首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Approximately 10% to 15% of human cancers lack detectable telomerase activity, and a subset of these maintain telomere lengths by the telomerase-independent telomere maintenance mechanism termed alternative lengthening of telomeres (ALT). The ALT phenotype, relatively common in subtypes of sarcomas and astrocytomas, has rarely been reported in epithelial malignancies. However, the prevalence of ALT has not been thoroughly assessed across all cancer types. We therefore comprehensively surveyed the ALT phenotype in a broad range of human cancers. In total, two independent sets comprising 6110 primary tumors from 94 different cancer subtypes, 541 benign neoplasms, and 264 normal tissue samples were assessed by combined telomere-specific fluorescence in situ hybridization and immunofluorescence labeling for PML protein. Overall, ALT was observed in 3.73% (228/6110) of all tumor specimens, but was not observed in benign neoplasms or normal tissues. This is the first report of ALT in carcinomas arising from the bladder, cervix, endometrium, esophagus, gallbladder, kidney, liver, and lung. Additionally, this is the first report of ALT in medulloblastomas, oligodendrogliomas, meningiomas, schwannomas, and pediatric glioblastoma multiformes. Previous studies have shown associations between ALT status and prognosis in some tumor types; thus, further studies are warranted to assess the potential prognostic significance and unique biology of ALT-positive tumors. These findings may have therapeutic consequences, because ALT-positive cancers are predicted to be resistant to anti-telomerase therapies.  相似文献   

2.
Unlimited proliferative potential is a hallmark of cancer, and can be achieved through the activation of telomere maintenance mechanisms (TMMs). Most tumors activate telomerase, but a significant minority, mainly of mesenchymal origin, uses a recombination‐based, alternative lengthening of telomeres (ALT) mechanism. We investigated the presence of ALT in 34 Wilms tumor (WT) samples from 30 patients by using two approaches: (i) the detection of ALT‐associated promyelocytic leukemia (PML) nuclear bodies (APBs) by combined PML immunofluorescence and telomere fluorescence in situ hybridization and (ii) the assessment of terminal restriction fragment (TRF) length distribution by pulsed field gel electrophoresis. In parallel, telomerase activity (TA) was determined by the telomeric repeat amplification protocol (TRAP) assay. Based on APB expression, ALT was detectable in five samples as the sole TMM and in six samples in association with telomerase. Seventeen samples only expressed TA and in six cases no known TMM was appreciable. Results of TRF length distribution were available in 32 cases, and a concordance between APB and TRF data in defining the ALT phenotype was found in 26/32 cases (81%). The study provides the first evidence of the presence of ALT in WT, and indicates that in a small but defined fraction of cases (about 15%) ALT is the only TMM that supports the development of WT. © 2011 Wiley‐Liss, Inc.  相似文献   

3.
4.
The alternative lengthening of telomeres (ALT) mechanism represents an alternative to the enzyme telomerase in the maintenance of mammalian telomeres in 25-60% of sarcomas and a minority of carcinomas (about 5-15%). ALT-positive cells are distinguished by long and heterogeneous telomere length distributions by terminal restriction fragment (TRF) Southern blotting. Another diagnostic marker of ALT is discrete nuclear co-localized signals of telomeric DNA and the promyelocytic leukaemia protein (PML), referred to as ALT-associated PML bodies (APBs). Recently, we detected smaller sized co-localized PML and telomere DNA (APB-like) bodies in endothelial cells adjacent to astrocytoma tumour cells in situ. In this study, we examined a wide variety of non-neoplastic tissues, and report that co-localized signals of PML and telomere DNA are present in endothelial, stromal, and some epithelial cells. Co-localized signals of PML and telomere DNA showed an increased frequency in non-neoplastic cells with DNA damage. These results suggest that a mechanism similar to that in ALT-positive tumours also operates in non-neoplastic cells, which may be activated by DNA damage.  相似文献   

5.
Cancer cells require telomere maintenance to enable uncontrolled growth. Most often telomerase is activated, although a subset of human cancers are telomerase‐negative and depend on recombination‐based mechanisms known as ALT (A lternative L engthening of T elomeres). ALT depends on proteins that are essential for homologous recombination, including BLM and the MRN complex, to extend telomeres. This study surveyed the requirement for requisite homologous recombination proteins, yet to be studied in human ALT cell lines, by protein depletion using RNA interference. Effects on ALT were evaluated by measuring C‐circle abundance, a marker of ALT. Surprisingly, several proteins essential for homologous recombination, BARD1, BRCA2, and WRN, were dispensable for C‐circle production, while PALB2 had varying effects on C‐circles among ALT cell lines. Depletion of homologous recombination proteins BRCA1 and BLM, which have been previously studied in ALT, decreased C‐circles in all ALT cell lines. Depletion of the non‐homologous end joining proteins 53BP1 and LIG4 had no effect on C‐circles in any ALT cell line. Proteins such as chromatin modifiers that recruit double‐strand break proteins, RNF8 and RNF168, and other proteins loosely grouped into excision DNA repair processes, XPA, MSH2, and MPG, reduced C‐circles in some ALT cell lines. MSH2 depletion also reduced recombination at telomeres as measured by intertelomeric exchanges. Collectively, the requirement for DNA repair proteins varied between the ALT cell lines compared. In sum, our study suggests that ALT proceeds by multiple mechanisms that differ between cell lines and that some of these depend on DNA repair proteins not associated with homologous recombination pathways.  相似文献   

6.
Telomeres, the ends of eukaryotic chromosomes, have been the subject of intense investigation over the last decade. As telomere dysfunction has been associated with ageing and developing cancer, understanding the exact mechanisms regulating telomere structure and function is essential for the prevention and treatment of human cancers and age‐related diseases. The mechanisms by which cells maintain telomere lengthening involve either telomerase or the alternative lengthening of the telomere pathway, although specific mechanisms of the latter and the relationship between the two are as yet unknown. Many cellular factors directly (TRF1/TRF2) and indirectly (shelterin‐complex, PinX, Apollo and tankyrase) interact with telomeres, and their interplay influences telomere structure and function. One challenge comes from the observation that many DNA damage response proteins are stably associated with telomeres and contribute to several other aspects of telomere function. This review focuses on the different components involved in telomere maintenance and their role in telomere length homeostasis. Special attention is paid to understanding how these telomere‐associated factors, and mainly those involved in double‐strand break repair, perform their activities at the telomere ends. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

7.
According to the telomere hypothesis of senescence, the progressive shortening of telomeres that occurs upon division of normal somatic cells eventually leads to cellular senescence. The immortalisation of human cells is associated with the acquisition of a telomere maintenance mechanism which is usually dependent upon expression of the enzyme telomerase. About one third of in vitro immortalised human cell lines, however, have no detectable telomerase but contain telomeres that are abnormally long. The nature of the alternative telomere maintenance mechanism (referred to as ALT, for Alternative Lengthening of Telomeres) that must exist in these telomerase-negative cells has not been elucidated. It has previously been shown that abnormal lengthening of yeast telomeres may occur due to mutations in the yeast telomerase RNA gene. That this is not the mechanism of the abnormally long telomeres in ALT cell lines was demonstrated by the finding that seven of seven ALT lines have wild-type human telomerase RNA (hTR) sequence, including a novel polymorphism that is present in 30% of normal individuals. We found that two ALT cell lines have no detectable expression of the hTR gene. This shows that the ALT mechanism in these cell lines is not dependent on hTR. Expression of exogenous hTR via infection of these cells with a recombinant hTR-adenovirus vector did not result in telomerase activity, indicating that their lack of telomerase activity is not due to absence of hTR expression. We conclude that the ALT mechanism is not dependent on the expression of hTR, and does not involve mutations in the hTR sequence.   相似文献   

8.
Work in model organisms, such as mouse, yeast, Tetrahymena, ciliates, and plants, has led to a deeper understanding of telomere biology. Telomeres together with telomere-binding proteins have evolved to protect chromosomal ends and maintain chromosomal length and integrity. Over the last two decades, biochemical, molecular, cellular, and genetic studies have greatly enhanced our knowledge of the unique function and structure of telomeres and telomere-associated factors. In this review, we focus on the important advances, in terms of our knowledge and the methods used, in understanding mammalian telomere regulation by telomeric proteins. Recently, the 6 telomeric proteins (TRF1, TRF2, POT1, TIN2, RAP1, and TPP1) were found to form a high-order complex. This complex and its associated partners provide the basis for constructing an interaction map of telomere regulators in mammalian cells, which we named the Telomere Interactome. The Telomere Interactome incorporates the various telomere signaling pathways and represents the molecular machinery that regulates mammalian telomeres. The establishment of the Telomere Interactome will also enable the integration of the intricate circuitries that regulate telomeres with other cellular interactomes in vertebrates.  相似文献   

9.
Telomeres are the DNA–protein complexes that protect the ends of eukaryotic chromosomes. The cellular enzyme telomerase counteracts telomere shortening by adding telomeric DNA. A growing body of literature links shorter telomere length and lower telomerase activity with various age-related diseases and earlier mortality. Thus, leukocyte telomere length (LTL) and telomerase activity are emerging both as biomarkers and contributing factors for age-related diseases. However, no clinical study has directly examined telomerase activity and telomere length in different lymphocyte subtypes isolated from the same donors, which could offer insight into the summary measure of leukocyte telomere maintenance.We report the first quantitative data in humans examining both levels of telomerase activity and telomere length in four lymphocyte subpopulations from the same donors—CD4+, CD8+CD28+ and CD8+CD28? T cells and B cells, as well as total PBMCs—in a cohort of healthy women. We found that B cells had the highest telomerase activity and longest telomere length; CD4+ T cells had slightly higher telomerase activity than CD8+CD28+ T cells, and similar telomere length. Consistent with earlier reports that CD8+CD28? T cells are replicatively senescent cells, they had the lowest telomerase activity and shortest telomere length. In addition, a higher percentage of CD8+CD28? T cells correlated with shorter total PBMC TL (r = ? 0.26, p = 0.05). Interestingly, telomerase activities of CD4+ and CD8+CD28+ T cells from the same individual were strongly correlated (r = 0.55, r < 0.001), indicating possible common mechanisms for telomerase activity regulation in these two cell subtypes. These data will facilitate the understanding of leukocyte aging and its relationship to human health.  相似文献   

10.
Using comparative genomic hybridization (CGH), we have identified and mapped regions of DNA amplification in primary and metastatic osteosarcomas. Samples were obtained from four patients and ten independent xenografts. Sixty-four percent of the tumors showed increased DNA-sequence copy numbers, affecting 23 different chromosomal sites. Most of these regions were not previously associated with the development and/or progression of these tumors. Amplicons originating from 1q21–q23, 6p, 8q23-qter, and 17p11-p12 were observed most frequently. The 6p and 17p11–p12 amplicons seem to be specific for osteosarcomas, indicating that these regions may harbor genes relevant for the development of these tumors.  相似文献   

11.
Alternative splicing has recently emerged as a major mechanism of generating protein diversity in higher eukaryotes. We compared alternative splicing isoforms of 166 pairs of orthologous human and mouse genes. As the mRNA and EST libraries of human and mouse are not complete and thus cannot be compared directly, we instead analyzed whether known cassette exons or alternative splicing sites from one genome are conserved in the other genome. We demonstrate that about half of the analyzed genes have species-specific isoforms, and about a quarter of elementary alternatives are not conserved between the human and mouse genomes. The detailed results of this study are available at www.ig-msk.ru:8005/HMG_paper.  相似文献   

12.
Immortal human cells maintain telomere length by the expression of telomerase or through the alternative lengthening of telomeres (ALT). The ALT mechanism involves a recombination-like process that allows the rapid elongation of shortened telomeres. However, it is not known whether activation of the ALT pathway affects other sequences in the genome. To address this we have investigated, in ALT-expressing cell lines and tumours, the stability of tandem repeat sequences known to mutate via homologous recombination in the human germline. We have shown extraordinary somatic instability in the human minisatellite MS32 (D1S8) in ALT-expressing (ALT+) but not in normal or telomerase-expressing cell lines. The MS32 mutation frequency varied across 15 ALT+ cell lines and was on average 55-fold greater than in ALT- cell lines. The MS32 minisatellite was also highly unstable in three of eight ALT+ soft tissue sarcomas, indicating that somatic destabilization occurs in vivo. The MS32 mutation rates estimated for two ALT+ cell lines were similar to that seen in the germline. However, the internal structures of ALT and germline mutant alleles are very different, indicating differences in the underlying mutation mechanisms. Five other hypervariable minisatellites did not show elevated instability in ALT-expressing cell lines, indicating that minisatellite destabilization is not universal. The elevation of MS32 instability upon activation of the ALT pathway and telomere length maintenance suggests there is overlap between the underlying processes that may be tractable through analysis of the D1S8 locus.  相似文献   

13.
14.
Mouse models show that progressive shortening of telomeres with ageing causes chromosomal instability, which can lead to the initiation of cancer. However, it is unclear what roles telomere shortening plays in human carcinogenesis. The present study has investigated the involvement of telomere dynamics in uterine carcinogenesis. Using telomere-FISH (telo-FISH) assays, telomere lengths in premalignant and malignant cervical and endometrial lesions were measured and compared with chromosomal arm loss or gain. Telo-FISH signals were visualized with Cy3-labelled telomere-specific probes and presented as telomere intensity (TI). Early-stage cervical intraepithelial neoplasias (CINs), especially CIN2, had significantly shorter telomeres than corresponding normal squamous epithelia (p = 0.019), together with increased rates of chromosomal arm loss/gain (p < 0.001). Cervical cancers had relatively short telomeres, but they also showed greater heterogeneity than other sampled tissues, including those with long telomeres. In contrast, there was no significant difference between the telomere length of normal endometrium and of endometrial hyperplasia and endometrial cancer. There was no significant difference in the rate of chromosomal arm loss/gain between normal endometrium and endometrial hyperplasia. These findings suggest that progressive shortening of telomeres occurs in CIN, in association with chromosomal instability, which may play critical roles in cervical carcinogenesis. In contrast, endometrial hyperplasias have relatively stable telomeres without widespread chromosome alteration, implying that endometrial carcinogenesis involves mechanisms distinct from those of cervical carcinogenesis, possibly including microsatellite instability.  相似文献   

15.
16.

Background  

The purpose of this study was to determine, among the Indian community of Chatsworth, South Africa, the prevalence and utilisation patterns of complementary and alternative medicine (CAM), attitudes associated with CAM use and communication patterns of CAM users with their primary care doctors.  相似文献   

17.
18.
Approximately 45% of sporadic well-differentiated pancreatic neuroendocrine tumors harbor mutations in either ATRX (alpha thalassemia/mental retardation X-linked) or DAXX (death domain-associated protein). These novel tumor suppressor genes encode nuclear proteins that interact with one another and function in chromatin remodeling at telomeric and peri-centromeric regions. Mutations in these genes are associated with loss of their protein expression and correlate with the alternative lengthening of telomeres phenotype. Patients with multiple endocrine neoplasia-1 (MEN-1) syndrome, genetically defined by a germ line mutation in the MEN1 gene, are predisposed to developing pancreatic neuroendocrine tumors and thus represent a unique model for studying the timing of ATRX and DAXX inactivation in pancreatic neuroendocrine tumor development. We characterized ATRX and DAXX protein expression by immunohistochemistry and telomere status by telomere-specific fluorescence in situ hybridization in 109 well-differentiated pancreatic neuroendocrine lesions from 28 MEN-1 syndrome patients. The study consisted of 47 neuroendocrine microadenomas (<0.5?cm), 50 pancreatic neuroendocrine tumors (≥0.5?cm), and 12 pancreatic neuroendocrine tumor lymph node metastases. Expression of ATRX and DAXX was intact in all 47 microadenomas, and none showed the alternative lengthening of telomeres phenotype. ATRX and/or DAXX expression was lost in 3 of 50 (6%) pancreatic neuroendocrine tumors. In all three of these, tumor size was ≥3?cm, and loss of ATRX and/or DAXX expression correlated with the alternative lengthening of telomeres phenotype. Concurrent lymph node metastases were present for two of the three tumors, and each metastasis displayed the same changes as the primary tumor. These findings establish the existence of ATRX and DAXX defects and the alternative lengthening of telomeres phenotype in pancreatic neuroendocrine tumors in the context of MEN-1 syndrome. The observation that ATRX and DAXX defects and the alternative lengthening of telomeres phenotype occurred only in pancreatic neuroendocrine tumors measuring ≥3?cm and their lymph node metastases suggests that these changes are late events in pancreatic neuroendocrine tumor development.  相似文献   

19.
It is well established that specific cancers and immortalized cells have nonrandom chromosome aberrations. However, little is understood about the underlying mechanism that initiates these aberrations in human cells. To examine whether human chromosomes with the shortest telomeres initiate the preferential chromosomal aberrations before cellular immortalization, we simultaneously applied telomere quantitative fluorescence in situ hybridization and specific whole-chromosome painting on chromosomes 1, 5, 8, 17, 19, and 20 in human ovarian surface epithelial (HOSE 6-3) cells expressing human papilloma viral oncogenes (HPV16 E6E7). The HPV16 E6E7-expressing cells, with extended in vitro life span and telomerase-negative status, were previously identified as having nonrandom chromosomal imbalances and high frequencies of dicentrics. Our analyses showed that among six pairs of targeted chromosomes, chromosomes 8 and 20 showed critically short telomeres with an undetectable telomere signal in more than 50% of cells analyzed. These chromosomes with the critically short telomeres were preferentially involved in various types of chromosomal aberrations including dicentrics, translocations, breaks, insertions, and losses or gains of chromosomal elements. Our findings suggest that nonrandom chromosome aberrations in HOSE cells occurring before cellular immortalization could be caused by the telomere length heterogeneity.  相似文献   

20.
The loss of telomere function can result in telomeric fusion events that lead to the types of genomic rearrangements, such as nonreciprocal translocations, that typify early-stage carcinogenesis. By using single-molecule approaches to characterize fusion events, we provide a functional definition of fusogenic telomeres in human cells. We show that approximately half of the fusion events contained no canonical telomere repeats at the fusion point; of those that did, the longest was 12.8 repeats. Furthermore, in addition to end-replication losses, human telomeres are subjected to large-scale deletion events that occur in the presence or absence of telomerase. Here we show that these telomeres are fusogenic, and thus despite the majority of telomeres being maintained at a stable length in normal human cells, a subset of stochastically shortened telomeres can potentially cause chromosomal instability. Telomere fusion was accompanied by the deletion of one or both telomeres extending several kilobases into the telomere-adjacent DNA, and microhomology was observed at the fusion points. This contrasted with telomere fusion that was observed following the experimental disruption of TRF2. The distinct error-prone mutational profile of fusion between critically shortened telomeres in human cells was reminiscent of Ku-independent microhomology-mediated end-joining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号