首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P2X3 purinoceptors are involved in fast, excitatory neurotransmission in the nervous system, and are expressed predominantly within sensory neurons. In this study, we examined the cellular and synaptic localization of the P2X3 receptor subunit in the retina of the rat using immunofluorescence immunohistochemistry and pre-embedding immunoelectron microscopy. In addition, we investigated the activity of ecto-ATPases in the inner retina using an enzyme cytochemical method. The P2X3 receptor subunit was expressed in the soma of a subset of GABA immunoreactive amacrine cells, some of which also expressed protein kinase C-alpha. In addition, punctate immunoreactivity was observed within both the inner and outer plexiform layers of the retina. Double labeling studies showed that P2X3 receptor puncta were associated with both rod and cone bipolar cell axon terminals in the inner plexiform layer. Ultrastructural studies indicated that P2X3 receptor subunits were expressed on putative A17 amacrine cells at sites of reciprocal synaptic input to the rod bipolar cell axon terminal. Moreover, we observed P2X3 immunolabeling on amacrine cell processes that were associated with cone bipolar cell axon terminals and other conventional synapses. In the outer retina, P2X3 immunoreactivity was observed on specialized junctions made by putative interplexiform cells. Ecto-ATPase activity was localized to the inner plexiform layer on the extracellular side of all plasma membranes, but was not apparent in the ganglion cell layer or the inner nuclear layer, suggesting that ATP dephosphorylation occurs exclusively in synaptic regions of the inner retina. These data provide further evidence that purines participate in retinal transmission, particularly within the rod pathway.  相似文献   

2.
The ultrastructural features and synaptic contacts of two types of neurotensin-containing amacrine cells in turtle retina were examined by electron immunocytochemistry, and the retinal peptides were characterized using radioimmunoassay and high-pressure liquid chromatography. The two types of cell were distinguished on the basis of their sizes, dendritic arborizations, synaptic connections and cytoplasmic staining characteristics. Type A cells had lightly labeled cytoplasm and large vertically elongated cell bodies which gave rise to a single primary process which in turn branched and ramified as smooth tapering processes in stratum 3 of the inner plexiform layer. Type A cells received approximately equal synaptic input from amacrine and bipolar cells. Type A amacrines had much more overall synaptic input than synaptic output, and they made conventional synaptic contacts onto bipolar, amacrine, and ganglion cells. Type B cells had a much darker-staining cytoplasm and a smaller cell body which gave rise to numerous delicate beaded dendrites which arborized in strata 3, 4 and 5 of the inner plexiform layer. Type B cells received primarily amacrine and some bipolar cell input. Type B cells had equal amounts of synaptic input and output and they made conventional synaptic contacts onto amacrine, bipolar, and ganglion cells. Whereas there were numerous large vesicles (120 nm diameter) that stained for neurotensin in both types of cells, conventional synaptic vesicles (60 nm diameter) were not labeled. In several cases these large labeled vesicles appeared to fuse with the cell membrane in non-synaptic regions and release their contents into extracellular space, which suggested a non-synaptic release of the neurotensin from type A neurons. Immunochemical and chromatographic studies demonstrated that the neurotensin-related material in retina was indistinguishable from neurotensin found in brain. These results are consistent with a neuroactive role for the neurotensin present within the large vesicles. The differences in the synaptic contacts and dendritic arborizations of the two amacrine cell types suggest they play distinctive functions in visual processing.  相似文献   

3.
Summary A post-embedding, electron microscopic immunocytochemistry technique, modified from existing protocols, was used to examine the labelling patterns of GABA immunoreactivity and glycine immunoreactivity in goldfish retina. Retinae were fixed in mixed aldehyde solution, dehydrated in ethanol, staineden bloc with uranyl acetate and phosphotungstic acid and embedded in LR White resin. Substances were localized in thin sections by floating grids first on a drop of primary antiserum and then on a colloidal gold-IgG conjugate. Finally, grids were exposed to osmium vapour. The localization of GABA immunoreactivity matched that of [3H]-GABA uptake or glutamate decarboxylase immunoreactivity as described previously. In the outer retina, GABA immunoreactivity was found in the cell bodies and axon terminals of H1 horizontal cells and their dendrites opposite cone photoreceptor terminals. Selected amacrine cell bodies were labelled, as were many processes, both synaptic and non-synaptic, throughout the inner plexiform layer, including most amacrine cell processes contacting the synaptic terminals of type Mb bipolar cells. Numerous amacrine cells, their processes in the inner and outer plexiform layers, and photoreceptor terminals contained glycine immunoreactivity in a distribution similar to that shown by [3H]-glycine uptake. Despite the absence of osmium in the primary or secondary fixative, our protocol results in excellent visibility of synaptic structures and detectability of the colloidal gold immunolabel. Also, it does not cause extraction of the HRP/DAB reaction product and is therefore suitable for double-label analysis of neurons labelled with horseradish peroxidase.  相似文献   

4.
Synaptic connections of the interplexiform cell in the retina of the cat   总被引:3,自引:0,他引:3  
Summary Electron microscopy of Golgi-impregnated material and of well fixed, ultrathin serial sections has revealed the synaptic connections of interplexiform cells in cat retina. In the inner plexiform layer these cells are postsynaptic to amacrine cells and probably presynaptic to both bipolars and amacrines. In the outer plexiform layer they are presynaptic to rod and cone bipolar cells and also pre- and postsynaptic to other interplexiform cell dendrites. The interplexiform cell in cat retina appears to be concerned with feeding back information from the inner plexiform layer to the dendrites of bipolar cells in the outer plexiform layer.  相似文献   

5.
The retina of the adult ferret, Mustelo furo, was studied with light and transmission electron microscopy to provide an anatomical basis for use of the ferret as a model for retinal research. The pigment epithelium is a simple cuboidal layer of cells characterized by a zone of basal folds, apical microvilli, and pigment granules at various stages of maturation. The distinction between rod and cone photoreceptor cells is based on their location, morphology, heterochromatin pattern and the electron density of their inner segments. The round, light-staining cone cell nuclei occupy the layer of perikarya along the apical border of the outer nuclear layer. The remainder of the outer nuclear layer consists of oblong, deeply-stained rod cell nuclei. Ribbon type synaptic complexes involving photoreceptor cell axons, horizontal cell processes, and bipolar cell dendrites characterize the outer plexiform layer. The inner nuclear layer is comprised of horizontal, bipolar, and amacrine cell perikarya as well as the perikarya of the Müller cells. The light-staining horizontal cell nuclei are prominent along the apical border of the inner nuclear layer. The light-staining amacrine cell nuclei form a more or less continuous layer along the basal border of the inner nuclear layer. Both conventional and ribbon-type synapses characterize the inner plexiform layer. The ganglion cells form a single cell layer. The optic fiber layer contains bundles of axons surrounded by Müller cell processes. Small blood vessels and capillaries are present in the basal portion of the retina throughout the region extending from the internal limiting membrane to the outer plexiform layer. The adult one-year-old retina is compared with the retina at the time of eye opening.  相似文献   

6.
7.
Summary Two types of amacrine cell immunoreactive for tyrosine hydroxylase, the rate-limiting enzyme in the catecholamine synthetic pathway, are present in the retina of the rhesus monkey,Macaca mulatta. The well-known dopaminergic, or type 1 catecholamine amacrine cells have relatively large cell bodies almost exclusively in the inner nuclear layer with processes that densely arborize in the outermost stratum of the inner plexiform layer and fine, radially-oriented fibres in the inner nuclear layer. Type 2 catecholamine amacrine cells, in contrast, have smaller cell bodies in the inner nuclear layer, the inner plexiform layer and the ganglion cell layer, and have sparsely-branching processes ramifying in the centre of the inner plexiform layer. Although type 2 catecholamine cells are more numerous than type 1 catecholamine amacrines, type 2 cells contain less than one-third the amount of tyrosine hydrolase as the type 1 cells. Electron microscopy of retinal tissue immunoreacted for tyrosine hydrolase by the peroxidase-antiperoxidase method revealed synaptic input from amacrine cells at conventional synapses, and bipolar cells at ribbon synapses onto the type 2 catecholamine amacrine cells. Curiously, although the synaptic input is comparatively easily found, the output synapses, or synapses of the type 2 catecholamine amacrine cells onto other neuronal elements, are rarely found. Some synapses of the type 2 catecholamine cells onto non-immunoreactive amacrine cells have been identified, however. This unusual pattern of synaptic organization, with many identifiable input synapses but few morphologically characterizable output synapses, suggests a paracrine function for the dopamine released by the type 2 catecholamine amacrine cells in the primate retina.  相似文献   

8.
Cholinergic amacrine cells of the chicken retina were detected by immunohistochemistry using an antiserum against affinity-purified chicken choline acetyltransferase. Three populations of cells were detected: type I cholinergic amacrine cells had cell bodies on the border of the inner nuclear and inner plexiform layers and formed a prominent laminar band in sublamina 2 of the inner plexiform layer, while type II cholinergic amacrine cells had cell bodies in the ganglion cell layer, and formed a prominent laminar band in sublamina 4 of the inner plexiform layer. Type III cholinergic amacrine cell bodies were located towards the middle of the inner nuclear layer, and their processes were more diffusely distributed in sublaminas 1 and 3-5 of the inner plexiform layer. Type I and type II cells were present at densities of over 7000 cells/mm2 in central areas declining to less than 2000 cells/mm2 in the temporal retinal periphery. The cells were organized locally in a non-random mosaic, with regularity indices ranging from 3 peripherally to over 5 centrally. Neither at the light nor electron microscopic levels was a lattice of cholinergic dendrites of the kind reported by Tauchi and Masland [J. Neurosci. 5, 2494-2501 (1985)] detectable. Within the two prominent dendritic plexuses, a major feature of the synaptic interactions of the type I and type II cholinergic cells was extensive synaptic interaction between cholinergic processes. Apart from this, there was little, if any, input to cholinergic processes from non-cholinergic amacrine cells, but there was input from bipolar cells. Output from the cholinergic amacrine cell processes was directed towards non-cholinergic amacrine cells as well as other cholinergic amacrine cells, and ganglion cells.  相似文献   

9.
10.
C B Watt  E A Wilson 《Neuroscience》1990,35(3):715-723
Immunoelectron microscopy was used to investigate the ultrastructural features and synaptic relationships of serotonin-like immunoreactive amacrine cells in the larval tiger salamander retina. Serotonin-positive somas exhibited an evenly distributed peroxidase reaction product throughout their cytoplasm. Their nuclei were unstained and possessed indented nuclear membranes. Serotonin-immunoreactive processes were generally stained throughout with the exception of their mitochondria, whose morphology was often disrupted by the staining reaction. They were further characterized by an occasional dense-cored vesicle/s in addition to a generally homogeneous population of small, round, clear synaptic vesicles. Serotonin-immunoreactive amacrine cell processes formed conventional synapses that were characterized by symmetrical synaptic membrane densities. A total of 222 synaptic arrangements were observed that involved the immunostained processes of serotonin-amacrine cells. As presynaptic elements, they primarily contacted amacrine cells processes (37.8%). They also provided substantial synaptic input to processes that lacked synaptic vesicles (16.2%) and whose origin was unidentified. Serotonin-processes provided a far fewer number of synaptic contacts onto the processes of bipolar cells (1.4%) and the somas of cells in the amacrine cell layer (0.5%). As postsynaptic elements, they received synaptic inputs from amacrine cells (27.9%) and bipolar cells (16.2%). With the exception of their synapses onto bipolar cells and the somas of cells in the amacrine cell layer, each of the synaptic relationships of serotonin-amacrine cells was observed in each of sublayers 1-5 of the inner plexiform layer.  相似文献   

11.
Somatostatin-like immunoreactive amacrine cells of the chicken retina have been characterized by immunohistochemistry at the light and electron microscope levels. The cell bodies were set back from the junction of the inner nuclear and inner plexiform layers, and prominent fibre plexuses were found in sublaminas 1 and 3-5 of the inner plexiform layer. The cells were distributed across the retinal surface with a centroperipheral gradient of cell density. Locally, the cells were organized in a non-random mosaic. Ultrastructurally, immunohistochemical reaction product was found throughout the cytoplasm of the cell bodies, particularly associated with membranous structures, including the cytoplasmic surfaces of the Golgi apparatus, and within large dense-core vesicles. In dendritic varicosities in the inner plexiform layer, reaction product was associated with the external surfaces of small, clear synaptic vesicles. The synaptic relationships of the somatostatin-immunoreactive terminals in sublamina 1 were distinct from those in sublaminas 3-5. Those in sublamina 1 received input predominantly, possibly exclusively, from bipolar cells. Feedback synapses onto bipolar terminals or to the other amacrine cell process at a synaptic dyad were observed. In sublaminas 3-5, input came predominantly, possibly exclusively, from other, non-immunoreactive amacrine cells, and output was primarily onto other amacrine cells. No synaptic contacts with ganglion cells or with other somatostatin-immunoreactive amacrine cells were identified. Changes in levels of somatostatin-like immunoreactivity in retinas of chicks kept on 12:12 light:dark cycles were detected by radioimmunoassay, and by light and electron microscopic immunohistochemistry. Levels of retinal somatostatin-like immunoreactivity increased in the light and decreased in the dark. The changes appear to be light-driven rather than circadian, since with prolonged exposure to light or dark, the levels of somatostatin-like immunoreactivity continued to increase or decrease until plateaus were reached. The light-driven change in levels of somatostatin-like immunoreactivity may be related to the predominance of bipolar input to the immunoreactive processes in sublamina 1 of the inner plexiform layer. The reduction in peptide levels in the dark may indicate greater release of somatostatin-like immunoreactivity from the amacrine cells in the dark, resulting in an inability of peptide synthesis to keep pace with breakdown. In the light, release of somatostatin-like immunoreactivity may be lower, leading to a net synthesis of peptide.  相似文献   

12.
Mack AF 《Neuroscience》2007,144(3):1004-1014
In the retina of many lower vertebrates, the arrangement of cells, in particular of cone photoreceptors, is highly regular. The data presented in this report show that in the retina of a cichlid fish (Astatotilapia burtoni) the regular arrangement is not restricted to cone photoreceptors and their synaptic terminals but can be found in elements of the inner retina as well. A variety of immunocytochemical and other markers was used in combination with confocal microscopy on whole-mount preparations and tangential sections. Nearest neighbor analysis was performed and density recovery profiles as auto- and cross-correlograms were generated. Cells displaying a regular arrangement of their synaptic processes in matching radial register to each other were identified for each major retinal neuronal cell type except ganglion cells (i.e. photoreceptors, horizontal cells, bipolar cells, and amacrine cells). The precise location of some of the corresponding cell bodies was not as regular but still non-random, however there was no spatial cross-correlation between cell bodies of different types. The radial processes of Müller glial cells displayed a distribution correlating to the arrangement of photoreceptors and neurons. Thus, for one Müller glial cell I found two PKC-positive cone bipolar cells, a spatially corresponding grid of parvalbumin-positive amacrine cell processes, one H1 horizontal cell, and two pairs of double cones. There was no evidence among ganglion cells matching this pattern, possibly due to the lack of suitable markers. Although many other cell types do not follow this matching regular mosaic arrangement, a basic columnar building block can be postulated for the retina at least in cichlid fish. This suggests a functional radial unit from photoreceptors to the inner plexiform layer.  相似文献   

13.
By comparison of electron micrographs with light microscopical specimens impregnated with the Golgi technique, the large endings of the rod bipolar cells have been identified in the innermost region of the inner plexiform layer of the rabbit retina. The rod bipolar endings contain ribbons and synaptic vesicles, do not synapse with the perikaryon of the ganglion cells, are presynaptic to ganglion cell dendrites and to nerve processes which contain synaptic vesicles but lack ribbons. In these synaptic contacts a ribbon is closely associated with the presynaptic membrane and a dense web of fuzzy material is adherent to the cytoplasmic aspect of the postsynaptic membrane. Commonly, one of these synaptic contacts involves a rod bipolar ending and two postsynaptic processes. The postsynaptic process which is provided with synaptic vesicles is often, in turn, presynaptic to the same rod bipolar ending. This synaptic contact is characterized by the presence of a cluster of vesicles closely related to the presynaptic membrane, whereas the postsynaptic membrane lacks a definite subsynaptic web. In the intermediate and scleral regions of the inner plexiform layer endings containing ribbons and synaptic vesicles show with neighboring nerve processes a synaptic pattern similar to the rod bipolar endings. Nerve processes containing synaptic vesicles but lacking ribbons are presynaptic to the perikaryon and dendrites of the ganglion cells; the synaptic contact shows a cluster of vesicles adherent to the presynaptic membrane. Bipolar cells are proposed as the source of the ribbon containing processes while amacrine cells are proposed as the source of the processes devoid of ribbons and presynaptic to both bipolar endings and ganglion cell dendrites and perikarya.  相似文献   

14.
Summary The synaptic morphology and organization of the inner plexiform layer of the salamander retina was examined in serial sections with the electron microscope. Processes were traced, whenever possible, from their cells of origin, and synapses were classified as ribbon or regular (non-ribbon, conventional). Amacrine processes always make regular synapses, while bipolar processes make both ribbon and regular synapses. For this reason, new and decisive criteria based on the differential morphology of synaptic vesicles and junctional membranes were sought to distinguish between the amacrine and bipolar processes in single sections. Amacrine processes contain a relatively uniform population of small round vesicles and they make regular symmetrical synapses. Bipolar processes contain vesicles that are generally larger and more pleomorphic than those of the amacrine processes, and they make ribbon synapses (monads, dyads and triads) and regular synapses of the asymmetrical type. Amacrine processes synapse upon other amacrine processes, bipolar axons, ganglion cell dendrites, and the perikarya of these three types of cells. Amacrine cells also give rise to somatodendritic synapses. Bipolar processes synapse upon amacrine processes, ganglion cell dendrites and other bipolar processes, but they have not been seen to synapse upon the somata of any cell. Both amacrine and bipolar processes engage in serial synapses, and these two groups often make reciprocal synapses with each other. Gap junctions have been found between two bipolar processes, between two amacrine processes, and less frequently, between a bipolar and an amacrine process.  相似文献   

15.
Immunohistochemical processing of Long-Evans retina wholemounts using an antiserum directed against rat, human corticotropin releasing factor revealed a group of immunoreactive amacrine cells. Two subpopulations could be distinguished based primarily on the location of their cell bodies. One subpopulation had cell bodies situated along the junction of the inner nuclear layer and the inner plexiform layer. The other subpopulation had cell bodies in the ganglion cell layer. The latter was judged to be displaced amacrine cells since double-label experiments indicated that the pattern of corticotropin releasing factor-like immunoreactive staining in the ganglion cell layer did not coincide with that of ganglion cells labeled retrogradely with fluorogold. Corticotropin releasing factor-like immunoreactive amacrine cells on either side of the inner plexiform layer emitted processes which ramified extensively in sublamina 5 and, to a lesser degree, in sublamina 4. A minority of these cells also sent a single process to ramify in sublamina 1. Throughout the retina, corticotropin releasing factor-like immunoreactive cells were distributed relatively evenly, with a tendency to peak in the superior temporal region. Despite the anatomical classification into two subpopulations, it is proposed that the corticotropin releasing factor-like immunoreactive cells are functionally one system, influencing preferentially synaptic interactions associated with the inner half of the inner plexiform layer. The results of this study provide anatomical basis for further investigations of corticotropin releasing factor as a putative peptidergic neurotransmitter in the retina.  相似文献   

16.
Summary The dopaminergic amacrine cells of the cat retina have been stained by immunocytochemistry using an antibody to tyrosine hydroxylase (Toh). The complete population of Toh+cells has been studied by light microscopy of retinal wholemounts to evaluate morphological details of dendritic structure and branching patterns. Selected Toh+amacrine cells have been studied by serial-section electron microscopy to analyse synaptic input and output relationships. The majority of Toh+amacrine cells occur in the amacrine cell layer of the retina and have their dendrites ramifying and forming the characteristic rings in stratum 1 of the inner plexiform layer. A minority of Toh+cells have cell bodies displaced to the ganglion cell layer but their dendrites also stratify in stratum 1. All Toh+cells have some dendritic branches running in stratum 2 as well as in stratum 1, and frequently they have long axon-like processes (500–1000 m long) dipping down to run in stratum 5 before passing up to rejoin the major dendritic arbors in stratum 1. In addition Toh+stained processes follow blood vessels in the inner plexiform layer and in the ganglion cell layer. A population of Toh+cells found in the inferior retina appears to give rise to stained processes that pass to the outer plexiform layer and therein to run for as far as one millimeter.Electron microscopy reveals that Toh+amacrine cells are postsynaptic to amacrine cells and a few bipolar cell terminals in stratum 1 of the inner plexiform layer and are primarily presynaptic to All amacrine cell bodies and lobular appendages, and to another type of amacrine cell body and amacrine dendrites hypothesized to be the A17 amacrine cell. The Toh+dendrites in stratum 2 are presynaptic to All lobular appendages primarily. Stained axon-like processes running in stratum 5 prove to be presynaptic to All amacrine dendrites as they approach the rod bipolar axon terminals and they may also be presynaptic to the rod bipolar terminal itself. The Toh+stained dendrites that have been followed in the outer plexiform layer run along the top of the B-type horizontal cell somata and may have small synapses upon them. The only clear synapses seen in the outer plexiform layer are from the Toh+profiles upon vesicle filled amacrine-like profiles that are in turn presynaptic to bipolar cell dendrites in the outer plexiform layer. We presume the cells postsynaptic to the Toh+dendrites in the outer plexiform layer are interplexiform cells. Finally the Toh+profiles that course along blood vessel walls and in the ganglion cell layer appear to end either against the basal lamina of the blood vessel or at intercellular channels of vesicle-laden Muller cell end-feet.  相似文献   

17.
Substance P is the preferred ligand for the neurokinin 1 (NK1) receptor. In vertebrate retinas, substance P is expressed by amacrine, interplexiform and ganglion cells. Substance P influences the activity of amacrine and ganglion cells and it is reported to evoke dopamine release. We investigated NK1 receptor expression in the rabbit retina using affinity-purified NK1 receptor antibodies. NK1 receptors were expressed by two distinct populations of retinal neurons. One is a population of ON-type bipolar cells characterized by axonal arborizations that ramified in the inner plexiform layer near the ganglion cell layer. Double-label studies showed that NK1 receptor-expressing bipolar cells were distinct from rod bipolar cells and from other immunocytochemically identified types of cone bipolar cells. Their density was about 2250 cells/mm2 in the visual streak and 1115 cells/mm2 in ventral mid-periphery. They were distributed in a non-random pattern. In the outer plexiform layer, the dendrites of these bipolar cells converged into heavily immunostained clusters having a punctate appearance. The density of these clusters in mid-peripheral ventral regions (about 13000 clusters/mm2) was similar to the reported cone density [Famiglietti and Sharpe (1995) Vis. Neurosci. 12, 1151-1175], suggesting these dendrites contact all cone photoreceptors. The second NK1 receptor expressing cell population corresponds to the tyrosine hydroxylase-containing amacrine cell population. NK1 receptor immunostaining was localized to the cell body and processes, but not to the processes that form the 'rings' that are known to encircle somata of AII amacrine cells. These findings show that NK1 receptor immunoreactivity is localized to a population of ON-type cone bipolar cells and to dopaminergic amacrine cells, suggesting that substance P acting on NK1 receptors influences multiple retinal circuits in the rabbit retina.  相似文献   

18.
用免疫组织化学ABC法.研究了GABA免疫阳性反应在牛蛙视网膜的分布。证明光感受器内段(主要是视锥细胞)呈棕褐色的GABA反应;在外核层未见GABA标记的胞体,但在靠近外网层处偶见GABA标记的终末;在内核层,大量无长突细胞呈GABA反应阳性,并可鉴别出胞体染色较深和淡的两个亚群,一些双极细胞和个别水平细胞的胞体及它们的突起呈较弱的GABA反应阳性,偶见双极细胞轴突终末以膨体紧密贴附在GABA标记的无长突细胞上。在节细胞层,一些神经节细胞和散在的移位无长突细胞呈GABA反应阳性。此外.外网层和内网层均呈GABA反应阳性。上述结果表明,GABA广泛分布于牛蛙视网膜的各层,提示它在视觉信号的传递过程中发挥着重要作用。  相似文献   

19.
Summary Although a wide variety of neuropeptides have been localized in vertebrate retinas, many questions remain about the function of these peptides and the amacrine cells that contain them. This is because many of these peptidergic amacrine cells have been studied using only immunocytochemical techniques. To address this limitation, the present study used a combination of quantitative anatomy, biochemistry and electrophysiology to examine amacrine cells in the turtle retina that contain the neuropeptide glucagon. In the turtle retina, there is a small population of 2500 glucagonergic amacrine cells, which probably represents <1% of the total number of amacrine cells. Circular distribution statistics indicated that many of these tristratified amacrine cells had asymmetric dendritic arborizations that were radially oriented toward the retinal periphery. The cells were found to have similar dendritic coverage factors, to be distributed in a non-random arrangement in all regions of the retina, and to peak in density in the visual streak region. Electron microscopic studies indicated that glucagonergic amacrine cells made synaptic contacts primarily with other amacrine cells, and small numbers of bipolar cells. The synaptic inputs and outputs were balanced in the inner strata of the inner plexiform layer, and were biased toward synaptic outputs in the outer strate of the inner plexiform layer. These contacts involved small unlabelled synaptic vesicles, and not the large labelled dense core vesicles also found in these neurons. The biochemical studies indicated that glucagon could be released from the retina in a calcium dependent manner by high potassium stimulation. The electrophysiology found no color opponency, and the glucagonergic amacrine cells gave sustained hyperpolarizing responses to small stimulation spots and had antagonistic surrounds. The results of these studies suggest that there are significant regional specializations of glucagonergic amacrine cells, and that they may provide OFF-modulation in interactions between the ON- and OFF centre visual pathways in the turtle retina.  相似文献   

20.
Summary We have recently reported that about 50% of amacrine cells and some of the bipolar and ganglion cells are GABA-immunoreactive in the retina ofBufo marinus. Synapses formed by these elements in the inner plexiform layer were studied. GABA-immunoreactive amacrine cell processes were found most frequently in synaptic contact with non-immunoreactive amacrine cells. Double-label experiments showed that some of these non-GABA-immunoreactive elements contain tyrosine hydroxylase immunoreactivity. Another source of input to the GABA-immunoreactive amacrine cells were the bipolar cells; some of which were GABA-immunoreactive. GABA-immunoreactive amacrine cells synapsed also onto bipolar cell terminals, and ganglion cell dendrites that were identified by the retrograde transport of horseradish peroxidase from the optic nerve. Synapses between GABA-immunoreactive amacrine cells and bipolar and ganglion cells were non-uniformly distributed in the inner plexiform layer. Synaptic contacts with bipolar cells were more frequent in the OFF-sublamina, and those with ganglion cell dendrites in the ON-sublamina. These results demonstrate that GABA-immunoreactive amacrine cells (1) preferentially synapse with OFF-responding bipolar and ON-centre ganglion cells in the through-pathway, (2) synapse with tyrosine hydroxylase-immunoreactive amacrine cells in both the OFF- and ON-sublaminae, and (3) synapse directly with GABA-immunoreactive ganglion cells. The synapses between GABA-immunoreactive amacrine and GABA-immunoreactive ganglion cells may inhibit the centrally projecting inhibitory ganglion cells, causing disinhibition in the visual centres.On leave from Department of Zoology, Attila József University, Szeged, Hungary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号