首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Slit family of axon guidance cues act as repulsive molecules for precise axon pathfinding and neuronal migration during nervous system development through interactions with specific Robo receptors.Although we previously reported that Slit1–3 and their receptors Robo1 and Robo2 are highly expressed in the adult mouse peripheral nervous system,how this expression changes after injury has not been well studied.Herein,we constructed a peripheral nerve injury mouse model by transecting the right sciatic nerve.At 14 days after injury,quantitative real-time polymerase chain reaction was used to detect mRNA expression of Slit1–3 and Robo1–2 in L4–5 spinal cord and dorsal root ganglia,as well as the sciatic nerve.Immunohistochemical analysis was performed to examine Slit1–3,Robo1–2,neurofilament heavy chain,F4/80,and vimentin in L4–5 spinal cord,L4 dorsal root ganglia,and the sciatic nerve.Co-expression of Slit1–3 and Robo1–2 in L4 dorsal root ganglia was detected by in situ hybridization.In addition,Slit1–3 and Robo1–2 protein expression in L4–5 spinal cord,L4 dorsal root ganglia,and sciatic nerve were detected by western blot assay.The results showed no significant changes of Slit1–3 or Robo1–2 mRNA expression in the spinal cord within 14 days after injury.In the dorsal root ganglion,Slit1–3 and Robo1–2 mRNA expression were initially downregulated within 4 days after injury;however,Robo1–2 mRNA expression returned to the control level,while Slit1–3 mRNA expression remained upregulated during regeneration from 4–14 days after injury.In the sciatic nerve,Slit1–3 and their receptors Robo1–2 were all expressed in the proximal nerve stump;however,Slit1,Slit2,and Robo2 were barely detectable in the nerve bridge and distal nerve stump within 14 days after injury.Slit3 was highly ex-pressed in macrophages surrounding the nerve bridge and slightly downregulated in the distal nerve stump within 14 days after injury.Robo1 was upregulated in vimentin-positive cells and migrating Schwann cells inside the nerve bridge.Robo1 was also upregulated in Schwann cells of the distal nerve stump within 14 days after injury.Our findings indicate that Slit3 is the major ligand expressed in the nerve bridge and distal nerve stump during peripheral nerve regeneration,and Slit3/Robo signaling could play a key role in peripheral nerve repair after injury.This study was approved by Plymouth University Animal Welfare Ethical Review Board (approval No.30/3203) on April 12,2014.  相似文献   

2.
Zhi‐Hui Huang 《Glia》2013,61(5):710-723
Schwann cells migrate along axons before initiating myelination during development and their migration facilitates peripheral nerve regeneration after injury. Axon guidance molecule Slit‐2 is highly expressed during peripheral development and nerve regeneration; however, whether Slit‐2 regulates the migration of Schwann cells remains a mystery. Here we show that Slit‐2 receptor Robo‐1 and Robo‐2 were highly expressed in Schwann cells in vitro and in vivo. Using three distinct migration assays, we found that Slit‐2 repelled the migration of cultured Schwann cells. Furthermore, frontal application of a Slit‐2 gradient to migrating Schwann cells first caused the collapse of leading front, and then reversed soma translocation of Schwann cells. The repulsive effects of Slit‐2 on Schwann cell migration depended on a Ca2+ signaling release from internal stores. Interestingly, in response to Slit‐2 stimulation, the collapse of leading front required the loss of F‐actin and focal adhesion, whereas the subsequent reversal of soma translocation depended on RhoA‐Rock‐Myosin signaling pathways. Taken together, we demonstrate that Slit‐2 repels the migration of cultured Schwann cells through RhoA‐Myosin signaling pathways in a Ca2+‐dependent manner.  相似文献   

3.
There are receptors on denervated Schwann cells that may respond to the neurotransmitters that are released from growth cones of regenerating motor axons. In order to ascertain whether the interaction of the transmitters and their receptors plays a role during axon regeneration, we investigated whether pharmacological block of the interaction would reduce the number of motoneurons that regenerate their axons after nerve section and surgical repair. Peripheral nerves in the hindlimbs of rats and mice were cut and repaired, and various drugs were applied to the peripheral nerve stump either directly or via mini-osmotic pumps over a 2–4-week period to block the binding of acetylcholine to nicotinic and muscarinic acetylcholine receptors (AChRs: α-bungarotoxin, tubocurarine, atropine and, gallamine) and binding of ATP to P2Y receptors (suramin). In rats, the nicotinic AChR antagonistic drugs and suramin reduced the number of motoneurons that regenerated their axons through the distal nerve stump. In mice, suramin significantly reduced the upregulation of the carbohydrate HNK-1 on the Schwann cells in the distal nerve stump that normally occurs during motor axon regeneration. These data indicate that chemical communication between regenerating axons and Schwann cells during axon regeneration via released neurotransmitters and their receptors may play an important role in axon regeneration.  相似文献   

4.
An important role in peripheral nerve regeneration has been ascribed to humoral trophic and tropic agents arising from the nonneuronal cells in the distal nerve stump and the denervated targets. In order to estimate their contribution to axonal elongation after crush injury to the rat sciatic nerve, an in vivo model was designed in which local cellular and target-derived influences were eliminated by 1) freeze-thawing of a long nerve segment distal to the crush site and 2) cutting the nerve far distally to the crush site, but within the frozen-thawed segment, and deflecting the frozen-thawed nerve stump in the opposite direction from its natural course. The sensory and motor axon elongation rate was estimated from the results of the nerve pinch test and choline acetyltransferase distribution along the nerve segment distal to the crush. The elongation rate of regenerating axons in deflected nerve segments, either non-treated or frozen-thawed, was close in magnitude to that obtained when target-derived influences were not eliminated. Neurotropism of axonal targets is therefore of little importance for axon elongation after nerve crush. In the absence of Schwann cells along the axonal path in frozen-thawed nerve segments, the elongation rate of both sensory and motor axons declined by about 40%. This implies that interactions between viable Schwann cells and growth cones of regenerating axons are not prerequisite for rapid axon elongation when Schwann cell basal lamina constitutes the growth substratum. Nevertheless, Schwann cells in Bungner bands possibly enhance the axon elongation rate by humoral or cell surface-mediated mechanisms.  相似文献   

5.
Dopaminergic neurons from the ventral mesencephalon/diencephalon (mesodiencephalon) form vital pathways constituting the majority of the brain's dopamine systems. Mesodiencephalic dopaminergic (mdDA) neurons extend longitudinal projections anteriorly through the diencephalon, ascending toward forebrain targets. The mechanisms by which mdDA axons initially navigate through the diencephalon are poorly understood. Recently the Slit family of secreted axon guidance proteins, and their Robo receptors, have been identified as important guides for descending longitudinal axons. To test the potential roles of Slit/Robo guidance in ascending trajectories, we examined tyrosine hydroxylase-positive (TH+) projections from mdDA neurons in mutant mouse embryos. We found that mdDA axons grow out of and parallel to Slit-positive ventral regions within the diencephalon, and that subsets of the mdDA axons likely express Robo1 and possibly also Robo2. Slit2 was able to directly inhibit TH axon outgrowth in explant co-culture assays. The mdDA axons made significant pathfinding errors in Slit1/2 and Robo1/2 knockout mice, including spreading out in the diencephalon to form a wider tract. The wider tract resulted from a combination of invasion of the ventral midline, consistent with Slit repulsion, but also axons wandering dorsally, away from the ventral midline. Aberrant dorsal trajectories were prominent in Robo1 and Robo1/2 knockout mice, suggesting that an aspect of Robo receptor function is Slit-independent. These results indicate that Slit/Robo signaling is critical during the initial establishment of dopaminergic pathways, with roles in the dorsoventral positioning and precise pathfinding of these ascending longitudinal axons.  相似文献   

6.
Even though peripheral nerves regenerate well, axons are often misrouted and reinnervate inappropriate distal pathways post-injury. Misrouting most likely occurs at branch points where regenerating axons make choices. Here, we show that the accuracy of sensory axon reinnervation is enhanced by overexpression of the guidance molecule nerve growth factor (NGF) distal to the bifurcation. We used the femoral nerve as a model, which contains both sensory and motor axons that intermingle in the parent trunk and distally segregate into the saphenous (SB) and motor branches (MB). Transection of the parent trunk resulted in misrouting of axon reinnervation to SB and MB. To enhance sensory axon targeting, recombinant adenovirus encoding NGF was injected along the SB close to the bifurcation 1 week post-injury. The accuracy of axon reinnervation was assessed by retrograde tracing at 3 or 8 weeks after nerve injury. NGF overexpression significantly increased the accuracy of SB axon reinnervation to the appropriate nerve branch, in a manner independent of enhancing axon regeneration. This novel finding provides in vivo evidence that gradient expression of neurotrophin can be used to enhance targeting of distal peripheral pathways to increase axon regeneration into the appropriate nerve branch.  相似文献   

7.
Despite the capacity of Schwann cells to support peripheral nerve regeneration, functional recovery after nerve injuries is frequently poor, especially for proximal injuries that require regenerating axons to grow over long distances to reinnervate distal targets. Nerve transfers, where small fascicles from an adjacent intact nerve are coapted to the nerve stump of a nearby denervated muscle, allow for functional return but at the expense of reduced numbers of innervating nerves. A 1-hour period of 20 Hz electrical nerve stimulation via electrodes proximal to an injury site accelerates axon outgrowth to hasten target reinnervation in rats and humans, even after delayed surgery. A novel strategy of enticing donor axons from an otherwise intact nerve to grow through small nerve grafts(cross-bridges) into a denervated nerve stump, promotes improved axon regeneration after delayed nerve repair. The efficacy of this technique has been demonstrated in a rat model and is now in clinical use in patients undergoing cross-face nerve grafting for facial paralysis. In conclusion, brief electrical stimulation, combined with the surgical technique of promoting the regeneration of some donor axons to ‘protect' chronically denervated Schwa nn cells, improves nerve regeneration and, in turn, functional outcomes in the management of peripheral nerve injuries.  相似文献   

8.
It is still controversial to what extent elongation of regenerating sensory axons depends on proliferating Schwann cells (SCs) in an injured peripheral nerve. We hypothesized that such regeneration was independent of SC support early after nerve injury, but later became SC-dependent. The sural nerve in rats was crushed, and freezing destroyed cells but not their basal laminae (BL) in the distal nerve segment. Sensory axon elongation was assessed by the nerve pinch test and their abundance was examined immunohistochemically. Sensory axons regenerated fairly rapidly during the first week even if SC migration was prevented. Thereafter, they ceased to elongate and withdrew until their terminals contacted the SCs migrating from the proximal nerve segment. Intrinsic neuronal capacity for growth without cell support, however, had not been lost. Rather, progressive degradation of the former SC BL and loss of laminin in the acellular segment arrested axon growth. Further elongation occurred only when SC migration was possible, corroborating our hypothesis. Sensory neurons continued to elongate and maintain their axons in spite of deteriorating growth substratum if, prior to injury the axons had been allowed to sprout into the denervated skin. Previous sprouting exposed the sensory neurons to high levels of NGF.  相似文献   

9.
During early vertebrate forebrain development, pioneer axons establish a symmetrical scaffold descending longitudinally through the rostral forebrain, thus forming the tract of the postoptic commissure (TPOC). In mouse embryos, this tract begins to appear at embryonic day 9.5 (E9.5) as a bundle of axons tightly constrained at a specific dorsoventral level. We have characterized the participation of the Slit chemorepellants and their Robo receptors in the control of TPOC axon projection. In E9.5-E11.5 mouse embryos, Robo1 and Robo2 are expressed in the nucleus origin of the TPOC (nTPOC), and Slit expression domains flank the TPOC trajectory. These findings suggested that these proteins are important factors in the dorsoventral positioning of the TPOC axons. Consistently with this role, Slit2 inhibited TPOC axon growth in collagen gel cultures, and interfering with Robo function in cultured embryos induced projection errors in TPOC axons. Moreover, absence of both Slit1 and Slit2 or Robo1 and Robo2 in mutant mouse embryos revealed aberrant TPOC trajectories, resulting in abnormal spreading of the tract and misprojections into both ventral and dorsal tissues. These results reveal that Slit-Robo signaling regulates the dorsoventral position of this pioneer tract in the developing forebrain.  相似文献   

10.
Pathway sampling by regenerating peripheral axons   总被引:6,自引:0,他引:6  
A century ago, Ramon y Cajal described the generalized response of regenerating peripheral axons to their environment. By using mice that express fluorescent proteins in their axons, we are now able to quantify the response of individual axons to nerve transection and repair. Sciatic nerves from nonexpressing mice were grafted into those expressing a yellow variant of green fluorescent protein, then examined at 5, 7, or 10 days after repair. Regeneration was found to be a staggered process, with only 25% of axons crossing the repair in the first week. In the setting of Wallerian degeneration, this stagger will expose growth cones to an evolving menu of molecular cues upon which to base pathway decisions. Many axons arborize, allowing them to interact simultaneously with several pathways. Arborization could serve as the anatomical substrate for specificity generation through collateral pruning. Axons often travel laterally across the face of the distal stump before choosing a pathway. As a result, the average unbranched axon has access to over 100 distal Schwann cell tubes. This extensive access, however, does not ensure correct matching of axon and end organ, suggesting that pathway choice is made on the basis of factors other than end organ identity. These observations explain the failure of refined surgical techniques to restore normal function after nerve injury. The apparent wandering of axons across the repair defies surgical control and mandates a biological approach to reuniting severed axons with appropriate distal pathways.  相似文献   

11.
Netrin-1 and peripheral nerve regeneration in the adult rat   总被引:8,自引:0,他引:8  
Axonal guidance during development of the nervous system is thought to be highly regulated through interactions of axons with attractive, repulsive, and trophic cues. Similar mechanisms regulate axonal regeneration after injury. The netrins have been shown to influence the guidance of several classes of developing axons. Although netrins have been implicated as axonal guidance cues in the developing peripheral nervous system, there has been no direct evidence of netrin-1 expression in either developing or adult peripheral nerve. The present study utilized competitive PCR and immunohistochemistry to demonstrate the localization of netrin-1 within adult rat sciatic nerve. The expression of netrin-1 mRNA and protein was compared for normal or regenerated sciatic nerve 2 weeks following either a crush or a transection and repair injury. The PCR data show that netrin-1 mRNA is normally expressed at low levels in peripheral nerve, and similar low levels are found 2 weeks following a crush injury. However, 2 weeks following nerve transection and repair there is approximately a 40-fold increase in netrin-1 mRNA levels. Immunohistochemistry data show that Schwann cells are the major source of netrin-1 protein in peripheral nerve. Our results suggest that netrin-1 mRNA levels are profoundly affected during peripheral nerve injury and regeneration. The localization of netrin-1 to Schwann cells suggests that this protein is strategically situated to influence axon regeneration in adult peripheral nerve.  相似文献   

12.
The role of neurotrophin-4/5 (NT-4/5) in the enhancement of axon regeneration in peripheral nerves produced by treadmill training was studied in mice. Common fibular nerves of animals of the H strain of thy-1-YFP mice, in which a subset of axons in peripheral nerves is marked by the presence of yellow fluorescent protein, were cut and surgically repaired using nerve grafts from non-fluorescent mice. Lengths of profiles of fluorescent regenerating axons were measured using optical sections made through whole mounts of harvested nerves. Measurements from mice that had undergone 1 h of daily treadmill training at modest speed (10 m/min) were compared with those of untrained (control) mice. Modest treadmill training resulted in fluorescent axon profiles that were nearly twice as long as controls at 1, 2 and 4 week survival times. Similar enhanced regeneration was found when cut nerves of wild type mice were repaired with grafts from NT-4/5 knockout mice or grafts made acellular by repeated freezing/thawing. No enhancement was produced by treadmill training in NT-4/5 knockout mice, irrespective of the nature of the graft used to repair the cut nerve. Much as had been observed previously for the effects of brief electrical stimulation, the effects of treadmill training on axon regeneration in cut peripheral nerves are independent of changes produced in the distal segment of the cut nerve and depend on the promotion of axon regeneration by changes in NT-4/5 expression by cells in the proximal nerve segment.  相似文献   

13.
Peripheral nerve transection or crush induces expression of class 3 semaphorins by epineurial and perineurial cells at the injury site and of the neuropilins neuropilin-1 and neuropilin-2 by Schwann and perineurial cells in the nerve segment distal to the injury. Neuropilin-dependent class 3 semaphorin signaling guides axons during neural development, but the significance of this signaling system for regeneration of adult peripheral nerves is not known. To test the hypothesis that neuropilin-2 facilitates peripheral-nerve axonal regeneration, we crushed sciatic nerves of adult neuropilin-2-deficient and littermate control mice. Axonal regeneration through the crush site and into the distal nerve segment, repression by the regenerating axons of Schwann cell p75 neurotrophin receptor expression, remyelination of the regenerating axons, and recovery of normal gait were all significantly slower in the neuropilin-2-deficient mice than in the control mice. Thus, neuropilin-2 facilitates peripheral-nerve axonal regeneration.  相似文献   

14.
Selective reinnervation of distal motor stumps by peripheral motor axons   总被引:16,自引:3,他引:13  
Random matching of regenerating axons with Schwann tubes in the distal nerve stump is thought to contribute to the often poor results of peripheral nerve repair. Motor axons would be led to sensory end organs and sensory axons to motor end plates; both would remain functionless. However, the ability of regenerating axons to differentiate between sensory and motor environments has not been adequately examined. The experiments reported here evaluated the behavior of regenerating motor axons when given equal access to distal sensory and motor nerve stumps across an unstructured gap. "Y"-shape silicon chambers were implanted within the rat femoral nerve with the proximal motor branch as axon source in the base of the Y. The distal sensory and motor branches served as targets in the branches of the Y, and were placed 2 or 5 mm from the axon source. After 2 months for axon regeneration, horseradish peroxidase was used to label the motoneurons projecting axons into either the motor or the sensory stump. Equal numbers of motoneurons were labeled from the sensory and motor stumps at 2 mm, but significantly more motoneurons were labeled from the motor stump at 5 mm. (P = 0.016). This finding is consistent with selective reinnervation of the motor stump. Augmentation of this phenomenon to produce specific reunion of individual motor axons could dramatically improve the results of nerve suture.  相似文献   

15.
Schwann cell mitosis in response to regenerating peripheral axons in vivo   总被引:4,自引:0,他引:4  
Schwann cell mitosis has been demonstrated in chronically denervated cat tibial nerves re-innervated by axons regenerating from the proximal stump of a coapted peroneal nerve. Thymidine incorporation rose above baseline levels at the axon front, with no detectable increase in more distal regions occupied by denervated Schwann cells. Schwann cells therefore enter S phase upon the arrival of a regenerating axon in vivo as previously described in tissue culture. Intraneural treatment of the denervated distal stump with Mitomycin C prior to re-innervation delayed the subsequent appearance of myelin formation. This supports the notion that axonally stimulated division of Schwann cells is a prerequisite for myelination during nerve regeneration. Axonal advancement was also retarded by drug treatment, possibly because of a reduced level of trophic support provided by the compromised Schwann cells. A comparable absence of myelin and poor re-innervation was found in chemically untreated distal stumps that had been maintained in the denervated state for prolonged periods when Schwann cell columns are known to undergo progressive atrophy. These observations suggest that nerve repair should be delayed for limited periods if efficacious regeneration is desired.  相似文献   

16.
Recently, we showed that Schwann cells transfer ribosomes to injured axons. Here, we demonstrate that Schwann cells transfer ribosomes to regenerating axons in vivo. For this, we used lentiviral vector-mediated expression of ribosomal protein L4 and eGFP to label ribosomes in Schwann cells. Two approaches were followed. First, we transduced Schwann cells in vivo in the distal trunk of the sciatic nerve after a nerve crush. Seven days after the crush, 12% of regenerating axons contained fluorescent ribosomes. Second, we transduced Schwann cells in vitro that were subsequently injected into an acellular nerve graft that was inserted into the sciatic nerve. Fluorescent ribosomes were detected in regenerating axons up to 8 weeks after graft insertion. Together, these data indicate that regenerating axons receive ribosomes from Schwann cells and, furthermore, that Schwann cells may support local axonal protein synthesis by transferring protein synthetic machinery and mRNAs to these axons.  相似文献   

17.
The characteristic response of Schwann cells (SC) accompanies peripheral nerve injury and regeneration. To elucidate their role, the question of whether or not regenerating axons can elongate across the segments of a peripheral nerve devoid of SC was investigated. Rat sciatic nerve was crushed so that the continuity of SC basal laminae was not interrupted. A segment about 15 mm long distal to the crush was either repeatedly frozen/thawed to eliminate SC or scalded by moist heat which, in addition, denatured the proteins in the SC basal laminae, too. Both sensory and motor axons grew rapidly across the frozen/thawed segment of the nerve. Their rate of elongation was reduced by only 30% in comparison to control crushed nerves. SC were not present along the path of growing axons adhering tightly to the bare SC basal laminae. The rate of elongation of regenerating sensory and motor axons in scalded nerve segments was eight times lower than in control crushed nerves. SC were present in that part of the scalded region that had been invaded by the regenerating axons but no further distally. These results suggest that acellular basal laminae of SC provide very good, although not optimal, conditions for elongation of regenerating sensory and motor axons. If biochemical integrity of the basal lamina is destroyed, the regenerating axons must be accompanied or preceded by viable SC. and axon elongation rate is significantly reduced.  相似文献   

18.
Slit2/Robo1 is a conserved ligand-receptor system, which greatly affects the distribution, migration, axon guidance and branching of neuron cells. Slit2 and its transmembrane receptor Robo1 have different distribution patterns in gliomas. The expression of Slit2 is at very low levels in pilocytic astrocytoma, fibrillary astrocytoma and glioblastoma, while Robo1 is highly expressed in different grades of gliomas at both mRNA and protein levels. Acquisition of insidious invasiveness by malignant glioma cells involves multiple genetic alterations in signaling pathways. Although the specific mechanisms of tumor-suppressive effect of Slit2/Robo1 have not been elucidated, it has been proved that Slit2/Robo1 signaling inhibits glioma cell migration and invasion by inactivation of Cdc42-GTP. With the research development on the molecular mechanisms of Slit2/Robo1 signaling in glioma invasion and migration, Slit2/Robo1 signaling may become a potential target for glioma prevention and treatment.  相似文献   

19.
We have investigated the expression of transforming growth factor (TGF)-β1,-β2, and -β3 in developing, degenerating, and regenerating rat peripheral nerve by immunohistochemistry and Northern blot analysis. In normal adult sciatic nerve, TGF-β1, -β2, and -β3 are detected in the cytoplasm of Schwann cells, and the levels of TGF-β1 and -β3 mRNAs are constant during post-natal development. When sciatic nerves are transected to cause axonal degeneration and prevent axonal regeneration, the level of TGF-β1 mRNA in the distal nerve-stump increases markedly and remains elevated, whereas the level of TGF-β3 mRNA falls modestly and remains depressed. When sciatic nerves are crushed to cause axonal degeneration and allow axonal regeneration, the level of TGF-β1 mRNA initially increases as axons degenerate, and then falls as axons regenerate. TGF-β2 mRNA was not detected in developing or lesioned sciatic nerves at any time. Cultured Schwann cells have high levels of TGF-β1 mRNA, the amount of which is reduced by forskolin, which mimicks the effect of axonal contact. These data demonstrate that Schwann cells express TGF-β1, -β2, and -β3, and that TGF-β1 and -β3 mRNA predominate over TGF-β2 mRNA in peripheral nerve. Axonal contact and forskolin decrease the expression of TGF-β1 in Schwann cells. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Regeneration of the sciatic nerve in transplanted nerve grafts in which laminin was inactivated was examined electron microscopically. Nerve grafts for transplantation were obtained from close cloned donor Wistar rats; 1-cm nerve segments of the sciatic nerve were frozen and thawed to kill the Schwann cells. Control recipient rats received grafts treated with normal rabbit serum to repair the artificially-made complete defect of the right sciatic nerve, and the experimental group of rats received grafts doubly treated with normal serum and rabbit anti-laminin antiserum. In the control grafts regenerating axons grew almost completely through the inside of the basal lamina scaffolds (92%) and adhered to the structure, while in the anti-laminin antiserum treated grafts the axons were present outside (52%) and inside (48%) the scaffolds simultaneously. In this case, the adhesion of axons to the scaffolds was obscure. Axons were associated with and without Schwann cells both inside and outside the basal lamina scaffolds. No unassociated Schwann cells were observed. The maximal number of axons in a 2 mm portion of the antiserum-treated grafts was approximately 250 axons per 100 × 100 μm square and 520 in the control at 15 days. At 30 days, almost the same number of axons was found at the distal (8 mm) portion of both groups. The growth in the former was delayed for 3 days. These results indicate that regenerating peripheral nerve axons may enter the basal lamina scaffolds and grow well because of the neurotrophic function of laminin present at the inner side of Schwann cell basal lamina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号