried concomitant mutations within the AVF peptide, suggesting that CTL responses to IVT may exert a stronger selective pressure in vivo (12, 15). We have exploited these features to examine to what extent immunogenicity may affect the diversity of TCR repertoires specific for different viral epitopes during long-term persistent infection, where the opportunity for selection of T cell clones with maximal affinity might be optimal.  相似文献   

9.
Epstein-Barr virus (EBV)-encoded nuclear antigen (EBNA)1 is thought to escape cytotoxic T lymphocyte (CTL) recognition through either self-inhibition of synthesis or by blockade of proteasomal degradation by the glycine-alanine repeat (GAr) domain. Here we show that EBNA1 has a remarkably varied cell type-dependent stability. However, these different degradation rates do not correspond to the level of major histocompatibility complex class I-restricted presentation of EBNA1 epitopes. In spite of the highly stable expression of EBNA1 in B cells, CTL epitopes derived from this protein are efficiently processed and presented to CD8+ T cells. Furthermore, we show that EBV-infected B cells can readily activate EBNA1-specific memory T cell responses from healthy virus carriers. Functional assays revealed that processing of these EBNA1 epitopes is proteasome and transporter associated with antigen processing dependent. We also show that the endogenous presentation of these epitopes is dependent on the newly synthesized protein rather than the long-lived stable EBNA1. Based on these observations, we propose that defective ribosomal products, not the full-length antigen, are the primary source of endogenously processed CD8+ T cell epitopes from EBNA1.  相似文献   

10.
The CD8+ T cell response to Epstein-Barr virus (EBV) is well characterized. Much less is known about the evolution of the CD4+ T cell response. Here we show that EBV stimulates a primary burst of effector CD4+ T cells and this is followed by a period of down-regulation. A small population of EBV-specific effector CD4+ T cells survives during the lifelong persistent phase of infection. The EBV-specific effector CD4+ T cells accumulate within a CD27+ CD28+ differentiation compartment during primary infection and remain enriched within this compartment throughout the persistent phase of infection. Analysis of CD4+ T cell responses to individual epitopes from EBV latent and lytic cycle proteins confirms the observation that the majority of the effector cells express both CD27 and CD28, although CD4+ T cells specific for lytic cycle antigens have a greater tendency to express CD45RA than those specific for the latent antigens. In clear contrast, effector CD4+ T cells specific for cytomegalovirus (CMV) accumulate within the CD27- CD28+ and CD27- CD28- compartments. There are striking parallels in terms of the differentiation of CD8+ T cells specific for EBV and CMV. The results challenge current ideas on the definition of memory subsets.  相似文献   

11.
There is considerable interest in designing an effective vaccine to the ubiquitous Epstein-Barr virus (EBV). An important role for EBV-specific cytotoxic T lymphocytes (CTLs) in eliminating virus-infected cells is well established. Limited studies using a small number of immune donors have defined target epitopes within the latent antigens of EBV. The present study provides an extensive analysis of the distribution of class I-restricted CTL epitopes within EBV-encoded proteins. Using recombinant vaccinia encoding individual EBV latent antigens (Epstein-Barr nuclear antigen [EBNA] 1, 2, 3A, 3B, 3C, LP, and LMP 1), we have successfully localized target epitopes recognized by CTL clones from a panel of 14 EBV-immune donors. Of the 20 CTL epitopes localized, five were defined at the peptide level. Although CTL clones specific for nine epitopes recognized both type 1 and type 2 transformants, a significant number of epitopes (7/16 epitopes for which EBV type specificity was determined) were detected only on type 1 EBV transformants. Vaccinia recombinants encoding EBNA 3A and EBNA 3C were recognized more frequently than any other vaccinia recombinants used in this study, while no CTL epitopes were localized in EBNA 1. Surprisingly, epitope specificity for a large number of EBV-specific CTL clones could not be localized, although vaccinia recombinants used in this study encoded most of the latent antigens of EBV. These results suggest that any EBV vaccine based on CTL epitopes designed to provide widespread protection will need to include not only latent antigen sequences but also other regions of the genome. The apparent inability of human CTLs to recognize EBNA 1 as a target antigen, often the only latent antigen expressed in Burkitt's lymphoma and nasopharyngeal carcinoma, suggests that EBV-specific CTL control of these tumors will not be feasible unless the down-regulation of latent antigens can be reversed.  相似文献   

12.
Patients with infectious mononucleosis (IM) undergoing primary EBV infection show large expansions of EBV-specific CD8+ T cells in the blood. While latent infection of the B cell pool is quickly controlled, virus shedding from lytically infected cells in the oropharynx remains high for several months. We therefore studied how responses localize to the tonsil, a major target site for EBV, during primary infection and persistence. In acute IM, EBV-specific effectors were poorly represented among CD8+ T cells in tonsil compared with blood, coincident with absence of the CCR7 lymphoid homing marker on these highly activated cells. In patients who had recently recovered from IM, latent epitope reactivities were quicker than lytic reactivities both to acquire CCR7 and to accumulate in the tonsil, with some of these cells now expressing the CD103 integrin, which mediates retention at mucosal sites. By contrast, in long-term virus carriers in whom both lytic and latent infections had been controlled, there was 2- to 5-fold enrichment of lytic epitope reactivities and 10- to 20-fold enrichment of latent epitope reactivities in tonsil compared with blood; up to 20% of tonsillar CD8+ T cells were EBV specific, and many now expressed CD103. We suggest that efficient control of EBV infection requires appropriate CD8+ T cell homing to oropharyngeal sites.  相似文献   

13.
Primary infection with virus can stimulate a vigorous cytotoxic T cell response. The magnitude of the antigen-specific component versus the bystander component of a primary T cell response remains controversial. In this study, we have used tetrameric major histocompatibility complex–peptide complexes to directly visualize antigen-specific cluster of differentration (CD)8+ T cells during the primary immune response to Epstein-Barr virus (EBV) infection in humans. We show that massive expansion of activated, antigen-specific T cells occurs during the primary response to this virus. In one individual, T cells specific for a single EBV epitope comprised 44% of the total CD8+ T cells within peripheral blood. The majority of the antigen-specific cells had an activated/memory phenotype, with expression of human histocompatibility leukocyte antigen (HLA) DR, CD38, and CD45RO, downregulation of CD62 leukocyte (CD62L), and low levels of expression of CD45RA. After recovery from AIM, the frequency of antigen-specific T cells fell in most donors studied, although populations of antigen-specific cells continued to be easily detectable for at least 3 yr.  相似文献   

14.
CD8(+) cytotoxic T lymphocytes (CTLs) recognize antigen in the context of major histocompatibility complex (MHC) class I molecules. Class I epitopes have been classified as dominant or subdominant depending on the magnitude of the CTL response to the epitope. In this report, we have examined the in vitro memory CTL response of H-2(d) haplotype murine CD8(+) T lymphocytes specific for a dominant and subdominant epitope of influenza hemagglutinin using activation marker expression and staining with soluble tetrameric MHC-peptide complexes. Immune CD8(+) T lymphocytes specific for the dominant HA204-210 epitope give rise to CTL effectors that display activation markers, stain with the HA204 tetramer, and exhibit effector functions (i.e., cytolytic activity and cytokine synthesis). In contrast, stimulation of memory CD8(+) T lymphocytes directed to the subdominant HA210-219 epitope results in the generation of a large population of activated CD8(+) T cells that exhibit weak cytolytic activity and fail to stain with the HA210 tetramer. After additional rounds of restimulation with antigen, the HA210-219-specific subdominant CD8(+) T lymphocytes give rise to daughter cells that acquire antigen-specific CTL effector activity and transition from a HA210 tetramer-negative to a tetramer-positive phenotype. These results suggest a novel mechanism to account for weak CD8(+) CTL responses to subdominant epitopes at the level of CD8(+) T lymphocyte differentiation into effector CTL. The implications of these findings for CD8(+) T lymphocyte activation are discussed.  相似文献   

15.
We have raised CD8+ cytotoxic T lymphocytes (CTL) from three Epstein- Barr virus-seropositive donors by incubating peripheral blood lymphocytes with irradiated autologous B95.8-strain EBV-transformed B lymphoblastoid cells (LCL). However, to detect lysis in a standard 51Cr release assay of the LCL against which these CTL were raised, superinfection with recombinant vaccinia expressing the appropriate EBV protein or incubation with the peptide epitope was necessary. The untreated LCL were not lysed, even though Western blotting demonstrated that they expressed the EBV antigens containing the CTL epitopes. We have found CTL of this phenotype that are restricted by human leukocyte antigen-A2, -A3, -B7, or -B39, and which recognize the EBV latent proteins, EBV nuclear antigen (EBNA)-3A, EBNA-3C, or terminal protein. During these experiments, we identified a new human leukocyte antigen- A3-restricted EBNA-3A epitope, residues 603-611, RLRAEAGVK. We raised a spontaneous LCL, transformed by endogenous EBV, from one donor, but this was also not lysed. For at least one of the epitopes, CTL from another donor lysed the LCL without superinfection or addition of peptides. We conclude that the CTL were unable to achieve a high enough avidity of interaction with untreated LCL to trigger effector function, although the LCL were able to stimulate them to grow in vitro for up to 4 mo. To assess whether a small percentage of the LCL might possess a higher antigen density, we used an assay of tumor necrosis factor release from a CTL clone, which was able to detect antigen-bearing cells representing only 1% of a stimulating LCL population. Nevertheless, the untreated autologous LCL line failed to stimulate tumor necrosis factor release.  相似文献   

16.
An immunological basis has been postulated for the strong association between at least five subtypes of the HLA-B27 allele (B27.01, .02, .04, .05, and .06) and ankylosing spondylitis, namely that cytotoxic T lymphocyte (CTL) responses are induced against an "arthritogenic" peptide that these different subtypes can all present. This requires a degree of overlap between the peptide binding repertoires of different B27 molecules. The present work, using CTL responses to Epstein-Barr virus (EBV) as a model system in which to identify B27-restricted epitopes, provides the first direct evidence that different disease- related alleles can present the same immunodominant peptide. We first noted that EBV-specific CTL clones, whether from B27.05-, B27.02-, or B27.04-positive donors, were largely subtype-specific in their restriction, recognizing only EBV-transformed B cell lines of the relevant B27 subtype. However, when tested against targets expressing individual EBV proteins from recombinant vaccinia virus vectors, all B27.05-restricted, all B27.02-restricted, and a proportion of B27.04- restricted clones were reactive to the same viral nuclear antigen, Epstein-Barr nuclear antigen (EBNA)3C. In subsequent peptide sensitization assays, all the EBNA3C-specific clones tested and also the EBNA3C-specific component within polyclonal CTL preparations from B27.05-, B27.02-, or B27.04-positive donors recognized the same immunodominant viral peptide RRIYDLIEL (EBNA3C residues 258-266). This sequence accords well with the proposed B27.05 peptide motif and clearly must be accommodated within the different peptide binding grooves of B27.05, B27.02, and B27.04 molecules. Clonal analysis revealed a second component of the B27.04-restricted response that was not shared with other subtypes. This was directed against an EBV latent membrane protein LMP2 epitope whose sequence RRRWRRLTV satisfies some but not all requirements of the B27.05 peptide motif. We conclude that there is indeed a degree of functional overlap between different B27 subtypes in their selection and presentation of CTL epitopes.  相似文献   

17.
Epstein-Barr virus (EBV), a human herpes virus with oncogenic potential, persists in B lymphoid tissues and is controlled by virus-specific cytotoxic T lymphocyte (CTL) surveillance. On reactivation in vitro, these CTLs recognize EBV-transformed lymphoblastoid cell lines (LCLs) in an HLA class I antigen-restricted fashion, but the viral antigens providing target epitopes for such recognition remain largely undefined. Here we have tested EBV-induced polyclonal CTL preparations from 16 virus-immune donors on appropriate fibroblast targets in which the eight EBV latent proteins normally found in LCLs (Epstein-Barr nuclear antigen [EBNA] 1, 2, 3A, 3B, 3C, leader protein [LP], and latent membrane protein [LMP] 1 and 2) have been expressed individually from recombinant vaccinia virus vectors. Most donors gave multicomponent responses with two or more separate reactivities against different viral antigens. Although precise target antigen choice was clearly influenced by the donor's HLA class I type, a subset of latent proteins, namely EBNA 3A, 3B, and 3C, provided the dominant targets on a range of HLA backgrounds; thus, 15 of 16 donors gave CTL responses that contained reactivities to one or more proteins of this subset. Examples of responses to other latent proteins, namely LMP 2 and EBNA 2, were detected through specific HLA determinants, but we did not observe reactivities to EBNA 1, EBNA LP, or LMP 1. The bulk polyclonal CTL response in one donor, and components of that response in others, did not map to any of the known latent proteins, suggesting that other viral target antigens remain to be identified. This work has important implications for CTL control over EBV-positive malignancies where virus gene expression is often limited to specific subsets of latent proteins.  相似文献   

18.
Nasal natural killer (NK)/T cell lymphoma is a peculiar lymphoma with a unique immunophenotype. Etiologically, in 1990, the authors first demonstrated the presence of Epstein-Barr virus (EBV) genomes and their products in this lymphoma. EBV-specific cytotoxic T lymphocytes (CTL) are very important in controlling the long-term persistence of EBV infection. Amino acid changes encoding the CTL epitope on the lymphoma cells may result in a reduced CTL response. We focused on two major CTL epitopes SSCSSCPLSK (codon 340 to 349) and FLYALALLLL (codon 356 to 364) of the LMP2A gene and determined the sequence isolated from nasal NK/T cell lymphoma tissues. All isolates from 7 nasal NK/T cell lymphomas showed the same amino acid change from serine to threonine at codon 348 in the CTL epitope SSCSSCPLSK. Threonine or serine substitution at codon 348 was almost equally observed in peripheral blood EBV isolates from healthy individuals in various ethnic origins. The predominant threonine substitution of nasal NK/T cell lymphoma patients may represent disease-associated polymorphism rather than a geographic or race-associated polymorphism. The LMP2A strain including threonine substitution at codon 348 may be selected within tumors and play a role for tumor genesis in Japanese patients with nasal NK/T cell lymphoma through reduced immune recognition.  相似文献   

19.
Currently there are few reliable cell surface markers that can clearly discriminate effector from memory T cells. To determine if there are changes in O-glycosylation between these two cell types, we analyzed virus-specific CD8 T cells at various time points after lymphocytic choriomeningitis virus infection of mice. Antigen-specific CD8 T cells were identified using major histocompatibility complex class I tetramers, and glycosylation changes were monitored with a monoclonal antibody (1B11) that recognizes O-glycans on mucin-type glycoproteins. We observed a striking upregulation of a specific cell surface O-glycan epitope on virus-specific CD8 T cells during the effector phase of the primary cytotoxic T lymphocyte (CTL) response. This upregulation showed a strong correlation with the acquisition of effector function and was downregulated on memory CD8 T cells. Upon reinfection, there was again increased expression of this specific O-glycan epitope on secondary CTL effectors, followed once more by decreased expression on memory cells. Thus, this study identifies a new cell surface marker to distinguish between effector and memory CD8 T cells. This marker can be used to isolate pure populations of effector CTLs and also to determine the proportion of memory CD8 T cells that are recruited into the secondary response upon reencounter with antigen. This latter information will be of value in optimizing immunization strategies for boosting CD8 T cell responses.  相似文献   

20.
Although the immunologic basis of protective immunity in human immunodeficiency virus type 1 (HIV-1) infection has not yet been defined, virus-specific cytotoxic T lymphocytes (CTL) are likely to be an important host defense and may be a critical feature of an effective vaccine. These observations, along with the inclusion of the HIV-1 envelope in the majority of vaccine candidates presently in clinical trials, underscore the importance of the precise characterization of the cellular immune responses to this protein. Although humoral immune responses to the envelope protein have been extensively characterized, relatively little information is available regarding the envelope epitopes recognized by virus-specific CTL and the effects of sequence variation within these epitopes. Here we report the identification of two overlapping CTL epitopes in a highly conserved region of the HIV-1 transmembrane envelope protein, gp41, using CTL clones derived from two seropositive subjects. An eight-amino acid peptide was defined as the minimum epitope recognized by HLA-B8-restricted CTL derived from one subject, and in a second subject, an overlapping nine-amino acid peptide was identified as the minimal epitope for HLA-B14-restricted CTL clones. Selected single amino acid substitutions representing those found in naturally occurring HIV-1 isolates resulted in partial to complete loss of recognition of these epitopes. These data indicate the presence of a highly conserved region in the HIV-1 envelope glycoprotein that is immunogenic for CTL responses. In addition, they suggest that natural sequence variation may lead to escape from immune detection by HIV-1-specific CTL. Since the region containing these epitopes has been previously shown to contain an immunodominant B cell epitope and also overlaps with a major histocompatibility complex class II T cell epitope recognized by CD4+ CTL from HIV-1 rgp160 vaccine recipients, it may be particularly important for HIV-1 vaccine development. Finally, the identification of minimal CTL epitopes presented by class I HLA molecules should facilitate the definition of allele-specific motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号