首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure to environmental cues is considered a major cause of relapse in detoxified addicts. Recent findings showed an involvement of glutamate in cue-induced relapse and suggest that subtype 5 of metabotropic glutamate receptors (mGluR5) is involved in conditioned drug-reward. The present study applied the conditioned place preference (CPP) paradigm to examine the involvement of mGluR5 in cocaine- and morphine-induced behaviours. Results of previous mice-studies were extended into rats by using the selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP). As a result, the evaluated behavioural parameters were dose-relatedly affected by MPEP. Low-dosed MPEP (10 mg/kg, i.p.) did not affect spontaneous locomotion, reduced cocaine-induced hyperlocomotion and produced sensitized locomotion, while showing no effect on sensitized locomotion induced by repeated cocaine or morphine. Low-dosed MPEP did not genuinely block development of cocaine- and morphine-CPP, but rendered CPP expression state-dependent. The medium MPEP-dose (30 mg/kg) was most effective in reducing spontaneous locomotion. The high MPEP-dose (50 mg/kg) was most effective in reducing both body-weight and morphine-CPP expression. Cocaine-CPP expression was not affected by any MPEP-dose. In conclusion, mGluR5 are involved in modulation of spontaneous and cocaine-induced locomotion, in state-dependent learning and in expression of morphine-CPP. Thus, MPEP may be beneficial for relapse prevention in morphine-addicts.  相似文献   

2.
To elucidate sex differences in nicotine addiction and the underlying mechanisms of the conditioning aspects of nicotine, nicotine-induced conditioned place preference (CPP) was evaluated in male and female Sprague Dawley rats using a three-chambered CPP apparatus and a biased design. In a series of experiments, the dose-response curve was obtained, pairings between the drug and initially non-preferred versus preferred compartments were compared, and the involvement of mGluR5 receptors in nicotine-induced CPP was evaluated. Modulation of nicotine-induced CPP with mGluR5 inhibition was obtained by MPEP (2-methyl-6-(phenylethynyl)-pyridine hydrochloride). Our results show that nicotine induces CPP dose-dependently in male rats but not in female rats. The comparison of the biased protocol, pairing nicotine with the initially preferred and non-preferred chambers, indicated that nicotine-induced CPP in male rats under both conditions, but the effect was stronger when nicotine was paired with the initially non-preferred side. The selective mGluR5 antagonist MPEP inhibited nicotine-induced CPP in male rats. In conclusion, the results of the current study in rats demonstrate that the conditioning effect of nicotine is more important in males than in females. Furthermore, in line with reported findings, our results suggest that mGluR5 antagonism may be therapeutically useful in smoking cessation during the maintenance of smoking behavior when conditioning plays an important role, notwithstanding the fact that this effect is observed only in male rats, not in females.  相似文献   

3.
The present study was conducted to evaluate the influence of the glutamatergic receptors α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and metabotropic glutamate 5 (mGlu5) receptors on sensitization to the rewarding effects of morphine. The effects of pre-treatment with saline or 20 mg/kg morphine plus the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (5 or 10 mg/kg) or the metabotropic Glu5 receptor antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) (5 or 10 mg/kg) on the place conditioning induced by a low dose of morphine (2 mg/kg) were assessed. The 2 mg/kg dose of morphine was ineffective in animals pre-treated with saline but induced a clear conditioned place preference (CPP) in mice pre-treated with morphine alone and morphine plus any of the MPEP doses or the lowest dose of CNQX. Conversely, animals pre-treated with morphine plus 10 mg/kg of CNQX did not acquire CPP. Our results suggest that AMPA glutamate receptors are involved in the development of sensitization to the conditioned rewarding effects of morphine.  相似文献   

4.
To investigate the effect of histaminergic neuron on morphine - induced conditioned place preference ( CPP), the model of CPP was used to assess the rewarding effect of morphine. Morphine (2, 5, 10 mg/kg) significantly produced a CPP in a dose-dependent manner. In addition, morphine simultaneously and markedly lessened the histaminergic neurons in the TM,  相似文献   

5.
Rationale Many of the biochemical, physiological, and behavioral effects of ethanol are known to be mediated by ionotropic glutamate receptors. Emerging evidence implicates metabotropic glutamate receptors (mGluRs) in the biobehavioral effects of ethanol and other drugs of abuse, but there is little information regarding the role of mGluRs in the reinforcing effects of ethanol. Materials and methods Male C57BL/6J mice were trained to lever-press on a concurrent fixed ratio 1 schedule of ethanol (10% v/v) vs water reinforcement during 16-h sessions. Effects of mGluR1, mGluR2/3, and mGluR5 antagonists were then tested on parameters of ethanol self-administration behavior. Results The mGluR5 antagonist MPEP (1–10 mg/kg, i.p.) dose-dependently reduced ethanol-reinforced responding but had no effect on concurrent water-reinforced responding. Analysis of the temporal pattern of responding showed that MPEP reduced ethanol-reinforced responding during peak periods of behavior occurring during the early hours of the dark cycle. Further analysis showed that MPEP reduced the number of ethanol response bouts and bout-response rate. MPEP also produced a 13-fold delay in ethanol response onset (i.e., latency to the first response) with no corresponding effect on water response latency or locomotor activity. The mGluR1 antagonist CPCCOEt (1–10 mg/kg, i.p.) or the mGluR2/3 antagonist LY 341495 (1–30 mg/kg, i.p.) failed to alter ethanol- or water-reinforced responding. Conclusions These data indicate that mGlu5 receptors selectively regulate the onset and maintenance of ethanol self-administration in a manner that is consistent with reduction in ethanol’s reinforcement function.  相似文献   

6.
Our previous studies have demonstrated that morphine-induced conditioned place preference (CPP) can be inhibited by 2 Hz electroacupuncture (EA). This inhibition can be blocked by either the opioid receptor antagonist naloxone (i.p.) or lesion in the nucleus accumbens (NAc), providing evidence that endogenous opioid system in the NAc mediates the effects of EA. Here we report that 1) A single session of 2 Hz EA produced a significant increase of the content of enkephalin in the NAc of morphine-induced CPP rats, and this effect was stronger in three consecutive sessions of EA; 2) Intracerebroventricular injection of the μ-opioid receptor antagonist CTAP or δ-opioid receptor antagonist NTI, but not κ-opioid receptor antagonist nor-BNI, dose-dependently reversed the inhibitory effects of 2 Hz EA on the expression of morphine-induced CPP; 3) Three consecutive sessions of 2 Hz EA up-regulated the mRNA level of preproenkephalin in the NAc of morphine-induced CPP rats. The results suggest that the inhibitory effects of 2 Hz EA on the expression of the morphine CPP is mediated by μ- and δ-, but not κ-opioid receptor, possibly via accelerating both the release and synthesis of enkephalin in the NAc. These findings support the possibility of using 2 Hz EA for the treatment of opiate addiction.  相似文献   

7.
Extensive research into glutamate receptors in the central nervous system has shown important role of metabotropic glutamate receptors (mGluR) as potential targets for neuroprotective drugs. The aim of the present study was to investigate neuroprotective potential of the highly selective mGlu5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP) against kainate (KA)-induced excitotoxicity in vivo. Our attention was focused mainly on the effectiveness of delayed treatment. In order to evoke neuronal injury, rats were unilaterally injected with kainic acid (KA; 2.5 nmol/1 μl) into the CA1 region of the hippocampus. MTEP (1, 5 or 10 nmol/1 μl) was administered into CA1 30 min, 1, 3 and 6 h after KA. Additionally, other rats were injected intraperitoneally (i.p.) with MTEP in a dose of 1 mg/kg, once daily for 7 days. The first injection of MTEP was 1 h after KA. Seven days after treatment, the brains were taken out and analyzed histologically to estimate the total number of neurons in CA region of dorsal hippocampus using stereological methods. The study was also aimed at determining a possible influence of MTEP on neuronal glutamate release induced by KA in the hippocampus, using microdialysis method. The obtained results showed that MTEP had neuroprotective effect after both intrahippocampal and intraperitoneal injection. It was found that MTEP could prevent excitotoxic neuronal damage even when it was applied 1-6 h after the toxin. Moreover, it was observed that MTEP significantly reduced the KA-induced glutamate release in the hippocampus. It seems to play a role in mediating neuroprotective effects of MTEP.  相似文献   

8.
Relapse to alcohol use after periods of abstinence is a hallmark behavioral pathology of alcoholism and a major clinical problem. Emerging evidence indicates that metabotropic glutamate receptor 5 (mGluR5) antagonists attenuate relapse to alcohol-seeking behavior but the molecular mechanisms of this potential therapeutic effect remain unexplored. The extracellular signal-regulated kinase (ERK(1/2)) pathway is downstream of mGluR5 and has been implicated in addiction. We sought to determine if cue-induced reinstatement of alcohol-seeking behavior, and its reduction by an mGluR5 antagonist, is associated with changes in ERK(1/2) activation in reward-related limbic brain regions. Selectively-bred alcohol-preferring (P) rats were trained to lever press on a concurrent schedule of alcohol (15% v/v) vs. water reinforcement. Following 9 days of extinction, rats were given an additional extinction trial or injected with the mGluR5 antagonist MPEP (0, 1, 3, or 10mg/kg) and tested for cue-induced reinstatement. Brains were removed 90-min later from the rats in the extinction and MPEP (0 or 10mg/kg) conditions for analysis of p-ERK(1/2), total ERK(1/2), and p-ERK(5) immunoreactivity (IR). Cue-induced reinstatement of alcohol-seeking behavior was associated with a three to five-fold increase in p-ERK(1/2) IR in the basolateral amygdala and nucleus accumbens shell. MPEP administration blocked both the relapse-like behavior and increase in p-ERK(1/2) IR. p-ERK(1/2) IR in the central amygdala and NAcb core was dissociated with the relapse-like behavior and the pharmacological effect of mGluR5 blockade. No changes in total ERK or p-ERK(5) were observed. These results suggest that exposure to cues previously associated with alcohol self-administration is sufficient to produce concomitant increases in relapse-like behavior and ERK(1/2) activation in specific limbic brain regions. Pharmacological compounds, such as mGluR5 antagonists, that reduce cue-induced ERK(1/2) activation may be useful for treatment of relapse in alcoholics that is triggered by exposure to environmental events.  相似文献   

9.
Alcohol dependence is considered a major public health problem in modern societies. The role for glutamatergic neurotransmission in the reinforcing effects of ethanol is becoming increasingly evident. Our previous findings have shown that in rats, the mGluR7 positive allosteric agonist AMN082, but not its allosteric antagonist MMPIP, prevented ethanol consumption and preference in the two-bottle choice paradigm. This study was conducted to determine the effects of AMN082 and MMPIP on the extinction and reinstatement of ethanol-elicited place preference (CPP) in C57BL/6 mice. AMN082 and MMPIP were administered during extinction of ethanol CPP to determine whether mGluR7 signaling is required. Furthermore, the effects of AMN082 and MMPIP on reinstatement of CPP were also evaluated. Finally, spontaneous locomotor activity and ethanol pharmacokinetics were assessed following systemic administration of AMN082 and MMPIP. Our results indicate that mGluR7 pharmacological modulation had no effect on ethanol-elicited CPP extinction. In contrast, mGluR7 activation using AMN082 reduced ethanol-induced CPP reinstatement, an effect reversed by co-administration of MMPIP. Collectively, these results indicate, for the first time, that activation of the mGluR7 receptor is effective in reducing the reinstatement of conditioned rewarding effects of ethanol. Taken together, the efficacy of AMN082 on the various phases of alcohol-CPP could represent an interesting pharmacological approach and could open a new line of research for the development of therapies to reduce ethanol intake in patients.  相似文献   

10.
Rationale Recent evidence suggests that, in addition to ascending monoaminergic systems, glutamate systems also play a role in psychostimulant-induced locomotor activity. The present study was conducted to examine the effects of the selective type-5 metabotropic glutamate receptor (mGluR5) antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP) on the acute locomotor stimulant effects of cocaine, d-amphetamine, and the dopamine reuptake inhibitor GBR12909.Methods Male DBA/2J mice were treated with saline or MPEP (1, 5, 20 or 30 mg/kg i.p.) 10 min prior to the administration of cocaine (15 mg/kg or 30 mg/kg i.p.), d-amphetamine (3 mg/kg or 5 mg/kg i.p.) or GBR12909 (10 mg/kg or 20 mg/kg i.p.). Locomotor activity was then monitored in an open-field environment for 30 min. The effects of MPEP alone (1, 5, 20 and 30 mg/kg i.p.) on locomotor activity were also examined.Results MPEP dose dependently inhibited the acute locomotor stimulant effects of cocaine, d-amphetamine, and the 10-mg/kg dose of GBR12909. However, MPEP had no effect on the locomotor stimulant effects of the higher (20 mg/kg) dose of GBR12909. When tested alone, MPEP increased locomotor activity at doses of 5 mg/kg and 20 mg/kg.Conclusions Our data suggest that mGluR5 receptors not only mediate spontaneous locomotor activity in DBA/2J mice but also the acute locomotor stimulant effects of cocaine, d-amphetamine and lower doses of GBR12909. However, the fact that MPEP did not attenuate the locomotor stimulant effects of the high (20 mg/kg) dose of GBR12909 suggests complex interactions between metabotropic glutamate receptors, dopamine transporters and possibly other monoamines in the regulation of psychostimulant-induced locomotor activity.  相似文献   

11.
The neuroprotective potential of allosteric mGlu5 and mGlu1 antagonists such as 6-methyl-2-(phenylethynyl)-pyridin (MPEP)/[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) and (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM), was tested in vitro in organotypic hippocampal cultures and in the middle cerebral artery occlusion model of stroke in vivo. Both classes of agent have high selectivity toward mGlu sub-types and are active in animal models of various diseases indicating satisfactory CNS penetration. In organotypic hippocampal cultures MPEP showed high neuroprotective potency against sub-chronic (12 days) insult produced by 3-NP with an IC50 of c.a. 70 nM. In contrast, although the mGlu1 antagonist EMQMCM was also protective, it seems to be weaker yielding an IC50 of c.a. 1 microM. Similarly, in the transient (90 min) middle cerebral artery occlusion model of ischaemia in rats, MTEP seems to be more effective than EMQMCM. MTEP, at 2.5 mg/kg and at 5 mg/kg provided 50 and 70% neuroprotection if injected 2 h after the onset of ischaemia. At a dose of 5 mg/kg, significant (50%) neuroprotection was also seen if the treatment was delayed by 4 h. EMQMCM was not protective at 5 mg/kg (given 2 h after occlusion) but at 10 mg/kg 50% of neuroprotection was observed. The present data support stronger neuroprotective potential of mGlu5 than mGlu1 antagonists.  相似文献   

12.
Several lines of evidence suggest a crucial involvement of glutamate in the mechanism of action of anxiolytic and antidepressant drugs. The involvement of group I mGlu receptors in anxiety and depression has also been proposed. In view of the recent discovery of anxiolytic- or antidepressant-like effects of acute injections of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective and brain penetrable mGlu5 receptor antagonist, we designed the present study to examine anxiolytic- and/or antidepressant-like effects of multiple administrations of this drug. The anxiolytic-like effects of MPEP were evaluated in rats using the conflict drinking test. The antidepressant-like effect was estimated using the rat olfactory bulbectomy model of depression. Seven subsequent injections of MPEP (1 mg/kg) significantly (by 320%) increased the number of shocks accepted during the experimental session in the Vogel test. MPEP given once daily at a dose of 10 mg/kg, restored the learning deficit of bulbectomized rats after 14 days of treatment, remaining without any effect in the sham-operated animals. N-methyl-D-aspartic acid (NMDA)-induced convulsions in mice were not affected by a single injection of MPEP (30 mg/kg) indicating that at this dose MPEP did not block NMDA receptors. The results indicate that the prolonged blockade of mGlu5 receptors exerts anxiolytic- and antidepressant-like effects in rats. No tolerance to anxiolytic-like action occurs. The previously mentioned results further indicate that antagonists of group I mGlu receptors may play a role in the therapy of both anxiety and depression.  相似文献   

13.
徐萍  王书玉  陈云  刘维勤  陶成 《药学学报》1991,26(9):656-660
本文报道了14个6-取代苯基-4,5-二氢-3(2H)哒嗪酮和15个6-取代苯基-3(2H)哒嚎酮的合成及其抗电惊活性。其ED50值表明,以2′,4′-二氯苯基-3(2H)哒嗪酮的抗惊作用为最强。构效分析表明,苯环上的取代基对化合物的抗惊活性有明显影响,吸电子取代基和疏水性参数值较大的取代基有利于提高化合物的抗惊活性。  相似文献   

14.
本文设计合成了11个1-取代苯基-4-(2′,3′-二乙酰氧基-5′-甲氧羰基苄基)-2,6-哌嗪二酮类化合物,并经对小鼠白血病细胞P388、小鼠肝癌细胞Hep和人体胃癌细胞SGC7901的体外实验表明,化合物9j对P388白血病细胞有较强的抑制作用,化合物9d对Hep肝癌细胞有较强的抑制作用。本文还考察了超声波辐射时间对Mannich反应的影响。  相似文献   

15.
Dimebolin (Dimebon™), is a non-selective antihistamine approved in Russia for the treatment of allergy. Recently, this drug has been shown to be neuroprotective in cellular models of Alzheimer's disease and Huntington's disease, and to preserve cognitive function when chronically administered to AF64A lesioned rats. Interests in identifying the molecular targets of dimebolin have intensified with reports of efficacy in clinical trials with Alzheimer's patients. Dimebolin has been found to interact with a number of molecular targets including acetylcholinesterases, N-methyl-d-aspartate receptors, and voltage-gated calcium channels, with potencies in the range of 5-50 μM. In the present study, the action of dimebolin at the serotonin 5-HT6 receptor was investigated. Dimebolin binds with moderate affinity to both the human and rat recombinant 5-HT6 receptor (Ki = 26.0 ± 2.5 nM and 119.0 ± 14.0 nM respectively) as well as the native rat 5-HT6 receptor, and acts as an antagonist in functional cAMP assays. Furthermore, dimebolin occupies the 5-HT6 receptor in vivo as assessed by ex vivo autoradiography, with a dose-occupancy relationship similar to that of the selective 5-HT6 antagonist SB-399885. Finally, both SB-399885 and dimebolin produce an acute enhancement of short-term social recognition memory, although dimebolin is approximately 10-fold less potent than SB-399885. Taken together, these studies demonstrate that dimebolin antagonizes the 5-HT6 receptor with higher affinity than other targets characterized to date, and suggest that this activity may play a role in the acute cognition enhancing effects of this compound in preclinical models and in the clinic.  相似文献   

16.
目的 设计合成具有 PPARγ激动剂活性的4-[(5-甲基-2-芳基噁唑-4-基)甲氧基]-芳亚甲(苄)基取代的杂环类化合物。方法 以丁二酮单肟为原料,经与(取代)苯甲醛环合、氯化得到氯甲基噁唑衍生物,再与对羟基苯甲醛或香兰醛缩合,最后与各种杂环进行Knoevenagel反应得到目标化合物。结果 合成了12个未见文献报道的新化合物,并利用元素分析、IR和1H-NMR确证了结构。结论 化合物13和16初步活性试验显示与PPARγ具有一定的结合活性,但是其抑制率均略小于50%,表明其IC50值可能略大于10 umol·L-1。  相似文献   

17.
The effects of the acute administration of 2-phenylpyrazolo[4,3-c]quinolin-3(5H)-one on diazepam-induced behaviour and electrophysiological activity were studied in rat. The compound, in doses of 5-10 mg/kg (i.p.), which per se did not induce alterations in spontaneous locomotor activity, antagonised the sedative effect induced by 5-10 mg/kg (i.p.) of diazepam. The injection of diazepam in rats, induced a profound reduction in the first negative wave of the recording of the visual evoked potential used as a sensitive electrophysiological test, in vivo. 2-Phenylpyrazolo[4,3-c]quinolin-3(5H)-one (10 mg/kg, i.p.) caused a recovery of the amplitude of the first negative wave within a few minutes. This result was confirmed by the finding that 2-phenylpyrazolo[4,3-c]quinolin-3(5H)-one, injected acutely in rats, pretreated with diazepam exhibited the capacity to antagonise the binding of [3H]diazepam determined in vitro on synaptic membrane preparations from cortex. The comparison of the pattern of the visual-evoked potential, recorded after the injection of 2-phenylpyrazolo[4,3-c]quinolin-3(5H)-one (50 mg/kg) with the patterns recorded after the injection of ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazolo(1,5a) (1,4)benzodiazepine-3-carboxylate (50 mg/kg) and ethyl-beta-carboline-3-carboxylate and 1-methyl-beta-carboline demonstrated that 2-phenylpyrazolo[4,3-c]quinolin-3(5H)-one is devoid of intrinsic activity.  相似文献   

18.
The cis-trans isomerization of the (5-nitro-2-furyl)acrylamide, AF-2, has been investigated using some important biological reducing agents to initiate reaction. Physiological concentrations of L-ascorbic acid, glutathione and iron(II) all accomplish isomerization in a catalytic manner over a period of minutes. Base-catalysed isomerization has also been observed. In all cases, the presence of oxygen severely inhibits isomerization. It is proposed that the mechanism involves a free-radical chain process; AF-2 or analogues are thus extremely sensitive probes for the generation of nitro radicals in biochemical reducing systems because of the high efficiency of isomerization.  相似文献   

19.
Rationale The 5-HT2C receptor modulates mesolimbic dopamine (DA) function and the expression of DA-dependent behaviors, including stimulant-induced hyperactivity. The 5-HT2C receptor may also be involved in drug-induced locomotion that is 5-HT-dependent.Objectives This study investigated the effects of the 5-HT2C receptor antagonist 6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline (SB242084) on hyperlocomotion induced by psychomotor stimulants with selective, or mixed, actions on serotonergic and/or dopaminergic systems.Materials and methods Male Sprague–Dawley rats were treated in the presence or absence of SB242084 with releasers/reuptake inhibitors of DA (amphetamine and methylphenidate), 5-HT (fenfluramine and citalopram), or both 5-HT and DA (MDMA and cocaine). In addition, the effects of SB242084 combined with nicotine, morphine, or the 5-HT1A/1B receptor agonist RU24969 were examined. Locomotor activity was recorded for 2 h.Results SB242084 potentiated hyperactivity induced by MDMA (2.5–5 mg/kg), amphetamine (0.5 mg/kg), fenfluramine (5 mg/kg), cocaine (10 mg/kg), and methylphenidate (5 mg/kg). SB242084 modestly potentiated nicotine-induced (0.2–0.4 mg/kg) and morphine-induced (2.5 mg/kg) hyperactivity. SB242084 failed to influence hyperactivity induced by RU24969 (0.5–1 mg/kg) or citalopram (10–20mg/kg).Conclusion SB242084 potentiated the locomotor stimulant effects of both indirect DA and 5-HT agonists. This potentiation may reflect two distinct mechanisms. The first involves direct enhancement of DA activity as shown by potentiation of the effects of amphetamine and methylphenidate. The second mechanism reflects an unmasking of stimulatory 5-HT receptors activated by 5-HT releasers (possibly 5-HT1B/2A) through blockade of inhibitory 5-HT2C receptors. The failure of SB242084 to potentiate the effect of citalopram might reflect differences between changes in synaptic levels of 5-HT produced by release compared to reuptake inhibition.  相似文献   

20.
Currently prescribed antidepressants affect the reuptake and/or metabolism of biogenic amines. Unfortunately for patients, these treatments require several weeks to produce significant symptom remission. However, recently it has been found that ketamine, a dissociative anesthetic agent that noncompetitively antagonizes NMDA (N-Methyl-d-aspartic acid) receptors, has rapid antidepressant effects at sub-anesthetic doses in clinically depressed patients. These findings indicate that modulation of the glutamatergic system could be an efficient way to achieve antidepressant activity. For this reason, other mechanisms influencing glutamatergic functioning have gained interest. For example, the metabotropic glutamate receptor 7 (mGluR7) allosteric agonist AMN082 (N,N′-dibenzyhydryl-ethane-1,2-diamine dihydrochloride) has been shown to be effective in the forced swim and tail-suspension test, behavioral assays sensitive to antidepressants. Here we extend the characterization of AMN082 by demonstrating its effects on differential reinforcement of low rates of responding (DRL)-30, another assay sensitive to antidepressants. Furthermore, we show the engagement of glutamatergic signaling by demonstrating the ability of the selective AMPA (2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid) receptor antagonist NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione) to reverse the effects of AMN082 in the tail suspension test. In contrast, NBQX failed to reverse the effects of imipramine in the same behavioral test. Finally, we report that behaviorally efficacious doses of AMN082 modulate phosphorylation of AMPA and NMDA receptor subunits in the hippocampus. These results suggest that the antidepressant-like effects of AMN082 are, at least in part, due to modulation of AMPA and NMDA receptor activity. Therefore, our findings confirm the hypothesis that mGluR7 could represent a novel target for treating depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号