首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of fasting and postprandial plasma glucose, insulin, and free fatty acid (FFA) concentrations were made in 32 individuals--16 with normal glucose tolerance and 16 with non-insulin dependent diabetes mellitus (NIDDM)--further subdivided into two equal groups on the basis of body weight. In addition, endogenous glucose production was estimated in 32 subjects. Both fasting plasma glucose (251 +/- 14 v 86 +/- 1 mg/dL) and FFA (672 +/- 35 v 434 +/- 45 microEq/L) concentrations were significantly higher in patients with NIDDM (P less than .001), and the differences between normal and diabetic existed in both weight groups. Rates of endogenous glucose production were also significantly elevated (P less than .001) in diabetic (120 +/- 6 mg/m2 X min) as compared to normal subjects (73 +/- 6 mg/m2 X min), and these differences were also independent of degree of obesity. However, there were no significant differences between normal subjects and patients with NIDDM in either fasting or postprandial insulin concentrations. The similarity in insulin values for normal and diabetic subjects was true of both obesity groups, although insulin concentrations were somewhat higher in normal obese individuals as compared to their normal nonobese counterparts. Significant relationships were seen between values for fasting plasma glucose and endogenous glucose production (r = .89), fasting plasma glucose and fasting FFA (r = .64), and FFA levels and endogenous glucose production (r = .58) when all nonobese subjects were considered together. Essentially identical relationships, both qualitatively and quantitatively, were seen within the obese group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The in vivo suppressive effect of glucose and insulin on plasma free fatty acid concentrations was investigated in obese subjects with (n = 6) and without (n = 6) Type 2 (non-insulin-dependent) diabetes mellitus during a 4h-hyperglycemic glucose clamp (about 11.2 mmol/l). Somatostatin was infused (250 micrograms/h) during the third h of glucose clamp to inhibit glucose-stimulated insulin secretion. Plasma insulin values were similar in the two groups at fasting and all throughout the study (F = 0.04; p = NS, two way analysis of variance), while the amount of glucose metabolized during the clamp was lower in diabetic subjects. Plasma free fatty acid concentrations, which were similar in the two groups at fasting, decreased during hyperglycemia and glucose-induced hyperinsulinemia (0-120 min; 180-240 min), and rose during hyperglycemia and somatostatin-inhibited insulin secretion (120-180 min). However, plasma free fatty acid concentrations were significantly higher in diabetic subjects all along the study period both in absolute terms (F = 11.4; p less than 0.0001) and when individual data were recalculated as percent of fasting value (F = 13.3; p less than 0.0001). Our data suggest that suppressibility of fasting plasma free fatty acids is lower in obese Type 2 diabetes in comparison with obese non-diabetic subjects.  相似文献   

3.
The ability of insulin to stimulate tissue glucose uptake and lower plasma FFA concentrations was quantified in 12 individuals with normal glucose tolerance and 12 patients with noninsulin-dependent diabetes mellitus (NIDDM), further subdivided into obese and nonobese subjects. Measurements were made during 5-h glucose clamp studies, carried out at plasma insulin concentrations of about 10 microU/ml (0-150 min) and about 60 microU/ml (150-300 min). Differences between the patient groups were compared by two-way analysis of variance. The ability of insulin to either suppress plasma FFA concentrations or stimulate glucose uptake was significantly reduced (P less than 0.001) in patients with NIDDM, and this was true of both the obese and nonobese groups. The defect in the ability of insulin to suppress plasma FFA concentrations in patients with NIDDM was more apparent at the lower insulin concentration, whereas resistance to insulin-stimulated glucose uptake in NIDDM was more dramatic at the high insulin concentration. Finally, a significant correlation (r = -0.67; P less than 0.001) between insulin-stimulated glucose uptake and plasma FFA concentration was found in the entire group. These data emphasize the fact that patients with NIDDM are resistant to multiple actions of insulin, and that the magnitudes of the defect in insulin suppression of plasma FFA levels and stimulation of tissue glucose uptake are roughly comparable.  相似文献   

4.
The objective of this study was to investigate the serum leptin response to oral glucose stimulation in a group of obese and nonobese normotensive, normolipidemic, and glucose-tolerant premenopausal women. Twenty-one obese (BMI: 37.7 +/- 6.3 kg/m2) and 14 nonbese (BMI: 21.5 +/- 1.0 kg/m2) age-matched, healthy premenopausal women were included in the study. Serum glucose, insulin, and leptin levels were measured at 30 min intervals during the 120 min of an oral glucose tolerance test (OGTT). Mean serum glucose, insulin, and leptin levels were significantly higher in the obese group compared to nonobese subjects during OGTT. Except for a 120 min decrement noted in obese women, no changes occurred in serum leptin levels during oral glucose stimulation in both groups. As a conclusion, absence of a significant elevation in serum leptin levels during OGTT in our obese subjects compared to nonobese subjects may be related to their normal metabolic variables despite being abdominally obese and insulin resistant.  相似文献   

5.
Metabolic responses to intense exercise in lean and obese subjects   总被引:1,自引:0,他引:1  
Sustained elevations of plasma glucose and insulin concentrations follow intense (80% maximum oxygen uptake) exercise performed in the postabsorptive state. To provide insights into possible mechanisms and influence of obesity, 8 lean and 12 obese subjects [106 +/- 11% (SD) and 193 +/- 31% of reference table weight, respectively] eating previously isocaloric diets were exercised to exhaustion (7 +/- 3 min) on a cycle ergometer, then followed for 60 min of recovery. The obese subjects at rest had slightly increased plasma glucose and insulin and elevated blood glycerol concentrations. Both lean and obese subjects had little or no changes in plasma glucose or insulin during exercise, but the increases during the recovery period were greater and/or sustained longer in the obese. Such results raise the possibility of transient hepatic insulin resistance after exercise and are possibly relevant to restoration of depleted muscle glycogen. Both groups had a marked fall in plasma FFA during exercise; the reduction was sustained in the lean but not in the obese subjects. Blood glycerol increased during the recovery period to higher values in the obese than in the lean subjects. Plasma norepinephrine increased about 4-fold in both groups, returning promptly to preexercise values. In contrast, the exercise-induced increment in plasma epinephrine [values at exhaustion, 933 +/- 548 vs. 1970 +/- 787 pmol/L; P less than 0.005] was markedly attenuated in the obese subjects. Thus, the obese subjects had exercise-induced changes in glucose and inulin metabolism consistent with greater postexercise insulin resistance, despite an impaired plasma epinephrine response to intense exercise.  相似文献   

6.
It is known that obese subjects have a blunted GH secretory response to stimulation, but little is known about the inhibition of GH secretion in obesity. The present study was designed to evaluate the effects of obesity on the suppression of GH by hyperglycemia and/or somatostatin. Plasma GH concentrations were measured in eight nondiabetic obese subjects and eight nonobese healthy controls during a 4-h hyperglycemic clamp. During the third hour synthetic cyclic somatostatin-14 was infused at the rate of 2.5 nmol/min. Baseline plasma GH levels were similar in obese and nonobese subjects (0.9 +/- 0.1 vs. 0.8 +/- 0.2 micrograms/L; mean +/- SEM). In the last 20 min of the glucose infusion period preceding somatostatin administration (100-120 min of the study) plasma GH averaged 0.8 +/- 0.1 micrograms/L in obese patients and 0.4 +/- 0.1 micrograms/L in control subjects (P less than 0.01), with a reduction of 6 +/- 5% in the former and 35 +/- 10% in the latter (P less than 0.01). In both groups somatostatin infusion did not result in a further decrease in plasma GH. Discontinuation of the somatostatin infusion resulted in a rise in both groups; the increase was higher in nonobese subjects (8.1 +/- 3.8 vs. 2.3 +/- 0.9 micrograms/L in the period 220-240 min; P = NS). These results suggest that in human obesity, hyperglycemia has a diminished inhibitory effect on GH secretion, and somatostatin administration has no additional effect in either obese or nonobese nondiabetic subjects.  相似文献   

7.
To test the hypothesis that in obesity hypertension is associated with more pronounced hyperinsulinaemia and insulin resistance we compared plasma insulin levels and insulin sensitivity in a group of 6 obese subjects with untreated hypertension and in a group of 6 obese subjects with normal blood pressure. The two groups were similar for sex, age, body mass index and glucose tolerance. Six nonobese subjects served as controls. The study consisted of a 2-h hyperglycaemic clamp (steady-state plasma glucose = 11 mmol/l) and a 15-min insulin tolerance test (0.1 U/kg body wt). During hyperglycaemic clamp, insulin and C-peptide plasma levels were similar in normotensive and hypertensive obese subjects: the area under the plasma insulin curve was 36,000 +/- 3000 pmol/l X 120 min in the former and 34,000 +/- 1000 pmol/l X 120 min in the latter; the area under the plasma C-peptide curve was 298,000 +/- 26,000 pmol/l X 120 min in the former and 246,000 +/- 26,000 pmol/l X 120 min in the latter (P = n.s.). The ratio M/I between the amount of glucose metabolized (M) and the mean plasma insulin levels (I) during hyperglycaemic clamp was similar in the two groups: 0.59 +/- 0.09 in normotensive and 0.58 +/- 0.08 mg/min X m2 per pmol/l in hypertensive obese subjects (P = n.s.). Also the rate coefficient of glucose disappearance from plasma (K(itt)) after i.v. insulin injection was similar in the two groups (4.08 +/- 0.51 vs. 3.87 +/- 0.53 per cent/min).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
OBJECTIVE: To investigate whether human obesity is characterized by a worse cardiovascular risk profile (than no obesity) even in the absence of hyperinsulinaemia. SUBJECTS AND DESIGN: A total of 367 healthy subjects (247 nonobese and 120 obese) with normal glucose tolerance and without family history of diabetes mellitus. INTERVENTIONS: A 75-g oral glucose tolerance test was performed in all participants. MAIN OUTCOME MEASURES: Anthropometry, blood pressure, fasting plasma lipids and urate, plasma glucose and insulin concentrations at fasting, 1 h and 2 h after oral glucose load. RESULTS: In a multivariate linear regression analysis, body mass index was strongly related to all cardiovascular risk factors, independently of sex, age and plasma insulin. When risk factors were compared in 37 normoinsulinaemic obese subjects (plasma insulin within one standard deviation of the mean values observed in the 247 nonobese subjects), and in 37 sex- and age-matched normoinsulinaemic nonobese subjects, we found that plasma glucose levels were similar in the two groups, whereas plasma triglyceride (1.50 +/- 0.13 vs. 1.13 +/- 0.08 mmol L-1; mean +/- SE), low-density lipoprotein cholesterol (3.42 +/- 0.25 vs. 2.77 +/- 0.18 mmol L-1) and urate (290 +/- 12 vs. 255 +/- 12 mumol L-1) levels were significantly higher, and plasma high-density lipoprotein cholesterol concentrations were lower (1.27 +/- 0.04 vs. 1.46 +/- 0.06 mmol L-1) in obese than in nonobese subjects with normal plasma insulin levels (P < 0.01). Also systolic (132 +/- 2 vs. 124 +/- 2 mmHg) and diastolic (86 +/- 1 vs. 81 +/- 1 mmHg) blood pressure values were significantly higher in normoinsulinaemic obese subjects than in normoinsulinaemic nonobese individuals (P < 0.001). CONCLUSIONS: These results suggest that in human obesity a worse cardiovascular risk profile is found (than in the nonobese) independently of the presence of hyperinsulinaemia.  相似文献   

9.
Insulin and renal sodium retention in obese adolescents   总被引:2,自引:0,他引:2  
The effect of insulin on the renal handling of sodium was studied in obese and nonobese subjects by using euglycemic hyperinsulinemia. Seven water-loaded obese (14-19 years old) and five nonobese young adults (18-21 years old) had insulin given intravenously at a rate of 40 munits/m2/min. Blood glucose and creatinine clearance were not altered by euglycemic hyperinsulinemia in either the obese or the nonobese group. Hyperinsulinemia resulted in a significant decrease in urinary sodium excretion in both groups of subjects (by 54.2 +/- 3% [mean +/- SEM] in the obese and by 50.9 +/- 3.1% in the nonobese group). However, the amount of glucose required to maintain euglycemia was significantly less in the obese versus nonobese group, 89.5 +/- 6.2 versus 329.2 +/- 16 mg glucose/m2/min (p less than 0.001). There was no relation in either group between the amount of glucose required to maintain euglycemia and the change in urinary sodium excretion. On a separate day, all of the obese subjects underwent 3 hours of water diuresis but without insulin. There was no change in urinary sodium excretion with sustained water diuresis alone. However, when compared with the nonobese group, the obese group of subjects had a significantly higher resting mean arterial pressure, heart rate, and plasma norepinephrine concentration; during the insulin clamp, neither group experienced a significant change in mean arterial pressure or heart rate, and only the nonobese group experienced an increase in plasma norepinephrine. In obese subjects, we have found, despite the presence of insulin resistance to carbohydrate metabolism, that euglycemic hyperinsulinemia was associated with a normal decrease in urinary sodium excretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
We tested whether FFAs influence glucose uptake by human peripheral tissues in vivo. Whole body glucose uptake, FFA turnover, energy expenditure and substrate oxidation rates, forearm glucose and FFA uptake, and nonoxidative glycolysis (net release of alanine and lactate) were measured in 14 normal male subjects in the basal state (0-240 min; serum insulin, approximately 5 microU/mL) and during euglycemic hyperinsulinemia (240-360 min; approximately 75 microU/mL) on 2 separate occasions, once during elevation of plasma FFA by infusions of Intralipid and heparin (plasma FFA, 4.6 +/- 0.1 vs. 4.2 +/- 0.4 mmol/L; 180-240 vs. 300-360 min) and once during infusion of saline (plasma FFA, 0.50 +/- 0.07 vs. 0.02 +/- 0.07 mmol/L, respectively). In the basal state, whole body glucose disposal remained unchanged, but the fate of glucose was significantly altered toward diminished oxidation (7.3 +/- 0.8 vs. 5.6 +/- 0.5 mumol/kg.min; P less than 0.05, saline vs. Intralipid) and increased nonoxidative glycolysis (P less than 0.05). Elevation of plasma FFA significantly increased forearm glucose uptake (1.0 +/- 0.6 vs. 2.4 +/- 0.7 mumol/kg.min; P less than 0.01) and nonoxidative glycolysis (net release of alanine and lactate, 0.4 +/- 0.5 vs. 1.2 +/- 0.4 mumol glucose equivalents/kg.min; P less than 0.05). During hyperinsulinemia, FFA decreased whole body glucose disposal (38 +/- 2 vs. 30 +/- 3 mumol/kg.min; P less than 0.001) due to a decrease in glucose oxidation (13 +/- 1 vs. 7 +/- 1 mumol/kg.min; P less than 0.01, saline vs. Intralipid), and forearm glucose uptake (31 +/- 4 vs. 24 +/- 6 mumol/kg.min; P less than 0.01, saline vs. Intralipid). Under these conditions, 7 +/- 2% and 3 +/- 1% (P less than 0.05) of forearm glucose uptake could be accounted for by nonoxidative glycolysis in the Intralipid and saline studies, respectively. In summary, 1) elevation of plasma FFA concentrations suppresses the rate of carbohydrate oxidation to a rate that, both basally and during hyperinsulinemia, is similar to that reported for insulin-independent glucose oxidation in the brain; 2) basally, forearm glucose uptake is increased by FFA; and 3) during hyperinsulinemia, FFA inhibit glucose uptake by forearm tissues. We conclude that the interaction between glucose and FFA fuels in human forearm tissues is dependent upon the ambient insulin concentration; the increase in basal glucose uptake would be compatible with the increase need of glucose for FFA reesterification; the decrease in insulin-stimulated glucose uptake supports operation of the glucose-FFA cycle in human forearm tissues.  相似文献   

11.
Somatostatin (SRIH) infusion has been widely used in metabolic studies of carbohydrate metabolism. While the effects of SRIH itself on various aspects of carbohydrate economy have been assessed in young adults, such studies have not been conducted in the elderly, which represent an increasingly important study group. To examine the effect of SRIH on insulin-mediated glucose disposal in the elderly, we studied 12 (7 men and 5 women) healthy nonobese subjects, aged 65-80 yr. Paired 3-h euglycemic insulin clamp studies were performed in random order employing insulin alone (22 mU/m2.min) or insulin with SRIH (250 micrograms/h) and glucagon (0.4 ng/kg.min) to maintain normal basal plasma glucagon levels. Basal plasma insulin, glucose, glucagon, GH, and glucose production and disappearance were similar on each occasion. Steady state (10-180 min) mean plasma insulin [insulin alone, 298 +/- 12 (+/- SE); insulin; glucagon, and SRIH, 304 +/- 15 pmol/L] and glucagon (insulin alone, 85 +/- 7; insulin, glucagon, and SRIH, 96 +/- 9 ng/L) concentrations were similar. At steady state (150-180 min) glucose production was suppressed to similar levels (insulin alone, 26 +/- 7; insulin, glucagon, and SRIH, 36 +/- 13 mumol/kg.min). However, steady state glucose disposal was significantly higher during the SRIH infusion (insulin alone, 295 +/- 26; insulin, glucagon, and SRIH, 346 +/- 32 mumol/kg.min; P less than 0.02). We conclude that SRIH augments insulin-mediated glucose disposal in healthy older subjects at physiological levels of insulin.  相似文献   

12.
Fasting and postprandial plasma concentrations of glucose, FFA, insulin, glucagon, and GH concentrations were determined in 10 nonobese and 10 obese subjects with normal glucose tolerance. Measurements were made at 0800 h (after a 14-h fast) and at hourly intervals from then until 1600 h. During this time period all individuals ate breakfast at 0800 h (20% of total daily calories) and lunch (40% of total daily calories). Although plasma glucose concentrations were similar throughout the 8-h period in the 2 groups, plasma insulin concentrations were significantly (P less than 0.001) higher in the obese individuals. However, despite the presence of hyperinsulinemia, the obese group also had higher (P less than 0.001) plasma FFA concentration throughout the day. On the other hand, both the absolute and the relative declines in plasma FFA concentration after meals were similar in the 2 groups. Since plasma glucagon and GH concentrations were similar in the 2 groups, altered production of these lipolytic hormones was not responsible for the elevated plasma FFA levels in the obese individuals. These data document the presence in obese individuals of a disassociation in their ability to maintain normal plasma glucose as opposed to plasma FFA homeostasis, and indicate that the increase in plasma FFA concentrations in obesity occurs in the presence of hyperinsulinemia and is not related to abnormalities of either glucagon or GH secretion.  相似文献   

13.
First-degree relatives of patients with NIDDM manifest severe insulin resistance despite normal glucose tolerance test. To examine the mechanisms underlying the normal glucose tolerance, we evaluated the serum glucose/C-peptide/insulin dynamics and free fatty acid (FFA) as well as substrate oxidation rates and energy expenditure (EE) (indirect calorimetry) in nine young offspring of NIDDM patients (mean +/- SEM age 30 +/- 2.3 years, body mass index 24.2 +/- 1.2 kg/m2). Nine age-, sex- and weight-matched, normal subjects with no family history of diabetes served as the controls. Metabolic parameters were measured before, during and after a two-step glucose infusion (2 and 4 mg/kg.min) for 120 min. Mean basal serum glucose, insulin and C-peptide levels were similar in both groups. During 2 mg/kg.min glucose infusion, mean serum insulin and C-peptide rose to significantly (P less than 0.05-0.02) greater levels in the offspring vs. controls, while serum glucose levels were similar. With the 4 mg/kg.min glucose infusion, mean serum glucose, insulin and C-peptide levels were significantly (P less than 0.02-0.001) greater in the offspring at 100-120 min. Isotopically-derived (D[3-3H]glucose), basal hepatic glucose output (HGO) was not significantly different between the offspring vs. controls (1.86 +/- 0.30 vs. 1.78 +/- 0.06 mg/kg.min). During glucose infusion, basal HGO was partially suppressed by 66% at 60 min and by 100% at 120 min in the offspring. In contrast, HGO was completely (100%) suppressed at both times in the controls. Following cessation of glucose infusion, HGO rose to 1.64 +/- 0.12 mg/kg.min in the offspring and 1.46 +/- 0.05 mg/kg.min in the controls (P less than 0.05) between 200 and 240 min. These were 88% and 82% of the respective basal HGO values. At low glucose infusion (t = 0-60 min), the mean absolute, non-oxidative glucose disposal remained 1.5-fold greater in the offspring while at higher glucose infusion, nonoxidative glucose metabolism was not different in both groups. Throughout the study period, oxidative glucose disposal rate was not significantly different in both groups. The mean basal FFA was significantly greater in the offspring vs. controls (865 +/- 57 vs. 642 +/- 45 microEq/l). It was appropriately suppressed during glucose infusion to a similar nadir in both groups (395 +/- 24 vs. 375 +/- 33 microEq/l). The mean basal lipid oxidation was also significantly greater in the offspring than controls (1.06 +/- 0.05 vs. 0.75 +/- 0.04 mg/kg.min, P less than 0.05).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
In order to evaluate the effects of atrial natriuretic factor (ANF) infusion on plasma insulin (IRI) in hypertension, 32 essential hypertensives (aged 40 to 62 years) were studied. After 1 week of pharmacologic washout under normal sodium intake (120 mEq of Na+/day), patients were randomly assigned to receive either ANF (0.04 micrograms/kg/min) or its vehicle (50 mL of isotonic saline) over a 60-min period in supine position. Plasma IRI and glucose were measured at -60, 0, 20, 40, 60, 120, 180, and 240 min (infusion time: from 0 to 60 min). Plasma levels of IRI and glucose did not change significantly during ANF infusion. On the contrary, after ANF discontinuation plasma IRI rose from levels of 13.5 +/- 6.4 microU/mL at 60 min to values of 20.1 +/- 11.3 microU/mL at 240 min (P less than .0001 v time 0). Plasma glucose showed a similar behavior, increasing from values of 100.4 +/- 5.0 mg/dL at 60 min to values of 120.0 +/- 5.1 mg/dL at 240 min (P less than .02 v time 0). Our findings suggest that ANF did not influence insulin release in hypertensives. The increase of plasma glucose and IRI observed after ANF discontinuation could be due to the relapse of sympathetic activity, suppressed during ANF infusion.  相似文献   

15.
This study was designed to quantitate glucose and FFA disposal by muscle tissue in patients with type II diabetes and to investigate the relationship between FFA metabolism and insulin resistance. The forearm perfusion technique was used in six normal subjects and two groups of normal weight diabetic patients, i.e. untreated (n = 8) and insulin-treated (n = 6). The latter received 2 weeks of intensive insulin therapy before the study. Plasma insulin levels were raised acutely [950-1110 pmol/L) (130-150 microU/mL)], while the blood glucose concentration was clamped at its basal value [4.9 +/- 0.1 (+/- SE) mmol/L in the normal subjects, 5.7 +/- 0.5 in the insulin-treated diabetic patients, and 5.5 +/- 0.3 in the untreated diabetic patients] by a variable glucose infusion. During the control period, arterial FFA concentrations were similar in the three groups, and they decreased to a comparable extent (less than 0.1 mmol/L) in response to insulin infusion. During the control period, the mean forearm FFA uptake was 2.5 +/- 0.5 mumol/L.min in the normal subjects, 2.9 +/- 0.5 in the insulin-treated patients, and 2.1 +/- 0.5 in the untreated diabetic patients. During the insulin infusion, FFA uptake was profoundly suppressed to similar levels in the normal subjects (0.9 +/- 0.1 mumol/L.min), the insulin-treated diabetic patients (1.1 +/- 0.3), and the untreated diabetic patients (0.9 +/- 0.1; P less than 0.001). Forearm glucose uptake was similar in the three groups during the control period. It increased during the insulin infusion, but the response in both diabetic groups was less than that in the normal subjects. The total amounts of glucose taken up by the forearm during the study period were 5.2 +/- 0.7, 2.6 +/- 0.5, and 2.1 +/- 0.6 mmol/L.min in the normal subjects, the insulin-treated diabetic patients, and the untreated diabetic patients, respectively (P less than 0.01). We conclude that 1) insulin-mediated glucose uptake by forearm skeletal muscle is markedly impaired in type II diabetes and improves only marginally after 2 weeks of intensive insulin therapy; 2) in contrast, no appreciable abnormality in forearm FFA metabolism is demonstrable in insulin-treated type II diabetic patients; and 3) FFA do not contribute to the insulin-treated skeletal muscle insulin resistance that occurs in patients with type II diabetes mellitus.  相似文献   

16.
OBJECTIVE: Ghrelin is thought to be involved in the regulation of eating behaviour and energy metabolism in acute and chronic feeding states. Circulating plasma ghrelin levels in healthy humans have been found to decrease significantly after oral glucose administration. Because it is suggested that eating behaviour may influence the secretion of ghrelin and insulin in anorexia nervosa (AN), we examined the effect of oral glucose on ghrelin and insulin secretion in subtypes of AN patients. DESIGN AND PATIENTS: Twenty female AN patients and 10 age-matched female controls were subjects. The patients were subdivided into two subtypes based on eating behaviour as follows: 11 restricting type (AN-R), nine binge-eating and purging type (AN-BP). Subjects underwent an oral glucose tolerance test at 08.00 h. Blood was collected 0, 30, 60, 120 and 180 min after the glucose load. RESULTS: Both AN-R and AN-BP had a significant increased basal ghrelin level (P < 0.01) and a significantly decreased basal insulin level (P < 0.05) as compared to controls. The time of the nadir of mean ghrelin in AN-BP (120 min, 58.1% of basal level, 204.9 +/- 34.3 pmol/l, mean +/- SEM) was delayed compared to controls (60 min, 60.2%, 74.3 +/- 7.9 pmol/l), and in the AN-R group it kept decreasing for 180 min (80.0%, 182.4 +/- 31.5 pmol/l). The peaks insulin levels in AN-BP (120 min, 319.3 +/- 88.8 pmol/l) and AN-R (180 min, 418.9 +/- 68.4 pmol/l) were also delayed as compared to controls (60 min, 509.2 +/- 88.8 pmol/l). The glucose level at 180 min in AN-R was significantly (P < 0.05) higher than in controls. CONCLUSIONS: These findings suggest that differences in eating behaviour in AN may induce alterations in both ghrelin and insulin metabolism in the acute feeding state. Furthermore, metabolic changes in the restrictive eating pattern may be related to the pathophysiology of small quantitative meal intake in AN-R patients.  相似文献   

17.
Effect of oral glucose administration on ghrelin levels in obese children   总被引:7,自引:0,他引:7  
OBJECTIVE: Coexpression of GH secretagogue receptor and ghrelin in the pancreas suggests that this peptide is involved in glucose metabolism. Previous reports in adult humans have demonstrated that plasma ghrelin levels decrease after oral glucose administration. However, no data are available in children. Therefore, the aim of this study was to analyze the response of plasma ghrelin levels in obese children after oral glucose administration. SUBJECTS AND METHODS: Twenty-eight obese children ranging from Tanner I to Tanner V were studied. All subjects were given 0.75 g/kg (maximum 75 g) glucose solution after overnight fasting. Ghrelin, insulin, glucose and IGF-binding-protein-1 were determined at 0, 30, 60 and 120 min of the oral glucose tolerance test (OGTT). RESULTS: Basal plasma ghrelin levels were significantly lower than in the respective control groups. These levels decreased significantly during OGTT in obese children, reaching a nadir of 28+/-9% at 60 min in parallel with the maximum increase in glucose levels and previous to maximum insulin levels. CONCLUSION: The rapid fall in plasma ghrelin concentration in obese children after glucose load suggests a mechanism for the control of appetite after food intake.  相似文献   

18.
Plasma glucose, insulin, FFA, glucagon, and GH concentrations were measured over an 8-h period in normal subjects and patients with noninsulin-dependent diabetes mellitus (NIDDM). Meals were consumed at 0800 h (20% of daily calories) and noon (40% of daily calories), and measurements were made hourly from 0800-1600 h. Day-long plasma glucose, insulin, and FFA concentrations were higher than normal (by two-way analysis of variance) in patients with NIDDM, whether obese or nonobese. In addition, day-long plasma glucagon concentrations were also higher than normal (by two-way analysis of variance) in both nonobese and obese patients with NIDDM. Furthermore, direct relationships were found between the total plasma glucagon response from 0800-1600 h and total plasma glucose (r = 0.57; P less than 0.001) and FFA (r = 0.30; P less than 0.06) responses. In contrast, plasma GH levels were not increased in patients with NIDDM. These data demonstrate that ambient plasma concentrations of both glucose and FFA are higher in patients with NIDDM, despite the fact that coexisting plasma insulin levels are equal to or higher than normal. The higher day-long plasma glucagon levels in patients with NIDDM may contribute to their higher plasma glucose and FFA concentrations.  相似文献   

19.
This study was initiated to see if defects in the ability of physiological hyperinsulinemia (approximately 60 microU/mL) to stimulate glucose uptake in healthy, nondiabetic volunteers are associated with increases in concentrations of plasma glucose and free fatty acid (FFA) when measured at basal insulin concentrations (approximately 10 microU/mL). We recruited 22 volunteers (12 women and 10 men) for these studies, with a (mean +/- SEM) body mass index of 24.8 +/- 0.5 kg/m2. Resistance to insulin-mediated glucose disposal during physiological hyperinsulinemia was determined by suppressing endogenous insulin and determining the steady-state plasma glucose (SSPG) and steady-state plasma insulin (SSPI) concentrations at the end of a 3-h infusion, period during which glucose (267 mg/m2 x min) and insulin (32 mU/m2 x min) were infused at a constant rate. Glucose, insulin and FFA concentrations were also measured in response to infusion rates of glucose (50 mg/m2 x min) and insulin (6 mU/m2 x min). The SSPI concentration (mean +/- SEM) during physiological hyperinsulinemia was 64 +/- 3 microU/mL), in contrast to 12 +/- 0.4 microU/mL during the basal insulin study. The results demonstrated a significant relationship between SSPG concentration in response to physiological hyperinsulinemia (SSPG60) and SSPG(Basal) (r = 0.57, P < 0.01) and FFA(Basal) (r = 0.73, P < 0.001). Furthermore, FFA(Basal) and SSPG(Basal) were significantly correlated (r = 0.47, P < 0.05). Comparison of the seven most insulin-resistant and seven most insulin sensitive individuals (SSPG60 values of 209 +/- 16 vs. 64 +/- 8 mg/dL) revealed that the insulin-resistant group also had significantly higher SSPG(Basal) (105 +/- 5 vs. 78 +/- 7 mg/dL, P < 0.01) and FFA(Basal) (394 +/- 91 vs. 104 +/- 41, P < 0.02) concentrations. However, random fasting plasma glucose and FFA concentrations of the two groups were not different. The results presented demonstrate that individual differences in the ability of elevated insulin concentrations to stimulate muscle glucose disposal are significantly correlated with variations in insulin regulation of plasma glucose and FFA concentrations at basal insulin concentrations.  相似文献   

20.
While normal aging is characterized by resistance to insulin-mediated glucose disposal (IMGU), the effect of age on noninsulin-mediated glucose disposal (NIMGU), which is responsible for the majority of basal glucose uptake, has not been completely evaluated. These studies were conducted on healthy nonobese young (n = 10; age, 20-30 yr) and old (n = 10; age, 62-80 yr) men. Each subject underwent two paired studies in random order. In all studies a [3H]glucose infusion was used to measure glucose uptake and production rates, and somatostatin (500 micrograms/h) was infused to suppress endogenous insulin release. In study A, plasma glucose was kept close to fasting levels (approximately 5.6 mmol/L) using an euglycemic clamp protocol for 4 h. Plasma insulin decreased to less than 20 pmol/L within 15 min and remained suppressed thereafter in all studies. Steady state (15-240 min) plasma glucagon levels were slightly greater in the elderly [young, 86 +/- 5 (+/- SE); old, 98 +/- 2 ng/L; P less than .05]. Basal glucose uptake was similar in both groups (young, 877 +/- 21; old, 901 +/- 24 mumol/min). Glucose uptake during the last hour of the study (180-240 min) was used to represent NIMGU, because insulin action was assumed to be absent by this time. NIMGU was less in the elderly (young, 744 +/- 18; old, 632 +/- 32 mumol/min; P less than 0.01). In study B, plasma glucose was kept at about 11 mmol/L for 4 h using a hyperglycemic clamp protocol. Plasma insulin decreased to less than 20 pmol/L within 15 min and remained suppressed thereafter in all studies. Steady state plasma glucagon levels were slightly but not significantly higher in the elderly (young, 88 +/- 6; old, 100 +/- 4 ng/L). Basal glucose uptake (young, 910 +/- 27; old, 883 +/- 25 mumol/min) and NIMGU (young, 933 +/- 36; old, 890 +/- 16 mumol/min; P = NS) were similar in both young and old subjects. We conclude that aging is associated with impairment in NIMGU only in the basal state, which may explain in part the increase in fasting glucose with age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号