首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Myelin phagocytosis in nerves undergoing Wallerian degeneration has been shown to depend on their invasion by non-resident, hematogenous macrophages. This process can be studied in vitro using organ cultures of peripheral nerves exposed to cultured peritoneal macrophages. The present report concerns the role of cell surface carbohydrates in the invasion of degenerating nerves and in the recognition and ingestion of myelin by the phagocytic cells. Additional experiments explored the effect of pH, calcium and cytochalasin D on myelin phagocytosis. Organ cultures with peritoneal macrophages were treated with 14 simple or complex sugars or with eight sugar-splitting enzymes. Macrophage invasion was diminished by many simple or complex sugars, but exposure to sugars had no effect on the recognition or ingestion of myelin by the invading macrophages. Macrophage invasion was abolished upon treatment with β-mannosidase. Exposure to L-fucosidase abolished the myelin phagocytic capacity of invading macrophages completely without affecting their capacity to ingest carbon or latex particles. The results indicate that the phagocytosis of myelin by macrophages is an L-fucosidase-sensitive process, probably by interaction with their complement receptor type C3.  相似文献   

2.
Myelin removal in nerves undergoing wallerian degeneration mainly depends on invading, non-resident macrophages. The present study clarifies the role of serum complement components in this process in vitro and in vivo. Macrophages cocultured with degenerating nerves in vitro were unable to invade these nerves in the presence of C3-deficient serum. Application of C3-deficient serum subsequent to cellular invasion abolished the myelin phagocytic capacity of the invaded macrophages. This indicates that opsonization of myelin by complement components is necessary in myelin ingestion via macrophage receptors. In vivo, a monoclonal antibody to the macrophage complement receptor type 3 (CR3) significantly reduced myelin phagocytosis. Immunohistochemistry with anti-C3 antibodies showed a marked reaction in degenerating nerves. Immunoelectron microscopy localized C3 particles at the degenerating myelin sheaths. Haematogenous cells, invading the degenerating nerves, also showed a strong reaction for C3 in their cytoplasm. These results indicate that complement components play a critical role both in macrophage invasion of degenerating nerves and in the ingestion of myelin by these cells.  相似文献   

3.
Summary Myelin phagocytosis in Wallerian degeneration of peripheral nerves depends on invasion of nerves by non-resident macrophages. The present study was done to clarify the role of the macrophage complement receptor type 3 (CR3) in myelin removal. Myelin phagocytic capacity of invading macrophages was abolished by treatment of cultured nerves and macrophages with anti-CR3 antibody or by serum complement depletion with cobra venom factor. This indicates that myelin phagocytosis is mediated by the macrophage CR3.Supported by grant 609/2-1 from the Deutsche Forschungsgemeinschaft  相似文献   

4.
Myelin phagocytosis in nerves undergoing Wallerian degeneration was shown to depend on their invasion by non-resident, hematogenous macrophages. This process can be studied in vitro using organ cultures of peripheral nerves exposed to cultured peritoneal macrophages. The present report concerns the effect of recombinant interferon-gamma (rIFN-gamma) on luminol-dependent chemiluminescence, macrophage migration and myelin phagocytosis in organ cultures. Chemiluminescence was activated by rIFN-gamma compared to untreated cells. The macrophage population was capable of activation at any phase of exposure to organ cultures. The engagement of macrophages in myelin phagocytosis, however, varied with the timing of the application of rIFN-gamma. Application from the start of the experiment led to activation of chemiluminescence and also to a complete inhibition of macrophage invasion of the organ culture, thus preventing myelin removal. Application of rIFN-gamma at a later phase of the experiment had no effect on cell invasion and also no detectable effect on the efficiency of myelin phagocytosis. There was no indication that myelin phagocytosis by itself activated chemiluminescence in untreated cultures. Phagocytosis of myelin appears to be a function of macrophages independent of activation causing production of oxygen radicals.  相似文献   

5.
Organ cultures of degenerating nerve fascicles were exposed to cultured macrophages obtained by peritoneal lavage. Invasion of the nerve fascicle by phagocytes was shown by prelabeling with carbon and with electron microscopy. There was massive active phagocytosis of degenerating myelin sheaths. The invading phagocytic cell population was identified as Fc receptor-positive, Mac-1-positive macrophages by immunocytochemistry. The Schwann cell population persisted without significant myelin phagocytosis. The vitality of the Schwann cell population was shown by subsequent reimplantation of the organ cultures into host animals. The reimplants had retained their ability to remyelinate regenerating axon sprouts. These observations were made in cultures exposed to cytostatic agents. If cytostatic agents were omitted, there was proliferation of endogenous phagocytes in the nerve fascicles without added peritoneal cells. These endogenous phagocytes were identified as proliferating resident monocytes and were positive for the Fc receptor and Mac-1 markers. This model allows studies on how monocytes recognize and digest degenerating myelin apart from surviving Schwann cells.  相似文献   

6.
The Role of the Mouse Macrophage Scavenger Receptor in Myelin Phagocytosis   总被引:1,自引:0,他引:1  
Myelin phagocytosis during Wallerian degeneration and immune-mediated demyelination depends on the action of mononuclear cells of the monocyte/macrophage system. The present study investigated the role of the macrophage scavenger receptor, a trimeric membrane glycoprotein, in myelin uptake by macrophages. Two in vitro models of myelin phagocytosis were used: an organ culture model of mouse peripheral nerves exposed to cocultured macrophages and a quantitative flow cytometric assay. Different concentrations of the monoclonal rat anti-mouse scavenger receptor antibody (2F8) were applied to these systems to selectively block the macrophage scavenger receptor. Concentration-dependent effects on macrophage migration and myelin uptake were seen when the macrophage scavenger receptor was blocked by the antibody 2F8. Low concentrations reduced myelin phagocytosis by the invading macrophages; higher concentrations completely abolished macrophage invasion of the nerves. Using a quantitative flow cytometric assay it was also shown that the 2F8 antibody inhibits phagocytosis of myelin in a dose-dependent manner. These data indicate that the macrophage scavenger receptor is involved in myelin phagocytosis by macrophages.  相似文献   

7.
Macrophages/microglia are the key effector cells in myelin removal. Differences exist in the amount and time course of myelin uptake in the central (CNS) and peripheral nervous system (PNS), the basis of this difference, however, is not yet clarified. In the present experiments we studied the phagocytosis rate of CNS or PNS myelin by macrophages and microglia in vitro. Additionally, the effects of intravenous immunoglobulins (IVIg) on this process were investigated. In the PNS experiments, sciatic nerves were cocultured with peritoneal macrophages. Optic nerve fragments were used to characterize the myelin-removing properties of microglia. Cocultures with peritoneal macrophages aimed at investigating the differences in phagocytosis between resident microglia and added macrophages. The myelin phagocytosis in sciatic nerve fragments was higher than in optic nerves, indicating differences in the myelin uptake rate between peripheral macrophages and microglia. IVIg increased the phagocytosis of PNS myelin by macrophages, but not by microglia in optic nerves. The addition of peritoneal macrophages to optic nerve fragments did not lead to an increase in the phagocytosis of CNS myelin either. The IVIg induced phagocytosis of PNS myelin by peripheral macrophages was associated with an increased expression of macrophage Fc receptors measured by FACS. Blocking of Fc receptors by anti-Fc receptor antibody reduced the IVIg induced PNS myelin phagocytosis to basic levels, indicating that the induced but not the basic myelin uptake by macrophages is Fc receptor dependent. In contrast to peripheral macrophages, IVIg did not increase Fc receptor density on microglia. These data indicate that phagocytosis of PNS and CNS myelin by macrophages or microglia is differentially regulated. Local factors within the CNS or PNS may affect this process by modulating the surface receptor profile and activation state of the phagocytic cell or the structure of the myelin sheath.  相似文献   

8.
Summary Myelin phagocytosis in Wallerian degeneration was studied using a model of murine sciatic nerve degeneration in millipore diffusion chambers in the peritoneal cavity of host mice. Immunocytological investigations showed the dependence of myelin digestion on the invasion of Fc-positive, Mac-1-positive and partly Ia-positive monocytes. Lymphocytes did not play a prominent role. Compared to Wallerian degeneration in situ, phagocytosis was decreased in nerves enclosed by millipore membranes on both sides of the chamber. The membrane acted as a trap for invading monocytes/macrophages. Neither tissue integrity nor genetic strain influenced the degree of phagocytosis. A modification of the experimental technique is introduced which permits myelin phagocytosis in the peritoneal cavity in a degree comparable to that in Wallerian degeneration in situ.Supported by a grant from the Deutsche Forschungsgemeinschaft (609)  相似文献   

9.
Allogenic graft rejection leads to rapid tissue destruction of nerves transplanted directly into a muscle lodge. If the nerves are enclosed in 5.0 micron pore chambers and transplanted into the peritoneal cavity, there is no allogenic graft rejection. The phagocytosis of myelin by invading cells is, however, not disturbed, showing that these cells can distinguish the degenerating myelin from the Schwann cell without being responsive to the Schwann cell's allotype. If the allografts are allowed to predegenerate for 4 wk in 0.22 micron pore chambers which do not admit any cells, there is a striking mitigation of the allogenic graft rejection if the nerves are subsequently released from the chamber. Myelin phagocytosis in such nerves is also reduced. These observations indicate the existence of a hierarchy of cellular recognition mechanisms involved in nerve tissue degradation. Phagocytosis of the myelin sheath by macrophages involves recognition mechanisms which differ from those of the allogenic rejection of the Schwann cell, presumably mediated by T lymphocytes.  相似文献   

10.
Wallerian degeneration of a peripheral nerve is mainly characterized by axon and myelin degradation and is paralleled by a massive invasion of peripheral macrophages into the nerve. These cells enter the nerve attracted by a cascade of chemokines and cytokines but require proteolytic and enzymatic factors which enables them to cross the blood-nerve barrier. Here we investigated whether alpha-naphthyl (alpha-NA) esterases -- which have been shown to be exclusively expressed in human monocytes -- play a role during Wallerian degeneration. These enzymes were blocked by the specific inhibitor bis(4-nitrophenyl)-phosphate (BNPP) in an established in vitro model of Wallerian degeneration. Sciatic nerve segments of mice were co-cultured with peritoneal macrophages and BNPP was added to the cultures in various concentrations and at different timepoints. The macrophage numbers and myelin density in the nerve segments and the myelin load of macrophages were evaluated. After BNPP treatment the macrophage number within the nerve was significantly diminished and the myelin load within the macrophages was decreased, resulting in elevated levels of preserved myelin within the nerves. These experiments clearly showed a double effect of the alphaNA esterase inhibitor BNPP on macrophages. First, it suggests a role for alphaNA esterases on the migratory potential of macrophages since their invasion into the nerves was diminished. Second, the reduced myelin uptake is due to the inhibition of phagocytic capacity of these cells by BNPP. The therapeutical use of this inhibitor for treatment of autoimmune diseases such as multiple sclerosis or Guillain-Barré syndrome remains to be investigated.  相似文献   

11.
Macrophages play a crucial role in myelin removal during nerve degeneration and demyelination. The exact mechanisms of myelin recognition and uptake are not yet defined. The present experiments aimed at defining the role of intercellular adhesion molecule-1 (ICAM-1) in this process. Myelin phagocytosis was studied in an established in vitro model of cultured macrophages and sciatic nerves. Cocultures of wild-type C57BL macrophages with sciatic nerves resulted in a massive invasion of the nerves by macrophages with subsequent removal of myelin. In contrast, when macrophages of ICAM-1-deficient animals were cocultured with wild-type nerves, myelin phagocytosis was significantly retarded, whereas cell invasion was completely undisturbed. These data indicate that the ICAM-1 molecule acts as a costimulatory signal in myelin recognition and uptake by macrophages. Received: 3 January 2000 / Revised, accepted: 7 February 2000  相似文献   

12.
Wallerian degeneration is one of the most elementary reactions of the nervous system after transection of axons, leading to the recruitment of mononuclear cells from the systemic circulation. However, the exact mechanisms regulating this cell invasion have not yet been clarified in detail. Chemokines and their receptors play a central role in leukocyte trafficking, in particular the chemokine MCP-1 has been strongly implicated in macrophage recruitment to the injured nervous system. The present study investigates the course of Wallerian degeneration after transection of the sciatic nerve in mice deficient in two chemokine receptors: CCR2, the main receptor for MCP-1, and CCR5, a marker for Th1 T lymphocytes but also present on macrophages. The number of invading macrophages was determined by immunocytochemistry for three typical macrophage antigens (F4/80, Mac-1, LFA-1). The chemokine receptor CCR2 was expressed by infiltrating cells in the transected nerve stumps. Macrophage invasion was significantly impaired in CCR2-knockout mice when compared with wildtype controls and CCR5-deficient mice. Subsequently, there was a corresponding decrease in myelin phagocytosis due to the reduced invasion of phagocytic macrophages. These data demonstrate the involvement of the chemokine receptor CCR2 in macrophage recruitment to the injured nervous system.  相似文献   

13.
Certain cytokines are believed to play a key role in the development of autoimmune demyelinating diseases. Little is known, however, about the effects of these cytokines in the regulation of the key event in myelin destruction, the phagocytosis of myelin by phagocytic cells. We investigated the effects of certain cytokines and growth factors on cultured peritoneal macrophages and microglia in respect to their various functions, phagocytosis, secreted proteolytic activity, and oxidative activity. Interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and lipopolysaccharide (LPS), all proinflammatory factors, actually decreased (IFN-γ and LPS), or had no effect (TNF-α) on myelin phagocytosis by macrophages, but substantially increased phagocytic activity by microglia. Surprisingly, interleukins 4 and 10 (IL-4 and IL-10), considered to be downregulating cytokines, increased phagocytic activity by macrophages, while with microglia, IL-4 had no effect, but IL-10 almost doubled myelin phagocytosis. Transforming growth factor-β (TGF-β) had no significant effect on either cell. These cytokines did not affect proteolytic secretion in microglia, while IFN-γ and LPS induced a doubling of the secreted proteases. This proteolytic activity was almost completely suppressed by calpain inhibitors, although some gelatinase appeared to be present. Microglia exerted much more oxidative activity on the membranes than macrophages, and granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin 1β (IL-1β) significantly increased microglial oxidative activity. The pattern of responses of macrophages and microglia to the cytokine types indicate that in cytokine-driven autoimmune demyelinating disease, microglia may be the more aggressive cell in causing tissue injury by phagocytosis and oxidative injury, while infiltrating macrophages may produce most of the proteolytic activity thought to contribute to myelin destruction. J. Neurosci. Res. 54:68–78, 1998. © 1998 Wiley-Liss, Inc. This article is a US Government work and, as such, is in the public domain in the United States of America.  相似文献   

14.
Previous experiments from this laboratory have shown that peritoneal macrophages in culture will phagocytize myelin. Myelin preopsonized with myelin antibodies is phagocytized to a much greater extent than untreated myelin, indicating that macrophages ingest myelin by an Fc receptor. The present work was undertaken to determine the characteristics of myelin phagocytosis by microglia, the resident macrophages of the central nervous system. Microglia isolated from 4–5 day primary cultures of newborn rat brains were shown to bind and phagocytize myelin labeled in the lipids by 14C-acetate. Both binding and phagocytosis as shown by the appearance of 14C-cholesterol ester were greatly increased if labeled myelin was preopsonized with antiserum to myelin basic protein or galactocerebroside. Both preopsonized and untreated myelin were phagocytized more actively by microglia than by peritoneal macrophages under the same culture conditions. Microglia cultured in the presence of GM-CSF showed slightly increased cholesterol ester production from opsonized myelin, but the effect of GM-CSF was significantly greater than myelin pretreated with control serum (34% increase) or untreated myelin (154% increase). There was no significant effect of GM-CSF on myelin phagocytosis by peritoneal macrophages. Cerebrospinal fluid containing immunoglobulin drawn from rabbits with acute EAE also opsonized myelin to increase phago cytosis by microglia, as has been previously shown with peritoneal macrophages. These results indicate that microglia may actively participate in myelin destruction in demyelinating diseases where myelin antibodies or a source of GM-CSF may be present. © 1993 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    15.
    Changes of myelin proteins in mouse sciatic nerves were studied comparing nerves degenerating in situ with nerves enclosed in millipore diffusion chambers which eliminate invasion of non-resident cells. Nerves kept in chambers showed nearly complete preservation of myelin sheaths with a very slow degradation of myelin proteins. Nerves degenerating in situ showed rapid myelin phagocytosis by macrophages with almost complete disappearance of myelin proteins after 28 days. These data elucidate the role of macrophages for removal of myelin proteins.  相似文献   

    16.
    Intraneural injection of sera from rabbits with experimental allergic encephalomyelitis, induced by sensitization with bovine brain white matter in complete Freund's adjuvant, produced focal primary demyelinative lesions in rat sciatic nerves. Demyelinating activity was removed by prior incubation of antisera with central (CNS) and peripheral nervous system (PNS) myelin but not with liver or kidney, and was heat-labile and complement-dependent. Recipient animals developed a sensorimotor disturbance of their toes and ankles on the side injected with antiserum. Twenty minutes after antiserum injection, Schwann cells showed focal cytoplasmic outpouching and their external mesaxons opened. Between 1 and 8 hours after injection vacuolation, splitting and vesiculation of myelin became increasingly prominent at Schmidt-Lanterman clefts and paranodal regions, with concomitant degenerative changes in Schwann cell cytoplasm. Polymorphonuclear cell infiltration and endoneurial edema were apparent at this time. Substantial demyelination occurred before the appearance of phagocytic cells. Between 8 hours and 3 days many nerve fibers were surrounded and attacked by invading macrophages. Axons became demyelinated progressively over several internodes by macrophage phagocytosis. Early signs of remyelination were observed by 5 days. These findings suggest that antibodies directed against antigens common to both CNS and PNS myelin can produce in vivo peripheral nerve demyelination.  相似文献   

    17.
    Astrocytes modulate macrophage phagocytosis of myelin in vitro   总被引:2,自引:0,他引:2  
    Previous work from this laboratory has shown that both macrophages and microglia phagocytize relatively little myelin in vitro under basal conditions. In an effort to better simulate the conditions within the central nervous system (CNS), we have co-cultured these cells with astrocytes, the most numerous of the neural cells in the CNS, and have compared myelin phagocytosis in the co-cultures with that in cells cultured alone. Both macrophages and microglia in company with astrocytes phagocytized about three times as much myelin as controls, as measured by the formation of cholesterol ester, while astrocytes alone showed little evidence of myelin phagocytosis. Astrocyte-conditioned medium increased phagocytic activity in macrophages by 2.3-fold, and by 3.5-fold in microglia. A number of adhesion molecules and extracellular matrices were tested for their effects on myelin phagocytosis. Matrigel was most effective in activating the macrophages, and in the presence of conditioned medium, stimulated these cells to phagocytize as much myelin as when co-cultured with astrocytes. On the other hand, Matrigel inhibited myelin phagocytosis in microglia. These results indicate that activation of macrophages by astrocytes may be due to an adhesion component, as well as to soluble factors secreted by the astrocytes. While microglia were also stimulated by conditioned medium, adhesion to astrocytes or Matrigel induced a downregulation in phagocytic activity.  相似文献   

    18.
    The role of TNF-alpha in the course of Wallerian degeneration of the sciatic nerve was studied in control and TNF-alpha deficient mice. In control animals, the characteristic phenomena of Wallerian degeneration such as axon and myelin degeneration as well as macrophage recruitment with subsequent myelin removal were observed. In TNF-alpha deficient mice, in contrast, macrophage recruitment into the degenerating nerves was impaired resulting in a delayed myelin removal. However, the myelin phagocytic capacity of macrophages was not affected as it could be demonstrated by a similar myelin load of control and TNF-alpha deficient macrophages. These data indicate that the main function of TNF-alpha during Wallerian degeneration is the induction of macrophage recruitment from the periphery without affecting myelin damage or phagocytosis.  相似文献   

    19.
    Resident macrophages of the peripheral nervous system have recently been shown to respond rapidly to Wallerian degeneration before the influx of blood-derived macrophages. Because resident endoneurial macrophages are slowly but incompletely exchanged from the blood within 3 months, they could potentially comprise a heterogenous cell population consisting of long-term resident cells and more mobile cells undergoing turnover. We used bone marrow chimeric mice created by transplanting bone marrow from green fluorescent protein-transgenic mice into irradiated wildtype recipients to selectively analyse the response of these two resident macrophage populations to Wallerian degeneration in sciatic nerve explant cultures. In such nerves, recently immigrated macrophages exhibit green fluorescence whereas long-term resident macrophages do not. Studies in cultures from wildtype controls revealed rapid morphological changes of resident macrophages towards a bloated phenotype, a proliferative response resulting in a 3.7-fold increase of macrophage numbers over 2 weeks, and phagocytosis of myelin basic protein-immunoreactive myelin debris. When chimeric mice were analysed, both populations of resident endoneurial macrophages participated in morphological transformation, proliferation and phagocytosis. Quantitative studies revealed a stronger proliferative and phagocytic response in long-term resident endoneurial macrophages compared with recently immigrated macrophages. Our results point towards subtle, but not principal, differences between the two macrophage populations, which might indicate different stages of macrophage differentiation rather than the existence of entirely distinct endoneurial macrophage populations. The results further underline the versatility of resident endoneurial macrophages following peripheral nerve injury, which is reminiscent of the lesion response of microglial cells within the brain.  相似文献   

    20.
    The role of macrophages and serum factors in demyelination in experimental allergic neuritis (EAN) was examined by a simple in vitro method.Cultivated rabbit peritoneal macrophages, preincubated with serum obtained from rabbit EAN produced by sensitization with bovine spinal nerve roots, could agglutinate and phagocytize purified bovine or rabbit peripheral nerve myelin. Sera from normal animals or from controls given adjuvant alone could not. Adhesion and phagocytosis were inhibited if EAN sera were absorbed with peripheral nerve myelin. Rabbit red blood cells were not phagocytized by macrophages exposed to EAN serum.Concomitant to these observations, three lyosomal acid hydrolases: acid proteinase, acid phosphatase and β-glucuronidase, were assayed with respect to their topographical and chronological distribution. In the group examined at clinical onset, increases in the specific activities were 1.5–3.0-fold in the spinal roots and 1.0–1.5-fold in the sciatic nerves compared with control. The degree of increase in total activities per whole root or sciatic nerve was much higher than for specific activities. The topographical distribution of the increase closely corresponded to the histological distribution of EAN lesions. These observations suggested that the increased lysosomal activity originated from lysosomal-rich infiltrating cells.These observations strongly indicated the significant role of macrophages activated by EAN serum in the demyelination of EAN.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号