首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Systemic infection often accompanies or precedes acute brain injury, but it remains unclear how the systemic response contributes to outcome. To examine this problem we have microinjected recombinant interleukin-1beta (IL-1beta), a cytokine associated with acute brain injury, into the rat brain parenchyma and either preceded or followed this challenge with the intravenous injection of lipopolysaccharide (LPS), which mimics systemic inflammatory response syndrome. The microinjection of IL-1beta alone into the brain parenchyma gives rise to leukocyte mobilization in the blood, and to the delayed recruitment of neutrophils and monocytes to the brain with no evidence of blood-brain barrier breakdown or overt neuronal cell death. Systemic LPS pre-conditioning resulted in a dose-dependent reduction both in the number of circulating leukocytes and in the number of leukocytes recruited to the brain parenchyma after 12 h. Surprisingly, LPS given two hours after injury was equally effective in reducing the recruitment of leukocytes to the brain, which is more relevant to the management of clinical disease. In a more clinically relevant model of spinal cord injury, intravenous LPS post-conditioning also reduced the numbers of leukocytes mobilized in the blood and recruited to the spinal cord and thus limited the breakdown of the blood-spinal cord barrier. The effects appear to be specific to LPS, as they were not observed after intravenous IL-1beta pre-conditioning. Our studies suggest that individual pro-inflammatory conditioning strategies may protect the injured central nervous system from the damaging consequences of leukocyte recruitment and may provide scope for novel therapeutic intervention.  相似文献   

2.
This paper by Hurtado et al. examined responses of spinal cord-injured rats to treatment with a monoclonal antibody to the CD11d integrin, as a replication study of the paper by Gris et al. published in J. Neuroscience, 2004. The Hurtado et al. study addressed a portion of our investigation and obtained similar findings in the experiments that closely replicated ours in methodology and design, specifically the open field locomotor study. The high variability in their study of mechanical allodynia probably precluded detection of effects of the anti-CD11d treatment on this form of neuropathic pain. The lesion assessments were greatly different from those done in the Gris et al. study, and may not have been ideal for the extent of injury produced in this model, but did reveal a trend toward myelin preservation. The positive aspects of the study by Hurtado et al. encourage us to investigate this novel treatment further, in different animals and in different models of spinal cord injury.  相似文献   

3.
Traumatic injury to the spinal cord triggers a systemic inflammatory response syndrome (SIRS), in which inflammatory cells from the circulation invade organs such as the liver, lung and kidney, leading to damage of these organs. Our previous study (Gris, et al, Exp. Neurol, 2008) demonstrated that spinal cord injury (SCI) activates circulating neutrophils that then invade the lung and kidney from 2 to 24 h after injury, increasing myeloperoxidase activity, cyclooxygenase-2 and matrix metalloproteinase-9 expression and lipid peroxidation in these organs. The present study was designed to ascertain whether a treatment that limits the influx of leukocytes into the injured spinal cord would also be effective in reducing the SIRS after SCI. This treatment is intravenous delivery of a monoclonal antibody (mAb) against the CD11d subunit of the CD11d/CD18 integrin expressed by neutrophils and monocytes. We delivered the anti-CD11d mAb at 2 h post moderate clip compression SCI at the 4th or 12th thoracic segments and assessed inflammation, oxidative activity and cellular damage within the lung, kidney and liver at 12 h post-injury. In some analyses we compared high and low thoracic injuries to evaluate the importance of injury level on the intensity of the SIRS. After T4 injury, treatment with the anti-integrin mAb reduced the presence of neutrophils and macrophages in the lung, with associated decreases in expression of NF-κB and oxidative enzymes and in the concentration of free radicals in this organ. The treatment also reduced lipid peroxidation, protein nitration and cell death in the lung. The anti-CD11d treatment also reduced the inflammatory cells within the kidney after T4 injury, as well as the free radical concentration and amount of lipid peroxidation. In the liver, the mAb treatment reduced the influx of neutrophils but most of the other measures examined were unaffected by SCI. The inflammatory responses within the lung and kidney were often greater after T4 than T12 injury. Clinical studies show that SIRS, with its associated organ failure, contributes significantly to the morbidity and mortality of SCI patients. This anti-integrin treatment may block the onset of SIRS after SCI.  相似文献   

4.
These experiments were completed as part of an NIH-NINDS contract entitled "Facilities of Research Excellence-Spinal Cord Injury (FORE-SCI)-Replication". Our goal was to replicate data from a paper published by Dr. Lloyd Guth and colleagues in which combined injections of lipopolysaccharide, indomethacin and pregnenolone (referred to herein as LIP therapy) conferred marked neuroprotection in a pre-clinical model of spinal cord injury (SCI). Specifically, post-injury injection of the combination LIP therapy was found to significantly reduce tissue damage at/nearby the site of injury and significantly improve recovery of locomotor function. In this report, we confirm the primary observations made by Guth et al., however, the effects of LIP treatment were modest. Specifically, LIP treatment improved myelin and axon sparing, axonal sprouting while reducing lesion cavitation. However, spontaneous recovery of locomotion, as assessed using historical (Tarlov scoring) and more current rating scales (i.e., BBB scoring), was not affected by LIP treatment. Instead, more refined parameters of functional recovery (paw placement accuracy during grid walk) revealed a significant effect of treatment. Possible explanations for the neuroprotective effects of LIP therapy are described along with reasons why the magnitude of neuroprotection may have differed between this study and that of Guth and colleagues.  相似文献   

5.
Olfactory ensheathing glia (OEG) are a specialized type of glia that guide primary olfactory axons from the neuroepithelium in the nasal cavity to the brain. The primary olfactory system is able to regenerate after a lesion and OEG contribute to this process by providing a growth-supportive environment for newly formed axons. In the spinal cord, axons are not able to restore connections after an injury. The effects of OEG transplants on the regeneration of the injured spinal cord have been studied for over a decade. To date, of all the studies using only OEG as a transplant, 41 showed positive effects, while 13 studies showed limited or no effects. There are several contradictory reports on the migratory and axon growth-supporting properties of transplanted OEG. Hence, the regenerative potential of OEG has become the subject of intense discussion. In this review, we first provide an overview of the molecular and cellular characteristics of OEG in their natural environment, the primary olfactory nervous system. Second, their potential to stimulate regeneration in the injured spinal cord is discussed. OEG influence scar formation by their ability to interact with astrocytes, they are able to remyelinate axons and promote angiogenesis. The ability of OEG to interact with scar tissue cells is an important difference with Schwann cells and may be a unique characteristic of OEG. Because of these effects after transplantation and because of their role in primary olfactory system regeneration, the OEG can be considered as a source of neuroregeneration-promoting molecules. To identify these molecules, more insight into the molecular biology of OEG is required. We believe that genome-wide gene expression studies of OEG in their native environment, in culture and after transplantation will ultimately reveal unique combinations of molecules involved in the regeneration-promoting potential of OEG.  相似文献   

6.
The inflammatory response that ensues during the initial 48 to 72 h after spinal cord injury causes considerable secondary damage to neurons and glia. Infiltration of proinflammatory-activated neutrophils and monocytes/macrophages into the cord contributes to spinal cord injury-associated secondary damage. beta2 integrins play an essential role in leukocyte trafficking and activation and arbitrate cell-cell interactions during inflammation. The beta2 integrin, alphaDbeta2, is expressed on monocytes/macrophages and neutrophils and binds to vascular adhesion molecule-1 (VCAM-1). The increased expression of VCAM-1 during central nervous system (CNS) inflammation likely contributes to leukocyte extravasation into the CNS. Accordingly, blocking the interaction between alphaDbeta2 and VCAM-1 may attenuate the inflammatory response at the SCI site. We investigated whether the administration of monoclonal antibodies (mAbs) specific for the rat alphaD subunit would reduce the inflammatory response after a spinal cord transection injury in rats. At a 1 mg/kg dose two of three anti-alphaD mAbs caused a significant ( approximately 65%) reduction in the number of macrophages at the injury site and one anti-alphaD mAb led to a approximately 43% reduction in the number of neutrophils at the SCI site. Thus, our results support the concept that the alphaDbeta2 integrins play an important role in the trafficking of leukocytes to a site of central nervous system inflammation. This study also offers preliminary evidence that anti-alphaD mAbs can reduce the extravasation of macrophages and, to a lesser extent, neutrophils, to the SCI site.  相似文献   

7.
<正>Cellular transplantation for repair of spinal cord injury is a promising therapeutic strategy that includes the use of a variety of neural and non-neural cells isolated or derived from embryonic and adult tissue as well as embryonic stem cells and induced pluripotent stem cells.In particular,transplants of neural progenitor cells(NPCs)have been shown to limit secondary injury and scar formation and create a permissive environment in the injured  相似文献   

8.
9.
Monoclonal antibodies were prepared by using the anterior horn region of human embryonic spinal cord as immunogen. To increase the specificity of the immune response towards the anterior horn cells, mice were first injected with antigens from the posterior horn and then immunosuppressed with cyclophosphamide; subsequently antigens from the anterior horn were injected. One of the monoclonal antibodies recognizes a small population of anterior horn cells of human embryonic spinal cord during a transient period of development (9-10th embryonic week); these cells are probably motoneurons according to their location in the spinal cord, their positive staining for acetylcholinesterase and their large nuclei. The staining pattern has a special axial distribution as it is limited to the cervical and thoracic regions of the spinal cord. The antibody is species-specific and shows a high degree of tissue specificity. Since this antibody distinguishes a small group of anterior horn cells in the spinal cord during a specific developmental stage, it opens stimulating perspectives for further investigation on the nature of the antigen and its putative role during the development of the human embryonic spinal cord.  相似文献   

10.
The endothelins (ETs) are a family of peptides that exert their biological effects via two distinct receptors, the endothelin A receptor (ET(A)R) and the endothelin B receptor (ET(B)R). To more clearly define the potential actions of ETs following spinal cord injury, we used immunohistochemistry and confocal microscopy to examine the protein expression of ET(A)R and ET(B)R in the normal and injured rat spinal cord. In the normal spinal cord, ET(A)R immunoreactivity (IR) is expressed by vascular smooth muscle cells and a subpopulation of primary afferent nerve fibers. ET(B)R-IR is expressed primarily by radial glia, a small population of gray and white matter astrocytes, ependymal cells, vascular endothelial cells, and to a lesser extent in smooth muscle cells. Fourteen days following compression injury to the spinal cord, there was a significant upregulation in both the immunoexpression and number of astrocytes expressing the ET(B)R in both gray and white matter and a near disappearance of ET(B)R-IR in ependymal cells and ET(A)R-IR in primary afferent fibers. Conversely, the vascular expression of ET(A)R and ET(B)R did not appear to change. As spinal cord injury has been shown to induce an immediate increase in plasma ET levels and a sustained increase in tissue ET levels, ETs would be expected to induce an initial marked vasoconstriction via activation of vascular ET(A)R/ET(B)R and then days later a glial hypertrophy via activation of the ET(B)R expressed by astrocytes. Strategies aimed at blocking vascular ET(A)R/ET(B)R and astrocyte ET(B)Rs following spinal cord injury may reduce the resulting ischemia and astrogliosis and in doing so increase neuronal survival, regeneration, and function.  相似文献   

11.
Spinal cord injury(SCI) research is a very complex field lending to why reviews of SCI literatures can be beneficial to current and future researchers. This review focuses on recent articles regarding potential modalities for the treatment and management of SCI. The modalities were broken down into four categories: neuroprotectionpharmacologic, neuroprotection-non-pharmacologic, neuroregeneration-pharmacologic, neuroregeneration-non-pharmacologic. Peer-reviewed articles were found using Pub Med with search terms: "spinal cord injury", "spinal cord injury neuroregeneration", "olfactory ensheathing cells spinal cord injury", "rho-rock inhibitors spinal cord injury", "neural stem cell", "scaffold", "neural stem cell transplantation", "exosomes and SCI", "epidural stimulation SCI", "brain-computer interfaces and SCI". Most recent articles spanning two years were chosen for their relevance to the categories of SCI management and treatment. There has been a plethora of pre-clinical studies completed with their results being difficult to replicate in clinical studies. Therefore, scientists should focus on understanding and applying the results of previous research to develop more efficacious preclinical studies and clinical trials.  相似文献   

12.
正Spinal cord injury (SCI) induces a robust inflammatory response largely mediated by resident microglia and infiltrating macrophages across the blood-brain barrier.While these cell populations are capable of promoting repair and regenerative responses,in the days and weeks after SCI they predominately adopt pro-inflammatory profiles known to inhibit recovery and potentiate  相似文献   

13.
14.
M L Curcoll 《Paraplegia》1992,30(6):425-427
We analyse the benefit of learning relaxation techniques as an essential coping strategy in the behavioural medicine field. This has proved useful as a part of the newly spinal cord injured rehabilitation treatment or concerning later problems if there is readmission. We report the changes we have made in the relaxation standard methods to be used in spinal cord injured patients as well as the timing in the rehabilitation process when these techniques were applied.  相似文献   

15.
Measurement of spinal cord evoked potentials (SCEPs) is proposed as a means of predicting locomotion outcome in the rat spinal cord injury (SCI) model. Using 55 rats, three reproducible peak waves (waves I, II and III) were observed during stimulation at the C7 level with recording at the L1 epidural space. Hemisection at the T13 level showed three wave loss patterns: wave III loss only, loss of both wave II and III, and loss of all three waves. Defining an ideal SCI model as establishment of stable monoparesis or paraparesis, all animals in the wave II-III loss group showed favorable results. Histological data and electrophysiological properties allowed reasonable assumptions of wave origin: wave I from extrapyramidal tracts, wave II from the ventral corticospinal tract, and wave III from the dorsal corticospinal tract. Complete destruction of pyramidal tracts in both dorsal and ventral fibers was essential for long-term impairment of locomotion.  相似文献   

16.
Recent basic experiments have strongly suggested that cell transplantation therapy may promote functional recovery in patients with spinal cord injury (SCI). However, a safe and efficient transplantation technique still remains undetermined. This study, therefore, was aimed to clarify whether fibrin matrix could be a useful scaffold in bone marrow stromal cell (BMSC) transplantation for the injured spinal cord. To clarify the issue, three‐dimensional structure of fibrin matrix was assessed and the green fluorescent protein (GFP)‐expressing BMSC were cultured in fibrin matrix. The rats were subjected to spinal cord hemisection at T8 level, and the vehicle, BMSC or BMSC‐fibrin matrix construct was implanted into the cavity. Neurologic function was serially evaluated. Using immunohistochemistry, we evaluated the survival, migration and differentiation of the transplanted cells at 4 weeks after transplantation. In the initial in vitro study, the BMSC could survive in fibrin matrix for 2 weeks. The animals treated with the BMSC‐fibrin matrix construct showed significantly more pronounced recovery of neurologic function than vehicle‐ or BMSC‐treated animals. Fibrin scaffold markedly improved the survival and migration of the transplanted cells. There was no significant difference in the percentage of cells doubly positive for GFP and microtubule‐associated protein 2 between the animals treated with BMSC‐fibrin matrix construct and those treated with BMSC, but a certain subpopulation of GFP‐positive cells morphologically simulated the neurons in the animals treated with BMSC‐fibrin matrix construct. These findings strongly suggest that fibrin matrix may be one of the promising candidates for a potential, minimally invasive scaffold for injured spinal cord, and that such strategy of tissue engineering could be a hopeful option in regeneration therapy for patients with SCI.  相似文献   

17.
Using the indirect immunofluorescence technique and double labelling procedures combined awith retrograde tracing it could be demonstrated that the A11 dopamine cell group, located at the border between the diencephalon and mesencephalon of the rat brain and some of which project to the spinal cord, contains calcitonin gene-related peptide (CGRP)-like immunoreactivity. Thus, another catecholamine group in the rat brain has been shown to have a coexisting peptide. One of the CGRP antisera used in the present study also stained cholecystokinin (CCK) containing neurons in various brain areas. Absorption and displacement experiments using immunohistochemistry and radioimmunoassay showed that this cross-reactivity was confined to the C-terminal portion of the peptide molecule. Therefore, the present results suggest that CGRP antisera used for immunohistochemistry and radioimmunoassay should be tested for possible cross-reactivity with CCK.  相似文献   

18.
A quantitatable exogenous enzyme, horseradish peroxidase, was used as an intravascular marker to determine the extent of blood-brain barrier alteration subsequent to spinal cord compression injury in cats. Blood-brain barrier alterations to horseradish peroxidase were evaluated in the compressed region of the cord and in adjacent segments up to 9 cm at the following time intervals: during the first 6 hr, 3 days and 14 days after injury. The degree of blood-brain barrier dysfunction correlated with the severity of injury. Depending on the time interval following injury and the location of the spinal cord segment, vascular extravasation and/or abnormal endothelial uptake of horseradish peroxidase was two to six times greater in an injury sufficient to cause irreversible paraplegia, as compared to an injury resulting in a transitory paraplegia. In both types of injuries, vascular extravasation and/or abnormal endothelial uptake was significantly greater in the injured region as compared to distal segments of cord. In both injuries and at all time intervals evaluated, the degree of vascular extravasation and/or abnormal endothelial uptake exhibited and inverse relationship to the distance from the injured site. This method appears to be suitable for measuring degrees of blood-brain barrier dysfunction to horseradish peroxidase and offers a means of evaluating therapy designed to reduce vasogenic edema.  相似文献   

19.
The infiltration of monocytes into the lesioned site is a key event in the inflammatory response after spinal cord injury (SCI). We hypothesized that the molecular events governing the infiltration of monocytes into the injured cord involve cooperativity between the upregulation of the chemoattractant stromal cell-derived factor-1 (SDF-1)/CXCL12 in the injured cord and matrix metalloproteinase-9 (MMP-9/gelatinase B), expressed by infiltrating monocytes. SDF-1 and its receptor CXCR4 mRNAs were upregulated in the injured cord, while macrophages immunoexpressed CXCR4. When mice, transplanted with bone marrow cells from green fluorescent protein (GFP) transgenic mice, were subjected to SCI, GFP+ monocytes infiltrated the cord and displayed gelatinolytic activity. In vitro studies confirmed that SDF-1α, acting through CXCR4, expressed on bone marrow-derived macrophages, upregulated MMP-9 and stimulated MMP-9-dependent transmigration across endothelial cell monolayers by 2.6-fold. There was a reduction in F4/80+ macrophages in spinal cord-injured MMP-9 knock-out mice (by 36%) or wild-type mice, treated with the broad-spectrum MMP inhibitor GM6001 (by 30%). Mice were adoptively transferred with myeloid cells and treated with the MMP-9/-2 inhibitor SB-3CT, the CXCR4 antagonist AMD3100, or a combination of both drugs. While either drug resulted in a 28-30% reduction of infiltrated myeloid cells, the combined treatment resulted in a 45% reduction, suggesting that SDF-1 and MMP-9 function independently to promote the trafficking of myeloid cells into the injured cord. Collectively, these observations suggest a synergistic partnership between MMP-9 and SDF-1 in facilitating transmigration of monocytes into the injured spinal cord.  相似文献   

20.
Sensory axons interrupted in the dorsal roots of adult mammals are normally unable to regenerate into the spinal cord. We have investigated whether the introduction of a neurotrophin gene into the spinal cord might offer an approach to otherwise intractable spinal root injuries. The dorsal roots of the 4th, 5th, and 6th lumbar spinal nerves of adult rats were severed and reanastomosed. Fourteen to nineteen days later, adenoviral vectors containing either the LacZ or NT-3 genes were injected into the ventral horn of the lumbar spinal cord, resulting in strong expression of the transgenes in glial cells and motor neurons between 4 and 40 days after injection. When dorsal root axons were transganglionically labelled with HRP conjugated to cholera toxin subunit B, 16 to 37 days after dorsal root injury, large numbers of labelled axons could be seen to have regenerated into the cord, but only in those animals injected with vector carrying the NT-3 gene. The regenerated axons were found at the injection site, mainly in the grey matter, and had penetrated as deep as lamina V. Gene therapy with adenoviral vectors encoding a neurotrophin has therefore been shown to be capable of enhancing and directing the regeneration of a subpopulation of dorsal root axons (probably myelinated A fibres), into and through the CNS environment. J. Neurosci. Res. 54:554–562, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号