首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. This study was carried out in order to identify the receptor responsible for adenosine-induced dilatation of the hepatic arterial vascular bed. 2. Livers of 10 New Zealand White rabbits were perfused in vitro with Krebs-Bülbring buffer via the hepatic artery and the portal vein at constant flows of 26 and 77 ml min-1 100 g-1 liver respectively. The tone of the preparation was raised by the presence of noradrenaline in the perfusate (concentration: 10(-5) M). 3. Dose-response curves for adenosine and its analogues 5'-N-ethyl-carboxamido-adenosine (NECA), the 2-substituted NECA analogue CGS 21680C, and R- and S-N6-phenyl-isopropyl-adenosine (R- and S-PIA) were obtained after their injection into the hepatic arterial supply. 4. The order of vasodilator potency of these agents was: NECA greater than CGS 21680C greater than adenosine greater than R-PIA greater than S-PIA. Their potency, expressed relative to that of adenosine, was in the approximate ratio 10:3:1:0.3:0.1, consistent with that resulting from activation of P1-purinoceptors of the A2 sub-type (which mediate vasodilatation due to adenosine). 5. The P1-purinoceptor antagonist 8-phenyltheophylline (10(-5) M) caused significant attenuation of the vasodilatation to adenosine and analogues. 6. It is concluded that adenosine-induced dilatation of the hepatic arterial vascular bed is mediated by P1-purinoceptors of the A2 sub-type.  相似文献   

2.
1. Radioligand binding and functional studies were undertaken to investigate the P1-purinoceptors present in the separated myometrial layers and the endometrium of the guinea-pig uterus. 2. In preparations of endometrium-denuded circular myometrium, the A2-selective agonists (2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamido-adenosine (CGS 21680, 100 μmol/L) and N-ethylcarboxamido adenosine (NECA, 1–10 μmol/L) inhibited contractile responses to phenylephrine. In preparations of endometrium-intact circular myometrium, NECA (10 μmol/L) enhanced responses to phenylephrine. NECA did not modulate the spontaneous contractions of longitudinal myometrium. 3. Homogenate binding studies with circular myometrium, longitudinal myometrium and endometrium revealed saturable high affinity [3H]-NECA binding sites. The mean maximal densities of binding sites (Bmax) were 2.08, 14.7 and 15.5 fmol/mg protein, and pKD (neg. log dissociation constant) values were 9.82, 9.19 and 7.44, respectively. 4. (R-) and (S-) -N6-(2-phenylisopropyl)adenosine (R- and S-PIA) both competed for two [3H]-NECA binding sites in preparations of circular myometrium. CGS 21680 competed for two [3H]-NECA binding sites in preparations of endometrium and longitudinal myometrium. All other agonist competition was for one site only. The rank orders of potency of high affinity binding were S-PIA ≥ R-PIA ≥ CGS 21680 (circular myometrium), R-PIA ≥ CGS 21680 ≥ S-PIA (longitudinal myometrium) and CGS 21680 > > S-PIA ≥ R-PIA (endometrium). 5. In preparations of circular myometrium, longitudinal myometrium and endometrium the selective A1-purinoceptor antagonist, 1,3-dipropyl-8-(2-amino-4-chloro)-phenylxanthine (PACPX), competed for two [3H]-NECA binding sites, the non-selective antagonist 3,7-dimethyl-1-propargylxanthine (DMPX), competed for one site only. 6. NECA increased cyclic adenosine monophosphate (CAMP) levels in preparations of both circular myometrium and endometrium. 7. These results indicate that P1-purinoceptors of the A2-subtype mediate the inhibitory effects of adenosine analogues on the phenylephrine-induced contractions of the circular myometrium of the guinea-pig, this effect is modified by the presence of the endometrium. There is no evidence that the [3H]-NECA binding sites of the longitudinal myometrium correlate with functional P1-purinoceptors in this tissue.  相似文献   

3.
The hypothesis that the coronary vasodilator effects of adenosine receptor agonists are independent of the vascular endothelium or mediators derived therefrom was examined in guinea-pig isolated working hearts. Adenosine receptor agonists, 5'-(N-ethylcarboxamido)-adenosine (NECA; two-fold selective for A2 over A1 receptors), 2-[p-(2-carboxyethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680; A2A selective), N6-cyclopentyl-adenosine (CPA; A1 selective) and N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA; A3 selective), were infused (3 x 10(-7) M) after endothelium removal by passing oxygen through the coronary circulation. In spontaneously beating hearts, CGS21680 and NECA increased, while CPA decreased, coronary flow. NECA and CPA reduced heart rate, left ventricular pressure and aortic output. The nitric oxide synthase (NOS) inhibitor, N(G)-nitro-L-arginine (L-NOARG; 3 x 10(-5) M) abolished the vasodilatation by NECA but not CGS21680, indicating that nitric oxide (NO) of a non-endothelial source mediated the NECA response. Coronary vasodilatation by CGS21680 was inhibited bythe A2A receptor antagonist, 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo [2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM241385). Indometacin (10(-6) M) attenuated the coronary vasodilatation to CGS21680, suggesting a partial role for cyclooxygenase products. IB-MECA had no effect, indicating no A3 receptor involvement. In paced working hearts, the responses were similar except CPA had no effect on coronary flow or aortic output and CGS21680 increased left ventricular pressure and the maximum rate of ventricular pressure rise. This study has demonstrated functionally effective removal of the endothelium by a novel method of passing oxygen through the coronary vasculature. A coronary vasodilator action of adenosine receptor agonists mediated via A2A receptors is endothelium- and NO-independent, but partially involves cyclooxygenase products.  相似文献   

4.
1. The P1-purinoceptors mediating relaxation of the rat duodenum and inhibition of contraction of the rat urinary bladder were characterized by use of adenosine and its analogues 5'-N-ethylcarboxamidoadenosine (NECA), N6-cyclopentyladenosine (CPA) and 2-p-((carboxyethyl)phenethylamino)-5'- carboxamidoadenosine (CGS 21680), as well as the A1-selective antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX). The stable analogue of adenosine 5'-triphosphate (ATP), adenylyl 5'-(beta,gamma-methylene)diphosphonate (AMPPCP), was also used as previous work had indicated that it has a direct action on some P1 receptors in addition to its P2-purinoceptor activity. 2. In the rat duodenum, the order of potency of the adenosine agonists was NECA greater than or equal to CPA greater than AMPPCP = adenosine greater than CGS 21680, and DPCPX antagonized CPA and AMPPCP at a concentration of 1 nM whereas equivalent antagonism of NECA and adenosine required a concentration of 1 microM. This suggests the presence of a mixture of A1 and A2 receptors in this tissue, with CPA and AMPPCP acting on the A1 and NECA and adenosine acting on the A2 receptors. 3. In the rat bladder, the order of potency of the adenosine agonists for inhibition of carbachol-induced contractions was NECA much greater than adenosine greater than CPA = CGS 21680, and a concentration of DPCPX of 1 microM was required to antagonize responses to NECA and adenosine. This suggests the presence of A2 receptors in this tissue.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
1. P1-purinoceptors mediating relaxation of the rat duodenum longitudinal muscle and contraction of the rat duodenum muscularis mucosae were characterized by the use of adenosine and its analogues, 5'-N-ethylcarboxamidoadenosine (NECA), N6-cyclopentyl-adenosine (CPA), N6-(phenylisopropyl)adenosine (R-PIA), 2-chloroadenosine (2-CADO) and 2-p-((carboxyethyl)phenethylamino)-5'-carboxamidoadenosine (CGS21680), as well as the P1-purinoceptor antagonist 8-phenyltheophylline (8-PT) and the A1-selective antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX). 2. In the rat duodenum longitudinal muscle, the order of potency of the adenosine agonists was CPA > NECA > adenosine > CGS21680. DPCPX antagonized responses to CPA and NECA at a concentration of 1 nM suggesting that they are acting at A1 receptors. A Schild plot versus CPA gave a slope near to unity (slope = 0.955) and a pA2 of 9.8 confirming that CPA was acting via A1 receptors. Schild analysis for DPCPX versus NECA, however, gave a slope of 0.674 suggesting that NECA was acting on both A1 and A2 receptors. CGS21680, a selective A2a agonist, was much less potent than adenosine suggesting that the A2 receptors are of the A2b subtype. 3. In the rat duodenum muscularis mucosae, the order of potency of the adenosine agonists was NECA > or = R-PIA = CPA > 2-CADO > adenosine, and DPCPX antagonized responses to CPA and NECA at a concentration of 1 microM. CGS21680, at a concentration of 10 microM, had no effect on this tissue. This suggests the presence of A2 receptors in this tissue and that they are of the A2b subtype. 4. These results are in agreement with previous studies in the whole duodenum showing the presence of A1 and A2b receptors causing relaxation, and this shows that the longitudinal muscle dominates the response of the whole tissue. In addition, a contractile A2b receptor has been revealed on the muscularis mucosae, the first time this subtype has been reported to elicit an excitatory response in a smooth muscle preparation.  相似文献   

6.
1 This study aimed to determine the role of the vascular endothelium on recovery of contractile function following global low-flow ischaemia of guinea-pig isolated working hearts and the effects of adenosine analogues on this recovery. 2 Guinea-pig isolated spontaneously beating or paced working hearts were set up and coronary flow (CF), aortic output (AO) (as an index of cardiac function), heart rate (HR), left ventricular pressure (LVP) and dP/dt max recorded. The endothelium was either intact or removed by a blast of oxygen. 3 In spontaneously beating hearts, low-flow ischaemia for 30 min reduced CF and cardiac contractility (LVP, dP/dt max) but not AO. On reperfusion, CF, LVP and dP/dt max recovered, while AO fell precipitously followed by a gradual recovery, indicative of myocardial stunning. The effects of ischaemia did not differ between endothelium-intact and -denuded hearts, indicating no role of the endothelium in the changes observed. 4 The adenosine analogues, N6-cyclopentyladenosine (CPA, A1 selective), 5'-N-ethylcarboxamidoadenosine (NECA, two-fold A2 selective over A1) and 2-p-((carboxyethyl)-phenethylamino)-5'carboxamidoadenosine (CGS21680, A2A selective) were infused (3 x 10-7 M) from 10 min into the 30-min low-flow ischaemia of denuded hearts and during reperfusion. 5 CGS21680 increased CF and improved the postischaemic functional recovery, as measured by the AO. NECA and CPA were not cardioprotective. The A2A selective antagonist, ZM241385, attenuated the coronary vasodilatation by CGS21680 and abolished the improved recovery of AO on reperfusion. 6 Reperfusion of paced working hearts caused a dramatic fall in AO which failed to recover. Infusion of CGS21680 from 15 min into the ischaemic period produced vasodilatation but failed to restore AO, presumably because the ischaemic damage was irreversible. 7 Thus, the endothelium plays no role in myocardial dysfunction following low-flow global ischaemia and reperfusion of guinea-pig working hearts. The A2A adenosine receptor-selective agonist but not the non-selective A2 receptor agonist, NECA, attenuated ischaemia- and reperfusion-induced stunning. This was attributed to increased CF and was independent of the endothelium.  相似文献   

7.
1. We have investigated the pharmacological profile of the adenosine receptor mediating relaxation of the carbachol pre-contracted guinea-pig trachea. 2. 5''-N-Ethylcarboxamidoadenosine (NECA) and 2-chloroadenosine elicited concentration-dependent relaxations with pD2 (-log10 half-maximal values) of 6.37 +/- 0.04 and 5.25 +/- 0.09, with maximal relaxations of 73 +/- 7 and 208 +/- 38%, respectively. In the presence of 10 microM NECA, 2-chloroadenosine was able to relax the tissue further with a pD2 value of 4.74 +/- 0.11 and a maximal response of 252 +/- 68%. 3. CGS 21680, APEC and adenosine failed to elicit significant relaxations of precontracted tracheal rings at concentrations below 10 microM. At 10 microM, adenosine analogues elicited relaxations with the following order of magnitude (% relaxation): 2-chloroadenosine (75 +/- 16%) = NECA (69 +/- 16%) > APEC (25 +/- 8%) > CGS 21680 (11 +/- 2%) > adenosine (6 +/- 4%). 4. NECA-induced relaxation of precontracted trachea was antagonized by adenosine receptor antagonists with the rank order of apparent affinity (Ki, nM): PD 115,199 (27 +/- 8) = XAC (43 +/- 11) > CP 66,713(285 +/- 89) = DPCPX (316 +/- 114). 5. We conclude that the adenosine analogue-induced relaxation of guinea-pig tracheal rings fails to fit into the current classification of A2 adenosine receptors.  相似文献   

8.
9.
1. In the isolated aorta of the frog, Rana temporaria, adenosine concentration-dependently, endothelium-independently relaxed adrenaline pre-constricted vessels. None of the adenosine analogues including D-5''-(N-ethylcarboxamide) adenosine (NECA), R- and S-N6-(2-phenylisopropyl) adenosine (R-and S-PIA) and 2-chloroadenosine (2-CA), or the more selective A1, A2 and A3 agonists cyclopentyladenosine (CPA), CGS 21680 and N6-(3-iodobenzyl) adenosine-5''-N-methylcarboxamide (IB-MECA) respectively, had any effect. 2. The non-selective adenosine antagonist, 8-p-sulphophenyl-theophylline (8-pSPT; 30 microM) failed to inhibit adenosine relaxations, as did NG-nitro-L-arginine methyl ester (L-NAME; 0.1 mM) and indomethacin (30 microM). 3. Adenosine 5''-triphosphate (ATP), alpha, beta-methylene ATP (alpha, beta-MeATP), beta, gamma-methylene ATP (beta, gamma-MeATP), 2-methylthio ATP (2-MeSATP) and uridine 5''-triphosphate (UTP) all concentration-dependently contracted the frog aorta. ATP and alpha, beta-MeATP were equipotent and more potent than UTP and beta, gamma-MeATP; 2-MeSATP had little activity. 4. The P2-purinoceptor antagonist, suramin (0.1 mM) inhibited contractions to alpha, beta-MeATP but not to ATP. Pyridoxalphosphate-6-azophenyl-2'',4''-disulphonic acid (PPADS; 30 microM) also inhibited contractions to alpha, beta-MeATP but not to ATP. Contractions to ATP were, however, inhibited by indomethacin (30 microM). 5. In conclusion, in the frog aorta there appears to be a novel subclass of P1-purinoceptor mediating vasodilatation, although like the A3 subclass it is not blocked by methylxanthines; a P2-purinoceptor mediates vasconstriction which resembles a P2x subtype, based on the agonist potency of alpha, beta-MeATP being more potent than 2-MeSATP (UTP has moderate activity) and PPADS is an effective antagonist. There is no evidence for the presence of a P2y-purinoceptor, mediating vasodilatation, in this preparation.  相似文献   

10.
1 Experiments were carried out to examine the postjunctional actions of adenosine receptor agonists on the smooth muscle of the vas deferens of the guinea-pig and rabbit. 2 Although they produced neither contraction nor relaxation by themselves, adenosine analogues enhanced contractions of the guinea-pig vas deferens induced by 10 μm ATP. The rank order of potency was N6-cyclopentyladenosine (CPA) > 5′-N-ethylcarboxamidoadenosine (NECA) > adenosine > CGS 21680. Dose–response curves for NECA were shifted to the right by the nonselective adenosine receptor antagonist 8(p-sulphophenyl)theophylline (8-SPT; 100 μm ) and by the selective A1-receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 1 m m ). 3 In the rabbit vas deferens, contractions induced by ATP (1 m m ) were inhibited rather than facilitated by NECA. Neither CPA, R(–)-N6-(2-phenyl isopropyl)-adenosine (R-PIA) nor CGS 21680 had any effect. 4 The results indicate that the smooth muscle of the guinea-pig vas deferens expresses facilitatory adenosine A1 receptors but not adenosine A2 receptors. In contrast, in rabbit there are postjunctional inhibitory adenosine A2A receptors but not adenosine A1 receptors.  相似文献   

11.
We examined the effects of adenosine analogues on the asthmatic reactions induced by the stimulation of capsaicin-sensitive afferent sensory nerves. Intravenous (i.v.) injection of adenosine A2 receptor agonists, 5′-(N-ethylcarboxamido)-adenosine (NECA) and 2-[p-(carboxyethyl)-phenylethylamino]-5′-N-ethylcarboxamido-adenosine (CGS 21680), dose dependently inhibited capsaicin-induced guinea-pig bronchoconstriction (1–1000 nmol kg−1), whereas i.v. administration of the adenosine A1 receptor agonist, N6-cyclo-hexyladenosine (CHA), did not affect it (1000 nmol kg−1). Intratracheal injection of NECA (0.05–5 nmol site−1) and CGA 21 680 (0.05−5 nmol site−1) also reduced capsaicin-induced constriction in a dose-dependent manner. However, NECA (1000 nmol kg−1) failed to inhibit substance P-induced guinea-pig bronchoconstriction. NECA (1–1000 nmol kg−1) dose-dependently inhibited cigarette smoke-induced rat tracheal plasma extravasation, but not substance P-induced reaction. NECA (0.1–10 μM) and CGS 21 680 (10 μM) significantly blocked the capsaicin-induced release of substance P-like immunoreactivity from guinea-pig lung, whereas CHA (10 μM) had no effect. This evidence suggests that adenosine A2 receptors modulate negatively the excitation of capsaicin-sensitive afferent sensory nerves and substance P release from their endings in airway tissues.  相似文献   

12.
1. The receptor subtype and mechanisms underlying relaxation to adenosine were examined in human isolated small coronary arteries contracted with the thromboxane A2 mimetic, 1,5,5-hydroxy-11alpha, 9alpha-(epoxymethano)prosta-5Z, 13E-dienoic acid (U46619) to approximately 50% of their maximum contraction to K+ (125 mM) depolarization (Fmax). Relaxations were normalized as percentages of the 50% Fmax contraction. 2. Adenosine caused concentration-dependent relaxations (pEC50, 5.95+/-0.20; maximum relaxation (Rmax), 96.7+/-1.4%) that were unaffected by either combined treatment with the nitric oxide inhibitors, NG-nitro-L-arginine (L-NOARG; 100 microM) and oxyhaemoglobin (HbO; 20 microM) or the ATP-dependent K+ channel (KATP) inhibitor, glibenclamide (10 microM). The pEC50 but not Rmax to adenosine was significantly reduced by high extracellular K+ (30 mM). Relaxations to the adenylate cyclase activator, forskolin, however, were unaffected by high K+ (30 mM). 3. Adenosine and a range of adenosine analogues, adenosine, 2-chloroadenosine (2-CADO), 5'-N-ethyl-carboxamidoadenosine (NECA), R(-)-N6-(2-phenylisopropyl)-adenosine (R-PIA), S(+)-N6-(2-phenylisopropyl)-adenosine (S-PIA), N6-cyclopentyladenosine (CPA), 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-beta- D-ribofuranuronamide (IB-MECA), 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamido adenosine hydrochloride (CGS 21680), relaxed arteries with a rank order of potency of NECA= 2-CADO >adenosine= IB-MECA = R-PIA= CPA > S-PIA)> CGS 21680. 4. Sensitivity but not Rmax to adenosine was significantly reduced approximately 80 and 20 fold by the non-selective adenosine receptor antagonist, 8-(p-sulphophenyl)theophylline (8-SPT) and the A2 receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX). By contrast, the A1-selective antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) had no effect on pEC50 or Rmax to adenosine. 5. These results suggest that A2B receptors mediate relaxation to adenosine in human small coronary arteries which is independent of NO but dependent in part on a K+-sensitive mechanism.  相似文献   

13.
《General pharmacology》1994,25(7):1381-1387
  • 1.1. Adenosine and its analogues relaxed the isolated rat aorta by an endothelium-dependent mechanism with an order of potency of 5′-N-ethylcarboxamidoadenosine (NECA) > 2-(p-(2-carboxyethyl)phenethylamino)-5′-N-ethylcarboxamidoadenosine (CGS 21680) > adenosine = N6-(2-(4-aminophenyl)ethyl)adenosine (APNEA = N6-cyclopentyladenosine (CPA) > 5′ - methylthioadenosine (MTA), although the maximal response achieved by CGS 21680 was less than that achieved by NECA.
  • 2.2. Both 8-sulphophenyltheophylline (8-SPT) and MTA antagonized responses to the adenosine analogues, but there were some anomolous features of this antagonism and NECA was inhibited more powerfully than the other agonists. This suggests that as well as A2a receptors mediating relaxation, the rat aorta may relax to adenosine analogues by other mechanisms.
  相似文献   

14.
Evidence for stereospecificity of the P1-purinoceptor.   总被引:3,自引:3,他引:0       下载免费PDF全文
1 The effects of adenosine, 5'-N-ethylcarboxamidoadenosine (NECA), 2-chloroadenosine, 2-azidoadenosine, and their L-enantiomers were examined on driven left atria, trachea and transmurally stimulated ileum of the guinea-pig. 2 In each tissue the order of potency of the D-enantiomers for producing inhibitory effects was NECA greater than 2-chloroadenosine greater than 2-azidoadenosine greater than adenosine. 3 The log concentration-response curve of each agonist was shifted to the right in the presence of the P1-purinoceptor antagonist, theophylline. 4 Dipyridamole, which blocks adenosine uptake, potentiated the effects of adenosine but not those of the D-enantiomers of adenosine analogues. 5 The greater potency of the adenosine analogues therefore, is at least partly due to their resistance to tissue uptake and subsequent enzymatic destruction. 6 The L-enantiomers of adenosine and its analogues did not produce inhibitory responses in the driven left atria or transmurally stimulated ileum. At high concentrations relaxations of the tracheal muscle were obtained, with the potency series L-NECA greater than 2-chloro-L-adenosine greater than 2-azido-L-adenosine greater than L-adenosine. 7 It is concluded that the postsynaptic P1-purinoceptors in the guinea-pig atria and trachea and the presynaptic P1-purinoceptors on cholinergic nerve terminals in guinea-pig ileum are stereospecific for the D-enantiomers of adenosine and its analogues.  相似文献   

15.
1. The present study was designed to characterize the adenosine receptors involved in the relaxation of the pig intravesical ureter, and to investigate the action of adenosine on the non adrenergic non cholinergic (NANC) excitatory ureteral neurotransmission. 2. In U46619 (10(-7) M)-contracted strips treated with the adenosine uptake inhibitor, nitrobenzylthioinosine (NBTI, 10(-6) M), adenosine and related analogues induced relaxations with the following potency order: 5'-N-ethylcarboxamidoadenosine (NECA) = 5'-(N-cyclopropyl)-carboxamidoadenosine (CPCA) = 2-chloroadenosine (2-CA) > adenosine > cyclopentyladenosine (CPA) = N6-(3-iodobenzyl)-adenosine-5'-N-methylcarboxamide (IB-MECA) = 2-[p-(carboxyethyl)-phenylethylamino]-5'-N-ethylcarboxamidoaden os ine (CGS21680). 3. Epithelium removal or incubation with indomethacin (3 x 10(-6) M) and L-N(G)-nitroarginine (L-NOARG, 3 x 10(-5) M), inhibitors of prostanoids and nitric oxide (NO) synthase, respectively, failed to modify the relaxations to adenosine. 4. 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 10(-8) M) and 4-(2-[7-amino-2-(2-furyl) [1,2,4]-triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385, 3 x 10(-8) M and 10(-7) M), A1 and A2A receptor selective antagonists, respectively, did not modify the relaxations to adenosine or NECA. 8-phenyltheophylline (8-PT, 10(-5) M) and DPCPX (10(-6) M), which block A1/A2-receptors, reduced such relaxations. 5. In strips treated with guanethidine (10(-5) M), atropine (10(-7) M), L-NOARG (3 x 10(-5) M) and indomethacin (3 x 10(-6) M), both electrical field stimulation (EFS, 5 Hz) and exogenous ATP (10(-4) M) induced contractions of preparations. 8-PT (10(-5) M) increased both contractions. DPCPX (10(-8) M), NECA (10(-4) M), CPCA, (10(-4) M) and 2-CA (10(-4) M) did not alter the contractions to EFS. 6. The present results suggest that adenosine relaxes the pig intravesical ureter, independently of prostanoids or NO, through activation of A2B-receptors located in the smooth muscle. This relaxation may modulate the ureteral NANC excitatory neurotransmission through a postsynaptic mechanism.  相似文献   

16.
1 The aim of this study was to characterize the adenosine receptor mediating vasodilation in the microvasculature of the hamster cheek pouch in vivo. A range of adenosine agonists was used including N6-cyclopentyladenosine (CPA) (A1 agonist), 5'-N-ethylcarboxamidoadenosine (NECA) (non-selective), 2-chloroadenosine (2CADO) (non-selective), 2-p-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) (A2A agonist), N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IBMECA) (A3 agonist) and adenosine, as well as the adenosine antagonists 8-sulphophenyltheophylline (8-SPT) (A1/A2 antagonist), 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) (A1 antagonist) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]-triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) (A2A antagonist). 2 All the adenosine analogues used induced vasodilation at concentrations between 10 nm and 1 microm, and the potency order was NECA > CGS 21680 > 2CADO > CPA=IBMECA > adenosine, indicating an action at A2A receptors. 8-SPT (50 microm) antagonized vasodilator responses to NECA with an apparent pKB of 5.4, consistent with an action at A1 or A2 receptors and confirming that A3 receptors are not involved in this response. 3 DPCPX (10 nm) had no effect on vasodilation evoked by NECA, suggesting that this response was not mediated via A1 receptors, while ZM 241385 (10 nm) antagonized dilator responses to NECA with an apparent pKB of 8.9 consistent with an action via A2A receptors. 4 Overall these results suggest that adenosine A2A receptors mediate vasodilation in the hamster cheek pouch in vivo.  相似文献   

17.
1. We have assessed the effects of adenosine receptor agonists and antagonists on collagen-induced 5-hydroxytryptamine (5-HT) release and cyclic AMP generation in human platelets. 2. 5'-N-ethylcarboxamidoadenosine (NECA) and CGS 21680 elicited accumulations of cyclic AMP with mean EC50 values of 2678 and 980 nM, respectively. The maximal response to CGS 21680 was approximately half that of the response to 10 microM NECA. 3. NECA and CGS 21680 inhibited collagen-induced 5-hydroxytryptamine release with mean EC50 values of 960 and 210 nM, respectively. The maximal response to CGS 21680 was approximately 25% of the response to 10 microM NECA. 4. The A1/A2a-selective adenosine receptor antagonist PD 115,199 was more potent as an inhibitor of NECA-elicited responses than the A1-selective antagonist DPCPX with calculated Ki values of 22-32 nM and > 10 microM, respectively. 5. In the presence of a cyclic AMP phosphodiesterase inhibitor, the effects of CGS 21680 on cyclic AMP accumulation and 5-HT release were enhanced to levels similar to those elicited by 10 microM NECA. In the absence of phosphodiesterase inhibition, CGS 21680 did not antagonise the effects of NECA. Furthermore, endogenous adenosine did not contribute to the effects of CGS 21680 when phosphodiesterase was inhibited. 6. We conclude that an A2a adenosine receptor appears to be involved in the NECA-elicited increases in cyclic AMP levels and inhibition of 5-HT release in human platelets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
1. An [3H]-adenine pre-labelling methodology was employed to assay cyclic AMP generation by adenosine analogues in Chinese hamster ovary (CHO.A2B4) cells, transfected with cDNA which has been proposed to code for the human brain A2B adenosine receptor, and in guinea-pig cerebral cortical slices. 2. Adenosine analogues showing the following rank order of potency in the CHO.A2B4 cells (pD2 value): 5'-N-ethylcarboxamidoadenosine (NECA, 5.91) > adenosine (5.69) > 2-chloroadenosine (5.27) > N6-(2-(4-aminophenyl)-ethylamino)adenosine (APNEA, 4.06). The purportedly A2A-selective agonist, CGS 21680, failed to elicit a significant stimulation of cyclic AMP generation at concentrations up to 10 microM in CHO.A2B4 cells. In the guinea-pig cerebral cortex, NECA was more potent than APNEA with pD2 values of 5.91 and 4.60, respectively. 3. Of these agents, NECA was observed to exhibit the greatest intrinsic activity in CHO.A2B4 cells (ca. 10 fold stimulation of cyclic AMP), while, in comparison, maximal responses to adenosine (32% NECA response), 2-chloroadenosine (61%), and APNEA (73%) were reduced. 4. Antagonists of NECA-evoked cyclic AMP generation showed the rank order of apparent affinity (apparent pA2 value in CHO.A2B4 cells: guinea-pig cerebral cortex): XAC (7.89: 7.46) > CGS 15943 (7.75: 7.33) > DPCPX (7.16: 6.91) > PD 115,199 (6.95: 6.39) > 8FB-PTP (6.52: 6.55) > 3-propylxanthine (4.63: 4.59). 5. We conclude that, using the agents tested, the A2B adenosine receptor cloned from human brain expressed in Chinese hamster ovary cells exhibits an identical pharmacological profile to native A2B receptors in guinea-pig brain.  相似文献   

19.
The adenosine receptor subtype mediating glucose production by glycogenolysis and gluconeogenesis was studied in primary cultured rat hepatocytes. Adenosine and adenosine agonists caused cyclic AMP accumulation in rat hepatocytes. The order of potency was 5'-N-ethylcarboxamidoadenosine (NECA)>R(-)-N(6)-(2-phenylisopropyl)adenosine (RPIA)>adenosine>2-[p-(carboxyethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosine (CGS21680). Furthermore, adenosine agonists stimulated glycogenolysis and gluconeogenesis. The order of potency was NECA>RPIA>CGS21680. The rank order of potency is typical for adenosine A(2B) receptors. Glycogenolysis stimulated by NECA was fully inhibited by nonselective adenosine antagonists, 9-chloro-2-(2-furanyl)[1,2,4]triazolo[1,5-c]quinazolin-5-amine (CGS15943). However, the adenosine A(2A) receptor-selective antagonist, 8-(3-chlorostyryl)caffeine (CSC), and the adenosine A(1) receptor-selective antagonist, (+)-(R)-[(E)-3-(2-phenylpyrazolo[1,5-alpha]pyridin-3-yl)acryloyl]-2-piperidine ethanol (FK453), had a low inhibitory potency. A strong correlation was found between the inhibitory effect of adenosine antagonists on NECA-induced glucose production and that on intracellular cyclic AMP generation in rat hepatocytes. Our results suggest that adenosine stimulates cyclic AMP formation and regulates glycogenolysis and gluconeogenesis, most likely through the adenosine A(2B) receptor subtype in rat hepatocytes.  相似文献   

20.
1. The adenosine receptors mediating relaxation of porcine isolated left anterior descending coronary arteries (LAD) and the effects of the level and type of preconstriction on the responses to adenosine analogues were examined in the present study. 2. Relaxation responses to the non-selective adenosine receptor agonist N-ethylcarboxamidoadenosine (NECA) were endothelium independent. N-Ethylcarboxamidoadenosine, GR 79236 (A1 receptor selective) and 8-cyclopentyl-1,3-dipropylxanthine (CGS 21680) (A2A receptor selective) produced full relaxation in LAD precontracted to 50% of the response to potassium depolarization with the thromboxane receptor agonist U46619. The order of potency was CGS 21680 = NECA > GR 79236, consistent with that defining the A2A receptor subtype. 3. 3,7-Dimethyl-1-propargylxanthine (DMPX; A2 receptor selective) competitively antagonized NECA and CGS 21680 with pKB values of 4.95 +/- 0.09 and 5.06 +/- 0.22, respectively. The A1 receptor selective antagonist 1,3-[3H]-dipropyl-8-cyclopentylxanthine (DPCPX) had no effect on NECA relaxation, even in the presence of DMPX. 4. The sensitivity to relaxation by NECA was dependent on the precontracting agent. Arteries precontracted with endothelin (ET)-1 were most sensitive to NECA, U46619-precontracted arteries were intermediate and KCl-precontracted arteries were least sensitive. 5. The potency of NECA was reduced when the preconstriction level was increased from 50 to 90% of maximum in U46619-precontracted arteries (pEC50 7.94 +/- 0.12 and 7.35 +/- 0.04, respectively) and, in KCl-precontracted arteries, both the potency and maximum effect of NECA were reduced when the preconstriction level increased from 50 to 80% of maximum (pEC50 7.52 +/- 0.13 and 6.91 +/- 0.26, respectively; maximum responses 82.5 +/- 10.2 and 23.9 +/- 3.6%, respectively, of the preconstricted tone). Relaxation responses to NECA were independent of the level of precontraction in ET-1-precontracted arteries. 6. In porcine LAD, relaxation responses to adenosine analogues were endothelium independent and were mediated via A2A adenosine receptors. Responses to NECA were dependent on both the level and type of preconstriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号