首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The postsynaptic potentials elicited in peroneal motoneurons by either mechanical stimulation of cutaneous areas innervated by the superficial peroneal nerve (SP) or repetitive electrical stimulation of SP were compared in anesthetized cats. After denervation of the foot sparing only the territory of SP terminal branches, reproducible mechanical stimulations were applied by pressure on the plantar surface of the toes via a plastic disk attached to a servo-length device, causing a mild compression of toes. This stimulus evoked small but consistent postsynaptic potentials in every peroneal motoneuron. Weak stimuli elicited only excitatory postsynaptic potentials (EPSPs), whereas increase in stimulation strength allowed distinction of three patterns of response. In about one half of the sample, mechanical stimulation or trains of 20/s electric pulses at strengths up to six times the threshold of the most excitable fibers in the nerve evoked only EPSPs. Responses to electrical stimulation appeared with 3-7 ms central latencies, suggesting oligosynaptic pathways. In another, smaller fraction of the sample, inhibitory postsynaptic potentials (IPSPs) appeared with an increase of stimulation strength, and the last fraction showed a mixed pattern of excitation and inhibition. In 24 of 32 motoneurons where electrical and mechanical effects could be compared, the responses were similar, and in 6 others, they changed from pure excitation on mechanical stimulation to mixed on electrical stimulation. With both kinds of stimulation, stronger stimulations were required to evoke inhibitory postsynaptic potentials (IPSPs), which appeared at longer central latencies than EPSPs, indicating longer interneuronal pathways. The similarity of responses to mechanical and electrical stimulation in a majority of peroneal motoneurons suggests that the effects of commonly used electrical stimulation are good predictors of the responses of peroneal motoneurons to natural skin stimulation. The different types of responses to cutaneous afferents from SP territory reflect a complex connectivity allowing modulations of cutaneous reflex responses in various postures and gaits.  相似文献   

2.
The synaptic input to Deiters neurones evoked by stimulation of peripheral somatic nerves was measured by intracellular recordings. EPSPs with broad receptive fields and latencies which indicate polysynaptic connexions were commonly evoked from the FRA. In other cells, low threshold cutaneous afferents were effective at rather short latencies suggesting oligosynaptic connexions from fast ascending fibres. One example was found of EPSPs due to low threshold muscle afferents. IPSPs due to climging fibre activation of Purkinje cells as observed in most of the neurones were evoked by cutaneous volleys above 1.5-2.0T and muscle volleys above 5T (above 3-3.5T in case of Q). Often, IPSPs were evoked by stimulation of nerves, to the segmental level of which the the vestibulospinal neurone under investigation projected. A small proportion of cells received short latency IPSPs involving direct fast mossy fibre tracts, which were evoked from low threshold cutaneous afferents. IPSPs due to polysynaptic mossy fibre activation of Purkinje cells were evoked from the FRA bilaterally and from ipsilateral cutaneous afferents at 1.5-2.0T ("prolonged inhibition"). Prolonged excitatory/inhibitory events mediated by mossy fibre pathways may be involved in quadruped locomotion or other processes making use of a broad motor integration.  相似文献   

3.
Postsynaptic potentials evoked in hindlimb alpha-motoneurons by stimulation of a cutaneous nerve (sural) with finely graded stimulus strengths were analyzed in the primate, monitoring the spinal cord potentials and afferent nerve volleys in the sural nerve. It was observed that activities in A alpha beta, A delta and C fibers of the cutaneous nerve elicited characteristic excitatory and/or inhibitory postsynaptic potentials (EPSPs and/or IPSPs) with different latencies and durations in extensor and flexor motoneurons. Volleys in A delta fibers of the cutaneous nerve produced EPSPs in 57% of flexor and 31% of extensor motoneurons tested, whereas IPSPs were produced by A delta volleys in 41% of flexor and 62% of extensor motoneurons. EPSPs with longer latencies and longer durations were evoked by cutaneous C fiber volleys in 55% of flexor and 34% of extensor motoneurons, whereas IPSPs due to C volleys were recorded in 9% of flexor and 14% of extensor motoneurons. A alpha beta and A delta volleys caused motoneurons to fire in several instances, and some motoneurons discharged repetitively during the depolarizations evoked by activities in C fibers of the nerve. Central latency for transmission in interneuronal chains in the spinal cord was estimated from the onset of the cord potential (N3 wave) to the onset of the postsynaptic potential evoked by A delta volleys. Ranges of central latencies of the EPSPs and IPSPs evoked by A delta volleys were 2.0-7.0 ms and 3.5-8.5 ms, respectively. It is postulated that there may be at least two interneurons interposed in the excitatory reflex pathway from A delta afferent fibers to motoneurons and the A delta inhibitory pathway may involve longer interneuronal chains. In a few motoneurons, however, sural volleys with strengths sufficient to activate A delta fibers produced EPSPs with a central latency of about 1 ms, suggesting activation of a disynaptic segmental pathway with one interposed interneuron. Stimulation of the sural nerve with strengths sufficient to activate cutaneous C fibers produced slow negative cord dorsum potentials with long latencies. It is proposed that primate motoneurons, which show characteristic postsynaptic potentials evoked by cutaneous A delta and C fiber volleys, may provide a suitable model for analyzing the role of high threshold cutaneous afferent fibers not only in the flexor withdrawal reflex but also in motor control functions.  相似文献   

4.
Summary Intracellular recording has been made in spinal cats from more than 100 interneurones in the dorsal horn and intermediary region of the lumbosacral spinal cord. The majority of interneurones receive not only EPSPs but also IPSPs from primary afferents. The IPSPs are evoked from three different systems, group I muscle afferents (probably Ib), low threshold cutaneous afferents and the FRA. The shortest central latency of the IPSPs indicates a disynaptic linkage from primary afferents. Interneurones with monosynaptic EPSPs from group I muscle afferents may receive IPSPs from all the above mentioned afferent systems. Interneurones with monosynaptic EPSPs from cutaneous afferents receive their inhibition from the two latter afferent systems. Convergence of EPSPs and IPSPs from the FRA may occur on the same interneurone. The results are discussed mainly with respect to inhibitory interaction between spinal reflex pathways.This work was supported by the Swedish Medical Research Council (Project No 14X-94-02A).IBRO-Unesco fellow  相似文献   

5.
Patterns of afferent connections from receptors of the distal forelimb were investigated in neurones located in C6-C7 segments of the spinal cord with branching axons projecting to the lateral reticular nucleus and the cerebellum. Experiments were made on five adult cats under alpha-chloralose anaesthesia. After antidromic identification, EPSPs and IPSPs were recorded from 22 neurones following stimulation of deep radial, superficial radial, median and ulnar nerves. Both excitatory and inhibitory effects were found in the majority of the cells, however, in 2 cases no synaptic actions were recorded. EPSPs were evoked from group I or II muscle, or cutaneous afferents - mostly monosynaptically. IPSPs from muscle, cutaneous or flexor reflex afferents were mostly polysynaptic. Seven various types of convergence were established in the cells investigated. Significance of parallel transmission of integrated information from various receptors of the distal forelimb to the reticular formation and cerebellum is discussed.  相似文献   

6.
The lateral reticular nucleus in the cat   总被引:1,自引:0,他引:1  
The afferent paths from the spinal cord and from trigeminal afferents to the lateral reticular nucleus (LRN) were investigated by intracellular recording from 204 LRN neurones in preparations with a spinal cord lesion at C3 that spared only the ipsilateral ventral quadrant. Stimulation of nerves in the limbs evoked EPSPs and JPSPs in 201 of 204 tested LRN neurones. The strongest input was from the ipsilateral forelimb (iF) which evoked EPSPs in 49% and IPSPs in 73% of the LRN neurones. Each of the other limbs evoked EPSPs in approximately 20% and IPSPs in approximately 25% of the neurones. Stimulation of the ipsilateral trigeminal nerve (iTrig) evoked EPSPs in 32% and IPSPs in 46% of the neurones. The shortest latencies of the EPSPs and IPSPs indicated a disynaptic connection between primary afferents in the iF and iTrig and the LRN. The most direct pathways for excitatory and inhibitory responses from the other limbs were trisynaptic. Stimulation of the ventral part of the ipsilateral funiculus (iVLF) at C3 (C3iVLF) evoked monosynaptic responses in 189 of 201 tested LRN neurones. Monosynaptic EPSPs were recorded in 104 neurones and monosynaptic IPSPs in 126 neurones. Monosynaptic EPSPs and IPSPs were encountered in all parts of the LRN. Stimulation of the iVLF at L1 (L1iVLF) evoked monosynaptic EPSPs and IPSPs in the ventrolateral part of the LRN. The termination areas of excitatory and inhibitory fibres appeared to be the same. LRN neurones without monosynaptic EPSPs or IPSPs from the L1iVLF were located mainly in the dorsal part of the magnocellular division. Stimulation of the dorsal funiculi (DF) at C2 and the ipsilateral trigeminal nerve (iTrig) evoked excitatory and inhibitory responses in the LRN. The shortest latencies of EPSPs and IPSPs indicated disynaptic connections.  相似文献   

7.
In high spinal paralyzed cats the effect of cutaneous nerve stimulation on lumbar motoneurons was investigated during fictive locomotion. EPSPs evoked from the cutaneous afferents were generally larger during the active phase of the motoneurones, while IPSPs tended to increase during the reciprocal phase. In some cases EPSPs occurred during the active phase, while IPSPs dominated during the reciprocal phase. Apparently, the transmission in the excitatory and inhibitory segmental reflex pathways from cutaneous afferents to α-motoneurones depends on the phase of the step cycle, but there is no general phase dependent alternating switching between these two pathways.  相似文献   

8.
Salivary secretion results from reflex stimulation of autonomic neurons via afferent sensory information relayed to neurons in the rostral nucleus of the solitary tract (rNST), which synapse with autonomic neurons of the salivatory nuclei. We investigated the synaptic properties of the afferent sensory connection to neurons in the inferior salivatory nucleus (ISN) controlling the parotid and von Ebner salivary glands. Mean synaptic latency recorded from parotid gland neurons was significantly shorter than von Ebner gland neurons. Superfusion of GABA and glycine resulted in a concentration-dependent membrane hyperpolarization. Use of glutamate receptor antagonists indicated that both AMPA and N-methyl-D-aspartate (NMDA) receptors are involved in the evoked excitatory postsynaptic potentials (EPSPs). Inhibitory postsynaptic potential (IPSP) amplitude increased with higher intensity ST stimulation. Addition of the glycine antagonist strychnine did not affect the amplitude of the IPSPs significantly. The GABA(A) receptor antagonist, bicuculline (BMI) or mixture of strychnine and BMI abolished the IPSPs in all neurons. IPSP latency was longer than EPSP latency, suggesting that more than one synapse is involved in the inhibitory pathway. Results show that ISN neurons receive both excitatory and inhibitory afferent input mediated by glutamate and GABA respectively. The ISN neuron response to glycine probably derives from descending connections. Difference in the synaptic characteristics of ISN neurons controlling the parotid and von Ebner glands may relate to the different function of these two glands.  相似文献   

9.
Using intracellular recordings in an isolated (in vitro) brain stem preparation, we examined the inhibitory postsynaptic responses of developing neurons in the dorsal lateral geniculate nucleus (LGN) of the rat. As early as postnatal day (P) 1-2, 31% of all excitatory postsynaptic (EPSP) activity evoked by electrical stimulation of the optic tract was followed by inhibitory postsynaptic potentials (IPSPs). By P5, 98% of all retinally evoked EPSPs were followed by IPSP activity. During the first postnatal week, IPSPs were mediated largely by GABA(A) receptors. Additional GABA(B)-mediated IPSPs emerged at P3-4 but were not prevalent until after the first postnatal week. Experiments involving the separate stimulation of each optic nerve indicated that developing LGN cells were binocularly innervated. At P11-14, it was common to evoke EPSP/IPSP pairs by stimulating either the contralateral or ipsilateral optic nerve. During the third postnatal week, binocular excitatory responses were encountered far less frequently. However, a number of cells still maintained a binocular inhibitory response. These results provide insight about the ontogeny and nature of postsynaptic inhibitory activity in the LGN during the period of retinogeniculate axon segregation.  相似文献   

10.
The extracellular activity of single neurons was recorded in subnucleus caudalis (medullary dorsal horn) of chloralose-anesthetized cats to test the effects of electrical and natural stimuli that activated afferents supplying the jaw and tongue muscles as well as the face, teeth, and intraoral mucosa. Many caudalis neurons that could be functionally classified on the basis of their cutaneous receptive-field properties as low-threshold mechanoreceptive (LTM), wide-dynamic-range (WDR), or nociceptive-specific (NS) neurons could be excited by muscle afferent stimuli. Only five neurons were encountered that received muscle afferent inputs and had no demonstrable cutaneous, dental, or mucosal input. The muscle afferent inputs were a particular feature of the cutaneous nociceptive (i.e., WDR and NS) neurons. Approximately two-thirds of this nociceptive neuronal population (n = 109) could be excited by jaw and/or tongue muscle stimulation, whereas only a small proportion of the LTM neuronal population (n = 247) was activated by muscle afferent stimulation. Neurons with a demonstrated direct axonal projection to the contralateral thalamus as well as nonprojection neurons received muscle afferent inputs. The caudalis nociceptive neurons receiving muscle as well as cutaneous afferent inputs had receptive-field properties comparable to those previously described for caudalis cutaneous nociceptive neurons; they were predominantly located in laminae I/II and V/VI, and many also received convergence of tooth pulp afferent inputs. These neurons generally had larger cutaneous receptive fields than neurons unresponsive to muscle afferent stimulation. The muscle afferent inputs were considered to be predominantly of a nociceptive character for several reasons. These included the long latency and high threshold of most neuronal responses evoked by electrical stimulation of the muscle afferents, the predominance of afferents of small diameter in some of the muscle nerves stimulated, the preferential responsiveness to the muscle afferent stimulation of neurons that were functionally identified as cutaneous nociceptive neurons, and the responsiveness of most of the neurons excited by electrical stimulation of the muscle nerves also to noxious mechanical or thermal stimulation of muscle and the injection of two or more algesic chemicals into small arteries supplying the jaw and tongue muscles. Of the algesic chemicals used in this study (7% NaCl, KCl, bradykinin, histamine, 5-HT), the first two were found to be the most effective and to cause the most rapidly induced excitation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Reticulospinal inhibition of interneurones   总被引:2,自引:1,他引:2       下载免费PDF全文
1. The effect of electrical stimulation of the brain stem on interneurones in the dorsal horn and intermediary region has been investigated in decerebrate cats after partial transection of the spinal cord.2. Stimuli that effectively depress reflex transmission without giving a primary afferent depolarization inhibit the discharge evoked from the flexor reflex afferents in interneurones.3. Brain stem stimulation did not give post-synaptic potentials in the great majority of interneurones but effectively depressed the excitatory post-synaptic potentials (EPSPs) and inhibitory post-synaptic potentials (IPSPs) evoked from the flexor reflex afferents in these interneurones.4. IPSPs were, however, evoked in five of seventy-eight intracellularly recorded interneurones. These five interneurones were monosynaptically activated from primary afferents.5. It is tentatively postulated that a dorsal reticulospinal system inhibits reflex transmission by giving post-synaptic inhibition in first order interneurones. The results are also discussed in relation to effects on interneurones from other descending pathways.  相似文献   

12.
Summary 1. In anesthetized cats, we investigated excitatory and inhibitory inputs from the cerebral cortex to dentate nucleus neurons (DNNs) and determined the pathways responsible for mediating these inputs to DNNs. 2. Intracellular recordings were made from 201 DNNs whose locations were histologically determined. These neurons were identified as efferent DNNs by their antidromic responses to stimulation of the contralateral red nucleus (RN). Stimulation of the contralateral pericruciate cortex produced excitatory postsynaptic potentials (EPSPs) followed by long-lasting inhibitory postsynaptic potentials (IPSPs) in DNNs. The most effective stimulating sites for inducing these responses were observed in the medial portion (area 6) and its adjacent middle portion (area 4) of the precruciate gyrus. Convergence of cerebral inputs from area 4 and area 6 to single DNNs was rare. 3. To determine the precerebellar nuclei responsible for mediation of the cerebral inputs to the dentate nucleus (DN), we examined the effects of stimulation of the pontine nucleus (PN), the nucleus reticularis tegmenti pontis (NRTP) and the inferior olive (IO). Systematic mapping was made in the NRTP and the PN to find effective low-threshold stimulating sites for evoking monosynaptic EPSPs in DNNs. Stimulation of either the PN or the NRTP produced monosynaptic EPSPs and polysynaptic IPSPs in DNNs. Using a conditioning-testing paradigm (a conditioning stimulus to the cerebral peduncle (CP) and a test stimulus to the PN or the NRTP) and intracellular recordings from DNNs, we tested cerebral effects on neurons in the PN and the NRTP making a monosynaptic connection with DNNs. Conditioning stimulation of the CP facilitated PN- and NRTP-induced monosynaptic EPSPs in DNNs. This spatial facilitation indicated that the excitatory inputs from the cerebral cortex to DNNs are at least partly relayed via the PN and the NRTP. 4. Stimulation of the contralateral IO produced monosynaptic EPSPs and polysynaptic IPSPs in DNNs. These monosynaptic EPSPs were facilitated by conditioning stimulation of the CP, strongly suggesting that the IO is partly responsible for mediating excitatory inputs from the cerebral cortex to the DN. A comparison was made between the latencies of IO-evoked IPSPs in DNNs and the latencies of IO-evoked complex spikes in Purkinje cells. Such a comparison indicated that the shortest-latency IPSPs evoked from the IO were not mediated via the Purkinje cells and suggested the pathway mediated by inhibitory interneurons in the DN. 5. The functional significance of the excitatory inputs from the PN and the NRTP to the DN is discussed in relation to the motor control mechanisms of the cerebellum.  相似文献   

13.
Summary Field potentials and postsynaptic potentials were recorded in the vestibular and abducens nuclei and neurons following vestibular nerve stimulation in anesthetized newborn kittens (within 72 h after birth). Stimulation of the ipsilateral vestibular nerve evoked an initial P wave and an N1 field potential in the vestibular nuclei. No N2 potential was evoked. Latencies of the peak of the P wave, the onset and the peak of the N1 potential were 0.99±0.16 ms, 1.66±0.18 ms, and 2.51±0.23 ms, respectively. Ipsilateral vestibular nerve stimulation evoked monosynaptic excitatory postsynaptic potentials (EPSPs) and polysynaptic inhibitory postsynaptic potentials (IPSPs) in vestibular nuclear neurons. Stimulation of the contralateral vestibular nerve evoked polysynaptic IPSPs in vestibular nuclear neurons. In abducens motoneurons, ipsilateral vestibular nerve stimulation evoked monosynaptic EPSPs and disynaptic IPSPs; contralateral vestibular nerve stimulation produced disynaptic EPSPs. We conclude that short circuit pathways of the vestibul-ovestibular and vestibulo-ocular reflex arc are present in the kitten already at birth.Supported by the Japanese Ministry of Education, Science, and Culture Grants-in-Aid for Scientific Research nos. 572 140 30 and 575 700 53  相似文献   

14.
Primary afferent fibers from the electroreceptors of mormyrid electric fish use a latency code to signal the intensity of electrical current evoked by the fish's own electric organ discharge (EOD). The afferent fibers terminate centrally in the deep and superficial granular layers of the electrosensory lobe with morphologically mixed chemical-electrical synapses. The granular cells in these layers seem to decode afferent latency through an interaction between primary afferent input and a corollary discharge input associated with the EOD motor command. We studied the physiology of deep and superficial granular cells in a slice preparation with whole cell patch recording and electrical stimulation of afferent fibers. Afferent stimulation evoked large all-or-none electrical excitatory postsynaptic potentials (EPSPs) and large all or none GABAergic inhibitory postsynaptic potentials (IPSPs) in both superficial and deep granular cells. The amplitudes of the electrical EPSPs depended on postsynaptic membrane potential, with maximum amplitudes at membrane potentials between -65 and -110 mV. Hyperpolarization beyond this level resulted in either the abrupt disappearance of EPSPs, a step-like reduction to a smaller EPSP, or a graded reduction in EPSP amplitude. Depolarization to membrane potentials lower than that yielding a maximum caused a linear decrease in EPSP amplitude, with EPSP amplitude reaching 0 mV at potentials between -55 and -40 mV. We suggest that the dependence of EPSP size on postsynaptic membrane potential is caused by close linkage of pre- and postsynaptic membrane potentials through a high-conductance gap junction. We also suggest that this dependence may result in functionally important nonlinear interactions between synaptic inputs.  相似文献   

15.
Second-order vestibular neurons of frogs receive converging monosynaptic excitatory and disynaptic excitatory and inhibitory inputs following electrical pulse stimulation of an individual semicircular canal nerve on the ipsilateral side. Here we revealed, in the in vitro frog brain, disynaptic inhibitory postsynaptic potentials (IPSPs) by bath application of antagonists specific for glycine or gamma-aminobutyric acid-A (GABA(A)) receptors. Differences in the response parameters between disynaptic IPSPs and excitatory postsynaptic potentials (EPSPs) suggested that disynaptic IPSPs originated from a more homogeneous subpopulation of thicker vestibular nerve afferent fibers than mono- or disynaptic EPSPs. To investigate a possible size-related organization of these canal-specific, parallel pathways, we combined long-lasting anodal currents of variable intensities with strong cathodal test pulses, to block pulse-evoked responses reversibly in a graded manner according to the size-related sensitivity of vestibular nerve afferent fibers. The anodal current intensity required to block a particular response component was about 15 times lower than the strength of the cathodal test pulse that activated this response component. These large threshold differences were exploited for a selective anodal suppression of the responses from thick vestibular nerve afferent fibers. In fact, response components known to originate exclusively from thick-caliber afferent fibers such as the electrically transmitted monosynaptic EPSP component exhibited the lowest thresholds for cathodal test pulses and were the first to disappear in the presence of small anodal polarization steps. Thresholds for the activation/inactivation of responses and current intensities required for response saturation/blockade were used to assess the fiber spectrum that evoked the different response components. Mono- and disynaptic EPSPs appeared to originate from a broad spectrum of thick and thin vestibular nerve afferent fibers. The spectrum of afferent fibers that activated disynaptic IPSPs on the other hand was more homogeneous and consisted of thick and intermediate fibers. Such a canal-specific and fiber type-related organization of converging inputs of second-order vestibular neurons via feedforward projections was shown for the first time by this study in frogs, but might also prevail in mammals. Similar differences in these feedforward pathways have been proposed earlier in a vestibular side-loop model. Our results are consistent with the basic assumptions of this model and relate to the processing and tuning of dynamic vestibular signals.  相似文献   

16.
1. The extracellular activity of 196 single neurons in subnucleus caudalis (medullary dorsal horn) of the trigeminal (V) spinal tract nucleus was examined in chloralose-anesthesized, paralyzed cats. Electrical, mechanical, and algesic chemical stimuli were applied to the exposed temporomandibular joint (TMJ) in order to activate TMJ afferents. Seventy-eight neurons were studied that responded to electrical stimulation of the TMJ at a mean latency of 9.9 +/- 4.8 (SD) ms. 2. All neurons with TMJ input received additional afferent input, predominantly from facial skin or intraoral sites. Caudalis neurons were classified on the basis of their cutaneous mechanoreceptive field properties as low-threshold mechanoreceptive (LTM), wide dynamic range (WDR), or nociceptive specific (NS); a few neurons unresponsive to cutaneous stimuli were responsive to manipulation of deep subcutaneous structures. A sample of caudalis neurons was tested for responsiveness to electrical TMJ stimulation after the mechanoreceptive field properties of the neurons were determined. In this sample, 24% of the LTM neurons, 29% of the WDR neurons, 36% of the NS neurons, and 57% of the neurons with input from deep structures were responsive to TMJ stimulation. The WDR and NS neurons with TMJ inputs had mechanoreceptive field properties and laminar locations in caudalis that were comparable to those previously described for cutaneous nociceptive neurons in caudalis; also in accordance with recent studies, 74% of the neurons tested showed convergence of tooth pulp and/or hypoglossal (XII) nerve afferent inputs. 3. In contrast to the LTM neurons, the WDR and NS neurons were especially responsive to intense mechanical and algesic chemical stimulation of the TMJ as well as to electrical stimulation of TMJ afferents. For example, 71% of the WDR and NS neurons excited by electrical stimulation of the TMJ afferents and tested for their responsiveness to injections of algesic chemicals (7% NaCl, KCl, bradykinin, histamine) into the TMJ responded to at least one of these chemicals. The temporal characteristics of these responses were quantified. 4. The TMJ afferent inputs to the WDR and NS neurons were considered to be predominantly of a nociceptive character because of (1) the long latency and high threshold of most TMJ-evoked responses, which are consistent with previous demonstrations that small-diameter afferents predominantly supply the TMJ and, (2) the preferential responsiveness to noxious mechanical and chemical stimulation of TMJ afferents of neurons which were functionally identified as cutaneous nociceptive neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
1. Physiologically and morphologically identified primary afferent fibers from mormyromast electroreceptor organs were recorded intracellularly. The fiber recordings were made from the nerve root of the posterior lateral line nerve, where the fibers enter the brain, and from the electrosensory lateral line lobe (ELL), near the central terminals of the fibers. 2. The intracellular recordings reveal a variety of potentials, synaptic and nonsynaptic, in addition to the large orthodromic action potentials from the periphery. The goal of the present study was to describe and interpret these various potentials in mormyromast afferent fibers as a first step in understanding the processing of electrosensory information in ELL. 3. Three types of synaptic potentials were recorded inside mormyromast afferent fibers: 1) electric organ corollary discharge (EOCD) excitatory postsynaptic potentials (EPSPs), driven by the motor command that elicits the electric organ discharge (EOD); 2) EPSPs evoked by electrosensory stimulation of electroreceptors in the skin near the electroreceptor from which the recorded fiber originates or by direct stimulation of an electrosensory nerve; and 3) inhibitory postsynaptic potentials (IPSPs) evoked by electrosensory stimulation of more distant electroreceptors. These synaptic potentials can be attributed to synaptic input to postsynaptic cells in ELL that is observed inside the afferent fibers because of electrical synapses between the fibers and the postsynaptic cells. 4. The peripherally evoked EPSPs could frequently be shown to be unitary. The unitary EPSPs were identical to the orthodromic spikes in originating from a single electroreceptor, in threshold, and in latency shift with increasing stimulus intensity. These similarities suggest that the unitary EPSPs are electrotonic EPSPs caused by impulses in other mormyromast afferent fibers that terminate on some of the same postsynaptic cells as the recorded fiber. The peripherally evoked IPSPs had a longer latency than the EPSPs or orthodromic spikes, requiring the presence of an inhibitory interneuron. 5. The peripherally evoked EPSPs, both unitary and nonunitary, show absolute refractory periods of 3-8 ms, followed by relative refractory periods of approximately 8 ms, when tested with two identical stimuli to a nerve. These refractory periods are interpreted as because of refractoriness in the fine preterminal branches of the axonal arbor. 6. A depolarizing afterpotential is commonly associated with the orthodromic spike and probably results from the successful propagation of the spike into the entire terminal arbor. The depolarizing afterpotential has a refractory period that is similar to that of the peripherally evoked EPSPs and that is also interpreted as refractoriness in the fine preterminal branches.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
It has previously been established that ventral spinocerebellar tract (VSCT) neurons and dorsal spinocerebellar tract neurons located in Clarke's column (CC DSCT neurons) forward information on actions of premotor interneurons in reflex pathways from muscle afferents on α-motoneurons. Whether DSCT neurons located in the dorsal horn (dh DSCT neurons) and spinocervical tract (SCT) neurons are involved in forwarding similar feedback information has not yet been investigated. The aim of the present study was therefore to examine the input from premotor interneurons to these neurons. Electrical stimuli were applied within major hindlimb motor nuclei to activate axon-collaterals of interneurons projecting to these nuclei, and intracellular records were obtained from dh DSCT and SCT neurons. Direct actions of the stimulated interneurons were differentiated from indirect actions by latencies of postsynaptic potentials evoked by intraspinal stimuli and by the absence or presence of temporal facilitation. Direct actions of premotor interneurons were found in a smaller proportion of dh DSCT than of CC DSCT neurons. However, they were evoked by both excitatory and inhibitory interneurons, whereas only inhibitory premotor interneurons were previously found to affect CC DSCT neurons [as indicated by monosynaptic excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) in dh DSCT and only IPSPs in CC DSCT neurons]. No effects of premotor interneurons were found in SCT neurons, since monosynaptic EPSPs or IPSPs were only evoked in them by stimuli applied outside motor nuclei. The study thus reveals a considerable differentiation of feedback information provided by different populations of ascending tract neurons.  相似文献   

19.
1. Intra- and extracellular recordings were made from cells of the spinocervical tract in the lumbosacral spinal cord. A convergence of monosynaptic excitatory post-synaptic potentials (EPSPs) and disynaptic inhibitory post-synaptic potentials (IPSPs) was a general pattern of effects from the low threshold cutaneous fibres. Unitary IPSPs, probably mediated via the same disynaptic path, were evoked by light touch of hairs, which was also the adequate stimulus for exciting the cells. The receptive field for unitary IPSPs was closely related to the excitatory receptive field but was eccentric, not of a surround type.

2. EPSPs, IPSPs, or both, were evoked from the flexor reflex afferents in the great majority of neurones. Disynaptic IPSPs may be evoked from the interosseous nerve. No effects were produced by volleys in group I muscle afferents.

3. It is suggested, on the basis of the spatial organization of the excitatory and inhibitory receptive skin fields, that the spinocervical tract may give information regarding the direction of tactile stimuli.

  相似文献   

20.
The aim of the study was to analyze interactions between neuronal networks mediating centrally initiated movements and reflex reactions evoked by peripheral afferents; specifically whether interneurons in pathways from group Ib afferents and from group II muscle afferents mediate actions of reticulospinal neurons on spinal motoneurons by contralaterally located commissural interneurons. To this end reticulospinal tract fibers were stimulated in the contralateral medial longitudinal fascicle (MLF) in chloralose-anesthetized cats in which the ipsilateral half of the spinal cord was transected rostral to the lumbosacral enlargement. In the majority of interneurons mediating reflex actions of group Ib and group II afferents, MLF stimuli evoked either excitatory or inhibitory postsynaptic potentials (EPSPs and IPSPs, respectively) or both EPSPs and IPSPs attributable to disynaptic actions by commissural interneurons. In addition, in some interneurons EPSPs were evoked at latencies compatible with monosynaptic actions of crossed axon collaterals of MLF fibers. Intracellular records from motoneurons demonstrated that both excitation and inhibition from group Ib and group II afferents are modulated by contralaterally descending reticulospinal neurons. The results lead to the conclusion that commissural interneurons activated by reticulospinal neurons affect motoneurons not only directly, but also by enhancing or weakening activation of premotor interneurons in pathways from group Ib and group II afferents. The results also show that both excitatory and inhibitory premotor interneurons are affected in this way and that commissural interneurons may assist in the selection of reflex actions of group Ib and group II afferents during centrally initiated movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号