首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Amygdalotegmental projections were studied in 26 cats after injections of horseradish peroxidase (HRP) in the diencephalon, midbrain and lower brain stem and in 6 cats after injection of 3H-leucine in the amygdala. Following HRP injections in the posterior hypothalamus, periaqueductal gray (PAG) and tegmentum many retrogradely labeled neurons were present in the central nucleus (CE) of the amygdala, primarily ipsilaterally. Injections of HRP in the posterior hypothalamus and mesencephalon also resulted in the labeling of neurons in the basal nucleus, pars magnocellularis.Following 3H-leucine injections in CE and adjacent structures autoradiographically labeled fibers were present in the stria terminalis and ventral amygdalofugal pathways. In the mesencephalon heavily labeled fiber bundles were located lateral to the red nucleus. Labeled fibers and terminals were distributed to the mesencephalic reticular formation, substantia nigra, ventral tegmental area and PAG. In the pontine and medullary tegmentum the bulk of passing fibers was located laterally in the reticular formation. Many labeled fibers and terminals were distributed to the parabrachial nuclei, locus coeruleus, nucleus subcoeruleus and lateral tegmental fields. Many terminals were also present in the solitary nucleus and dorsal motor nucleus of the vagus nerve.The location of the cells of origin and the distribution of the terminals of the amygdalotegmental projection suggest that this pathway plays an important role in the integration of somatic and autonomic responses associated with affective defense.Abbreviations A nucleus ambiguus - AL lateral amygdaloid nucleus - AQ cerebral aqueduct - BC brachium conjunctivum - BL basal amygdaloid nucleus, pars magnocellularis - BM basal amygdaloid nucleus, pars parvocellularis - BP brachium pontis - CE central amygdaloid nucleus - CI internal capsule - CN cochlear nucleus - CO cortical amygdaloid nucleus - CP cerebral peduncle - DCN dorsal column nuclei - DMV dorsal motor nucleus of the vagus nerve - E entopeduncular nucleus - F fornix - FLA longitudinal association bundle - GP globus pallidus - H hippocampal formation - 1C inferior colliculus - INJ injection site - LC locus coeruleus - IO inferior olive - LG lateral geniculate nucleus - LRN lateral reticular nucleus - LT lateral tegmental field - M medial amygdaloid nucleus - MB mammilary body - MG medial geniculate nucleus - ML medial lemniscus - MT medial tegmental field - MV motor nucleus of the trigeminus - OC optic chiasm - OT optic tract - P putamen - PAG periaqueductal gray - PB parabrachial nuclei - PC posterior commissure - PH posterior hypothalamus - PT pyramidal tract - PV principal sensory nucleus of the trigeminus - PYR pyriform cortex - R red nucleus - RF reticular formation - S solitary nucleus - SC nucleus subcoeruleus - SN substantia nigra - SO superior olive - SOL solitary nucleus - SPV spinal trigeminal complex - ST stria terminalis - VC vestibular complex - VTA ventral tegmental area - VII facial nucleus - XII hypoglossal nucleus  相似文献   

2.
Employing both anterograde and retrograde axonal tracing, we investigated direct projections from the central amygdaloid nucleus to the basal ganglia in the cat. The anterograde axonal tracing of Phaseolus vulgaris-leucoagglutinin revealed that projection fibers from the central amygdaloid nucleus to the basal ganglia ended in the globus pallidus (the feline homolog to the external segment of the globus pallidus of primates) and substantia nigra. The amygdalopallidal fibers terminated chiefly in the medial most part of the globus pallidus at its caudal level. The amygdalonigral fibers terminated densely in the substantia nigra pars lateralis, and moderately in the dorsolateral part of the substantia nigra pars reticulata; none of them were found to end in the substantia nigra pars compacta. Both of the amygdalopallidal and amygdalonigral projections were ipsilateral. These neuronal connections were confirmed by retrograde axonal tracing of cholera toxin B subunit in the second set of the experiments: The cells of origin of the amygdalopallidal and amygdalonigral projections were located predominantly in the lateral part of the central amygdaloid nucleus, and additionally in the intercalated cell islands of the amygdala. Most of them were of small bipolar or multipolar type. The cells projecting to the globus pallidus were preferentially distributed at the rostral levels of the central nucleus and intercalated cell islands of the amygdaloid complex, while those projecting to the substantia nigra were mainly located at the caudal levels of these amygdaloid subdivisions. In the third set of the experiments, sequential double-antigen immunofluorescence histochemistry for transported cholera toxin B subunit and horseradish peroxidase showed that some single neurons in the lateral part of the central amygdaloid nucleus, particularly at its middle level, issued axon collaterals to both the globus pallidus and substantia nigra pars lateralis. The results of the present study indicate that the central amygdaloid nucleus sends projection fibers to the globus pallidus and substantia nigra possibly to exert a limbic influence upon forebrain motor mechanisms.  相似文献   

3.
Summary Injections of HRP in the nucleus raphe magnus and adjoining medial reticular formation in the cat resulted in many labeled neurons in the lateral part of the bed nucleus of the stria terminalis (BNST) but not in the medial part of this nucleus. HRP injections in the nucleus raphe pallidus and in the C2 segment of the spinal cord did not result in labeled neurons in the BNST. Injections of 3H-leucine in the BNST resulted in many labeled fibers in the brain stem. Labeled fiber bundles descended by way of the medial forebrain bundle and the central tegmental field to the lateral tegmental field of pons and medulla. Dense BNST projections could be observed to the substantia nigra pars compacta, the ventral tegmental area, the nucleus of the posterior commissure, the PAG (except its dorsolateral part), the cuneiform nucleus, the nucleus raphe dorsalis, the locus coeruleus, the nucleus subcoeruleus, the medial and lateral parabrachial nuclei, the lateral tegmental field of caudal pons and medulla and the nucleus raphe magnus and adjoining medial reticular formation. Furthermore many labeled fibers were present in the solitary nucleus, and in especially the peripheral parts of the dorsal vagal nucleus. Finally some fibers could be traced in the marginal layer of the rostral part of the caudal spinal trigeminal nucleus. These projections appear to be virtually identical to the ones derived from the medial part of the central nucleus of the amygdala (Hopkins and Holstege 1978). The possibility that the BNST and the medial and central amygdaloid nuclei must be considered as one anatomical entity is discussed.Abbreviations AA anterior amygdaloid nucleus - AC anterior commissure - ACN nucleus of the anterior commissure - ACO cortical amygdaloid nucleus - AL lateral amygdaloid nucleus - AM medial amygdaloid nucleus - APN anterior paraventricular thalamic nucleus - AQ cerebral aqueduct - BC brachium conjunctivum - BIC brachium of the inferior colliculus - BL basolateral amygdaloid nucleus - BNSTL lateral part of the bed nucleus of the stria terminalis - BNSTM medial part of the bed nucleus of the stria terminalis - BP brachium pontis - CA central nucleus of the amygdala - Cd caudate nucleus - CI inferior colliculus - CL claustrum - CN cochlear nucleus - CP posterior commissure - CR corpus restiforme - CSN superior central nucleus - CTF central tegmental field - CU cuneate nucleus - D nucleus of Darkschewitsch - EC external cuneate nucleus - F fornix - G gracile nucleus - GP globus pallidus - HL lateral habenular nucleus - IC interstitial nucleus of Cajal - ICA internal capsule - IO inferior olive - IP interpeduncular nucleus - LC locus coeruleus - LGN lateral geniculate nucleus - LP lateral posterior complex - LRN lateral reticular nucleus - MGN medial geniculate nucleus - MLF medial longitudinal fascicle - NAdg dorsal group of nucleus ambiguus - NPC nucleus of the posterior commissure - nV trigeminal nerve - nVII facial nerve - OC optic chiasm - OR optic radiation - OT optic tract - P pyramidal tract - PAG periaqueductal grey - PC cerebral peduncle - PO posterior complex of the thalamus - POA preoptic area - prV principal trigeminal nucleus - PTA pretectal area - Pu putamen - PUL pulvinar nucleus - R red nucleus - RF reticular formation - RM nucleus raphe magnus - RP nucleus raphe pallidus - RST rubrospinal tract - S solitary nucleus - SC suprachiasmatic nucleus - SCN nucleus subcoeruleus - SI substantia innominata - SM stria medullaris - SN substantia nigra - SO superior olive - SOL solitary nucleus - SON supraoptic nucleus - spV spinal trigeminal nucleus - spVcd spinal trigeminal nucleus pars caudalis - ST stria terminalis - TRF retroflex tract - VC vestibular complex - VTA ventral tegmental area of Tsai - III oculomotor nucleus - Vm motor trigeminal nucleus - VI abducens nucleus - VII facial nucleus - Xd dorsal vagal nucleus - XII hypoglossal nucleus  相似文献   

4.
Summary Projections from the basal ganglia to the nucleus tegmenti pedunculopontinus pars compacta (TPC) were studied by using anterograde and retrograde tracing techniques with horseradish peroxidase conjugated with wheat germ agglutinin (WGA-HRP) in the cat. Following WGA-HRP injections into the medial TPC area, a substantial number of retrogradely labeled cells were seen in the entopeduncular nucleus (EP) and medial half of the substantia nigra pars reticulata (SNr), whereas following WGA-HRP injections into the lateral TPC area, labeled cells were marked in the caudal half of the globus pallidus (GP) and lateral half of the SNr. To confirm the retrograde tracing study, WGA-HRP was injected into the EP or the caudal GP, and anterograde labeling was observed in the TPC areas. Terminal labeling was located in the medail TPC area in the EP injection case, while terminal labeling was observed in the lateral TPC area in the caudal GP injection case. Projections from the striatum to the pallidal complex (the EP and the caudal GP) were also studied autoradiographically by injecting amino acids into various parts of the caudate nucleus and the putamen. Terminal labeling was distributed over the whole extent of the EP and the rostral GP following injections into the rostral striatum (the head of the caudate nucleus or the rostral part of the putamen), while terminal labeling was distributed over the caudal GP following injections into the caudal striatum (the body of the caudate nucleus or the caudal part of the putamen). From these findings, we conclude that there exists a medio-lateral topography in the projection from the basal ganglia to the TPC: The EP receives afferent projections from the rostral striatum and projects to the medial TPC area, whereas the caudal GP receives projections from the caudal striatum and sends fibers to the lateral TPC area.Abbreviations BC brachium conjunctivum - CD caudate nucleus - CP cerebral peduncle - DBC decussation of the brachium conjunctivum - EP entopeduncular nucleus - GP globus pallidus - IC internal capsule - ICo inferior colliculus - LH lateral habenular nucleus - ML medial lemniscus - PN pontine nuclei - PUT putamen - SCo superior colliculus - SI substantia innominata - SN substantia nigra - SNc substantia nigra pars compacta - SNr substantia nigra pars reticulata - STN subthalamic nucleus - TH thalamus - TPC nucleus tegmenti pedunculopontinus pars compacta  相似文献   

5.
A Reiner  L Medina  S N Haber 《Neuroscience》1999,88(3):775-793
Single- and double-label immunohistochemical techniques using several different highly specific antisera against dynorphin peptides were used to examine the distribution of dynorphinergic terminals in globus pallidus and substantia nigra in rhesus monkeys and humans in comparison to substance P-containing and enkephalinergic terminals in these same regions. Similar results were observed in monkey and human tissue. Dynorphinergic fibers were very abundant in the medial half of the internal pallidal segment, but scarce in the external pallidal segment and the lateral half of the internal pallidal segment. In substantia nigra, dynorphinergic fibers were present in both the pars compacta and reticulata. Labeling of adjacent sections for enkephalin or substance P showed that the dynorphinergic terminals overlapped those for substance P in the medial half of the internal pallidal segment, but showed only slight overlap with enkephalinergic terminals in the external pallidal segment. The substance P-containing fibers were moderately abundant along the borders of the external pallidal segment, and enkephalinergic fibers were moderately abundant in parts of the internal pallidal segment. Dynorphinergic and substance P-containing terminals overlapped extensively in the nigra, and both extensively overlapped enkephalinergic fibers in medial nigra. Immunofluorescence double-labeling studies revealed that dynorphin co-localized extensively with substance P in individual fibers and terminals in the medial half of the internal pallidal segment and in substantia nigra. Thus, as has been found in non-primates, dynorphin within the striatum and its projection systems appears to be extensively localized to substance P-containing striatopallidal and striatonigral projection neurons. Nonetheless, our results also raise the possibility that a population of substance P-containing neurons that projects to the internal pallidal segment and does not contain dynorphin is present in primate striatum. Our results also suggest the possible existence of populations of striatopallidal and striatonigral projection neurons in which substance P and enkephalin or dynorphin and enkephalin, or all three, are co-localized. Thus, striatal projection neurons in primates may not consist of merely two types, one containing substance P and dynorphin and the other enkephalin.  相似文献   

6.
Summary The high tonic discharge rates of globus pallidus neurons in awake monkeys suggest that these neurons may receive some potent excitatory input. Because most current electrophysiological evidence suggests that the major described pallidal afferent systems from the neostriatum are primarily inhibitory, we used retrograde transport of horseradish peroxidase (HRP) to identify possible additional sources of pallidal afferent fibers. The appropriate location was determined before HRP injection by mapping the characteristic high frequency discharge of single pallidal units in awake animals. In animals with injections confined to the internal pallidal segment, retrograde label was seen in neurons of the pedunculopontine nucleus, dorsal raphe nucleus, substantia nigra, caudate, putamen, subthalamic nucleus, parafascicular nucleus, zona incerta, medial and lateral subthalamic tegmentum, parabrachial nuclei, and locus coeruleus. An injection involving the external pallidal segment and the putamen as well resulted in additional labeling of cells in centromedian nucleus, pulvinar, and the ventromedial thalamus.Abbreviations AC anterior commissure - CG central grey - CM centromedian nucleus - CN caudate nucleus - DM dorsomedial nucleus - DR dorsal raphe nucleus - DSCP decussation of superior cerebellar peduncle - GPe globus pallidus, external segment - GPi globus pallidus, internal segment - LC locus coeruleus - LL lateral lemniscus - MG medial geniculate nucleus - ML medial lemniscus - NVI abducens nucleus - OT optic tract - Pbl lateral parabrachial nucleus - Pbm medial parabrachial nucleus - Pf parafascicular nucleus - PPN pedunculopontine nucleus - PuO oral pulvinar nucleus - RN red nucleus - SCP superior cerebellar peduncle - SI substantia innominata - SNc substantia nigra, pars compacta - SNr substantia nigra, pars reticulata - STN subthalamic nucleus - TMT mamillothalamic tract - VA ventral anterior nucleus - VLc ventral lateral nucleus, pars caudalis - VLm ventral lateral nucleus, pars medialis - VLo ventral lateral nucleus, pars oralis - VPI ventral posterior inferior nucleus - VPM ventral posterior medial nucleus - VPLc ventral posterior lateral nucleus, pars caudalis - ZI zona incerta  相似文献   

7.
A study was made to determine the efferent projections of the subthalamic nucleus in the monkey. Because of the impossibility of producing lesions in this nucleus, not involving adjacent structures, lesions were produced by different stereotaxic approaches. Comparisons were made with degeneration resulting from localized lesions in substantia nigra and globus pallidus. Degeneration resulting from these lesions was studied in transverse and sagittal sections stained by the Nauta-Gygax method. Efferent fibers from the subthalamic nucleus pass through the internal capsule into the medial pallidal segment; a few fibers are distributed to the lateral pallidum. Some subthalamic efferent fibers pass to the contralateral globus pallidus via the dorsal supraoptic decussation, but none projection to the thalamus. Nigral efferent fibers project to parts of the ventral anterior (VAmc) and ventral lateral (VLm) thalamic nuclei. The medial pallidal segment gives fibers to: (1) ventral anterior (VA), ventral lateral (VLo) and centromedian (CM) thalamic nuclei, and (2) the pedunculopontine nucleus. The lateral pallidal segment projects exclusively to the subthalamic nucleus. Thalamic projections of the substania nigra and globus pallidus are distinctive. Subthalamic projections to the globus pallidus are more profuse than those of the substantia nigra. The following hypothesis is presented: Subthalamic dyskinesia, due to lesions in the subthalamic nucleus, is a consequence of removal of inhibitory influences acting upon the medial segment of the globus pallidus.  相似文献   

8.
Summary Projections from the posterior thalamic regions to the striatum were studied in the cat by the anterograde tracing method after injecting wheat germ agglutinin-horseradish peroxidase conjugate (WGA-HRP) into the caudalmost regions of the lateroposterior thalamic nucleus (caudal LP), suprageniculate nucleus (Sg) and magnocellular division of the medial geniculate nucleus (MGm). The results were further confirmed by the retrograde tracing method after injecting WGA-HRP into the regions of the caudate nucleus (Cd) and putamen (Put) where afferent fibers from the caudal LP, Sg and MGm were distributed. Fibers from the MGm, Sg or caudal LP were distributed mainly in the medial, middle or lateral part of the caudal half of the putamen (caudal Put), respectively. Although there was a considerable overlap, thalamostriatal fibers from the caudal LP terminated more caudally than those from the MGm. On the other hand, thalamocaudate fibers from the MGm, Sg and lateral part of the caudal LP overlapped with each other in the ventrolateral part of the caudal half of the caudate nucleus (caudal Cd). Fibers from the medial part of the caudal LP were distributed in the ventral part of the caudal Cd. In the superior colliculus (SC) of the cats with WGA-HRP injections in the caudal LP, retrogradely labeled neuronal cell bodies were mainly seen ipsilaterally in the superficial SC layer, and simultaneously, anterogradely labeled axon terminals were observed in the striatum. On the other hand, when WGA-HRP was injected into the Sg or MGm, labeled SC neurons were mainly located in the intermediate and deep SC layers. Thus, ascending impulses from the superficial SC layer may possibly be conveyed ipsilaterally via the caudal LP to the ventral and ventrolateral parts of the caudal Cd and the lateral part of the caudal Put, whereas those from the intermediate and deep SC layers may be relayed via the Sg and/or MGm to the ventrolateral part of the caudal Cd and the middle and medial parts of the caudal Put.Abbreviations AC anterior commissure - Am amygdaloid nucleus - Cd caudate nucleus - Ce centromedial nucleus - CL centrolateral nucleus - Cl claustrum - CM-Pf centre médian-parafascicular complex - CP cerebral peduncle - d deep SC layer - EC external capsule - Ep entopeduncular nucleus - GP globus pallidus - i intermediate SC layer - IC internal capsule - Ip interpeduncular nucleus - LG lateral geniculate nucleus - LP lateroposterior nucleus - MD mediodorsal nucleus - MG medial geniculate nucleus - MGm magnocellular division of MG - MGp principal division of MG - NBIC nucleus of brachium of inferior colliculus - O oculomotor nucleus - OT optic tract - Pom medial division of posterior group of thalamus - Pt pretectum - Pul pulvinar nucleus - Put putamen - Pv paraventricular nucleus of thalamus - R reticular nucleus of thalamus - Rh rhomboid nucleus - RN red nucleus - s superficial SC layer - SC superior colliculus - Sg suprageniculate nucleus - SN substantia nigra - SNpc pars compacta of SN - SNpr pars reticulata of SN - V lateral ventricle - VA ventroanterior nucleus - VL ventrolateral nucleus - VM ventromedial nucleus - WGA-HRP wheat germ agglutinin-HRP conjugate  相似文献   

9.
The projections of presumed dopamine-containing neurons in the zona compacta of the substantia nigra and the ventral tegmental area were examined by stereotaxic injections of horseradish peroxidase into diverse cortical and subcortical regions which are known to include dopamine-containing terminals. Neurons in the lateral half of the substantia nigra pars compacta were labelled after injections into the caudolateral aspect of the caudate-putamen, while neurons in the medial part of the substantia nigra pars compacta and lateral aspect of the ventral tegmental area projected to the anteromedial portion of the caudate putamen. Injections of horseradish peroxidase into the amygdala resulted in the appearance of reactive neurons in the anterior portion of the ventral tegmental area, but the more caudally located entorhinal cortex received projections from the posterior half of the ventral tegmental area. Injections of horseradish peroxidase into the frontal cortex, anterior to the genu, produced scattered labelled cells in the rostral half of the ventral tegmental area, whereas more posterior injections into the cingulate cortex resulted in the appearance of reactive cells which were confined to the medial one-quarter of the substantia nigra pars compacta. The near-midline structure, the lateral septum, was innervated by neurons with cell bodies primarily in the medial half of the ventral tegmental area. Injections of horseradish peroxidase into the nucleus accumbens, which contains very high levels of dopamine, resulted in the appearance of many labelled neurons throughout the ventral tegmental area and some reactive neurons in the medial part of the substantia nigra pars compacta. A few labelled cells were also occasionally observed in the contralateral ventral tegmental area after accumbens injections.These results suggest that although there is considerable overlap, and that the same subdivisions within the substantia nigra pars compacta and the ventral tegmental area appear to innervate diverse regions of the forebrain, there also exists a general topographical organization with respect to the projections of these neurons.Injections of horseradish peroxidase into some of the forebrain regions also resulted in the appearance of reactive cells in mesencephalic nuclei not known to contain dopaminergic perikarya. For example, labelled cells were observed in the supramamillary nucleus after injections into the frontal cortex, entorhinal cortex, accumbens and lateral septum. Injections into the amygdala produced reactive cells in the suprageniculate nucleus, the peripeduncular nucleus, and the magnocellular nucleus of the medial geniculate. These latter results are discussed with reference to the possibility that such pathways may mediate the responsiveness of cells in the amygdala to a wide range of sensory stimuli.  相似文献   

10.
Summary Injections of 3H-leucine were made in the entopeduncular nucleus or dentate nucleus of the cerebellum in eight cats. The terminal projection zones of both pathways in the thalamus were studied using the sagittal plane and their relationships to one another as well as to cytoarchitectural boundaries of thalamic nuclei were compared. The data indicate that the territories controlled by the two projection systems are almost entirely segregated. The segregation is mainly along the antero-posterior axis as the main pallidal projection zone occupies the medio-ventral VA while the main dentate projection zone lies posterior to it in the VL. Furthermore, the dorsolateral part of the VA not occupied by pallidal projections receives dentate projections. In the VM, both afferent systems terminate in the lateral part of the nucleus with pallidal territory located anteriorly and dentate territory located posteriorly, again without overlap. As the delineations of nuclear subdivisions in the ventral thalamus of the cat have been a subject of some controversy, it is suggested that the boundaries of the VA, VL and VM in the cat thalamus be defined on the basis of basal ganglia and cerebellar projection zones.Abbreviations used in the Text and in Fig. 5 AM anterior medial nucleus - AV anterior ventral nucleus - BC brachium conjunctivum - CA anterior commissure - CC crus cerebri - CP posterior commissure - CD caudate nucleus - CE centrum medianum - CLN central lateral nucleus - DN dentate nucleus - EPN entopeduncular nucleus - FF Forel's field - FN fastigial nucleus - FR fasciculus retroflexus - HL lateral habenular nucleus - HM medial habenular nucleus - INA anterior interposite nucleus - INP posterior interposite nucleus - IC internal capsule - LD lateral dorsal nucleus - LG lateral geniculate body - MD medial dorsal nucleus - MTT mamillothalamic tract - NR red nucleus - OT optic tract - PAC paracentral nucleus - PF parafascicular nucleus - PV pulvinar - RT reticular thalamic nucleus - SM submedian nucleus - SN substantia nigra - SNr substantia nigra pars reticularis - STN subthalamic nucleus - VF ventral posterior nucleus - VA ventral anterior nucleus - VL ventral lateral nucleus - VM ventral medial nucleus - ZI zona incerta Supported in part by a grant from the American Parkinson Disease Association and NIH grant R01NS19280  相似文献   

11.
Summary Potentially convergent inputs to cerebellar-receiving and basal ganglia-receiving areas of the thalamus were identified using horseradish peroxidase (HRP) retrograde tracing techniques. HRP was deposited iontophoretically into the ventroanterior (VA), ventromedial (VM), and ventrolateral (VL) thalamic nuclei in the cat. The relative numbers of labeled neurons in the basal ganglia and the cerebellar nuclei were used to assess the extent to which the injection was in cerebellar-receiving or basal ganglia-receiving portions of thalamus. The rostral pole of VA showed reciprocal connections with prefrontal portions of the cerebral cortex. Only the basal ganglia and the hypothalamus provided non-thalamic input to modulate these cortico-thalamo-cortical loops. In VM, there were reciprocal connections with prefrontal, premotor, and insular areas of the cerebral cortex. The basal ganglia (especially the substantia nigra), and to a lesser extent, the posterior and ventral portions of the deep cerebellar nuclei, provided input to VM and may modulate these corticothalamo-cortical loops. The premotor cortical areas connected to VM include those associated with eye movements, and afferents from the superior colliculus, a region of documented importance in oculomotor control, also were labeled by injections into VM. The dorsolateral portion of the VA-VL complex primarily showed reciprocal connections with the medial premotor (area 6) cortex. Basal ganglia and cerebellar afferents both may modulate this cortico-thalamo-cortical loop, although they do not necessarily converge on the same thalamic neurons. The cerebellar input to dorsolateral VA-VL was from posterior and ventral portions of the cerebellar nuclei, and the major potential brainstem afferents to this region of thalamus were from the pretectum. Mid- and caudo-lateral portions of VL had reciprocal connections with primary motor cortex (area 4). The dorsal and anterior portions of the cerebellar nuclei had a dominant input to this corticothalamo-cortical loop. Potentially converging brainstem afferents to this portion of VL were from the pretectum, especially pretectal areas to which somatosensory afferents project.List of Abbreviations AC central amygdaloid nucleus - AL lateral amygdaloid nucleus - AM anteromedial thalamic nucleus - AV anteroventral thalamic nucleus - BC brachium conjunctivum - BIC brachium of the inferior colliculus - Cd caudate nucleus - CL centrolateral thalamic nucleus - CM centre median nucleus - CP cerebral peduncle - CUN cuneate nucleus - DBC decussation of the brachium conjunctivum - DR dorsal raphe nuclei - EC external cuneate nucleus - ENTO entopeduncular nucleus - FN fastigial nucleus - FX fornix - GP globus pallidus - GR gracile nucleus - IC internal capsule - ICP inferior cerebellar peduncle - IP interpeduncular nucleus - IVN inferior vestibular nucleus - LD lateral dorsal thalamic nucleus - LGN lateral geniculate nucleus - LH lateral hypothalamus - LP lateral posterior thalamic complex - LRN lateral reticular nucleus - LVN lateral vestibular nucleus - MB mammillary body - MD mediodorsal thalamic nucleus - MG medial geniculate nucleus - ML medial lemniscus - MLF medial lengitudinal fasciculus - MT mammillothalamic tract - MVN medial vestibular nucleus - NDBB nucleus of the diagonal band of Broca - NIA anterior nucleus interpositus - NIP posterior nucleus interpositus - OD optic decussation - OT optic tract - PAC paracentral thalamic nucleus - PPN pedunculopontine region - PRO gyrus proreus - PRT pretectal region - PT pyramidal tract - PTA anterior pretectal region - PTM medial pretectal region - PTO olivary pretectal nucleus - PTP poterior pretectal region - Pul pulvinar nucleus - Put putamen - RF reticular formation - RN red nucleus - Rt reticular complex of the thalamus - S solitary tract - SCi superior colliculus, intermediate gray - SN substantia nigra - ST subthalamic nucleus - VA ventroanterior thalamic nucleus - VB ventrobasal complex - VL ventrolateral thalamic nucleus - VM ventromedial thalamic nucleus - III oculomotor nucleus - IIIn oculomotor nerve - 5S spinal trigeminal nucleus - 5T spinal trigeminal tract - VII facial nucleus  相似文献   

12.
We immunohistochemically investigated the degeneration processes of the nigro-striatal and nigro-amygdaloid pathways and the relationship between the loss of dopaminergic neurons and Lewy bodies (LB) formation in the substantia nigra using 15 autopsied cases of dementia with Lewy bodies (DLB). The number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra and TH-positive axonal terminals in the putamen decreased with a specific pattern. The substantia nigra possessed alpha-synuclein-positive LB-bearing neurons that were almost evenly distributed, while the putamen exhibited diffuse or granular alpha-synuclein-immunostaining. Most of the granular stains were positive for anti-phosphorylated alpha-synuclein antibody, whereas the diffuse stains were negative. These findings suggest that the axonal terminals in the putamen undergo abnormal alpha-synuclein accumulation, but may not always originate from LB-bearing neurons in the substantia nigra. The central amygdaloid nucleus contained anti-alpha-synuclein- and -phosphorylated alpha-synuclein-positive dystrophic axonal terminals, the degree of which was greater for cases with granular staining in the putamen, and which was proportional to the number of alpha-synuclein-positive neurons in the substantia nigra. Thus, the axonal terminals in the central amygdaloid nucleus may have originated from LB-bearing neurons in the substantia nigra. The results of the present study indicate that the nigro-striatal and nigro-amygdaloid pathways undergo different degeneration processes in DLB, and suggest that the degeneration of the nigro-amygdaloid pathway more strongly reflects LB formation in dopaminergic neurons of the substantia nigra than that of the nigro-striatal pathway. In addition, they indicate that there is no direct relationship between the loss of dopaminergic neurons and LB formation in the substantia nigra.  相似文献   

13.
The distribution of visinin, a 24,000 dalton peptide, in the lower brain stem of the rat was examined by means of an indirect immunofluorescent method. Visinin-immunoreactive structures were found to be unevenly distributed only in the neuronal elements. The following neuronal systems were strongly labeled by the antiserum; the Purkinje cell system, mammillotegmental system, habenulointerpeduncular system, the second layer of the superior colliculus, ventral tegmental area, substantia nigra pars lateralis, area medial to the medial geniculate body, parabrachial area, dorsal and ventral nuclei of the lateral lemniscus, pontine reticular formation just medial to the trigeminal principal nucleus, superior olivary nucleus, solitarii nucleus, external layer of the inferior colliculus and spinal trigeminal nucleus. The densities of the labeled fibers in these areas paralleled those of the labeled cells. In addition, highly dense visinin-immunoreactive fiber plexuses were seen in the zona compacta of the substantia nigra, lateral portion of the interpeduncular nucleus, ventral tegmental nucleus of Gudden and vestibular nucleus.  相似文献   

14.
Following coagulation of either the substantia nigra or the caudate nucleus and fundus caudati of the cat, the distribution of degenerating terminals in the sections of the striatum has been determined especially in the fundus caudati on one side and in the various cell groups of the substantia nigra compacta on the other side; and the types of synapses have been described. There are reverberating circuits between the fundus caudati and the medial groups of the nigra characterized by their small cells, between the putamen and the postero-lateral cell groups of the nigra, between the caudatum and the rostral cell groups of the nigra, presumably with the specialization that the lateral caudatum is in two-way connection with the rostro-lateral cell groups of the nigra as is the medial caudatum with the rostro-medial cell group. The transmitter for the striatofugal terminals in the nigra which have pleomorphic synapses is probably GABA. Dopamine is the transmitter of the axo-spinous synapses of the nigrostriatal neurons with the small striatal nerve cells for which the transmitter seems to be Acetylcholine. The nigro-striatal reverberating circuits have three outputs available; 1. from parts of the striatum to the entopeduncular nucleus (internal segment of pallidum) and from there through the H2 and H1 fields of Forel to the oral ventral nucleus of the thalamus (V.o.a) which directly projects to the area 6 a alpha of motor cortex; 2. also from parts of the striatum to the pallidum (outer segment) and continuing through the descending pallido-reticulospinal pathway and 3. from the postero-lateral cell groups of the nigra probably through descending fibers which cross the midline in the commissura colliculi superioris and extend through the reticular formation directly or indirectly to the spinal cord.  相似文献   

15.
R.C. Meibach  R. Katzman 《Neuroscience》1981,6(11):2159-2171
The organization of dopaminergic neurons projecting to the amygdala was examined using retrograde (horseradish peroxidase histochemistry) and anterograde ([3H]leucine autoradiography) transport methods and Falck-Hillarp histofluorescence techniques combined with microspectrofluorometry and radiofrequency lesions. Cell bodies located within the pars lateralis and pars compacta of the substantia nigra were found to project to the lateral and central amygdaloid nuclei, respectively. Both of these areas within the substantia nigra contained dopaminergic perikarya, while the central and lateral amygdaloid nuclei contained fluorescent varicosities with features indicative of dopaminergic neurons. Lesions restricted to the pars lateralis of the substantia nigra resulted in a loss of fluorescence in the lateral amygdaloid nucleus. Autoradiographic experiments revealed that the projections from the pars lateralis did not run with fibers originating from the pars compacta in the nigrostriatal tract but rather had their own course occupying a lateral position adjacent to the cerebral peduncle and joining the ventral amygdalo-fugal bundle.The data indicate that, in the cat, there are two separate dopaminergic projections to the amygdala arising from the substantia nigra.  相似文献   

16.
The distribution of somatostatinlike immunoreactive (SLI) perikarya, axons, and terminals was mapped in subcortical areas of the brain of the little brown bat, Myotis lucifugus, using light microscopic immunocytochemistry. A preponderance of immunoreactivity was localized in reticular, limbic, and hypothalamic areas including: (1) in the forebrain: the bed nucleus of the stria terminalis; lateral preoptic, dorsal, anterior, lateral and posterior hypothalamic areas; amygdaloid, periventricular, arcuate, supraoptic, suprachiasmatic, ventromedial, dorsomedial, paraventricular, lateral and medial mammillary, and lateral septal nuclei; the nucleus of the diagonal band of Broca and nucleus accilmbens septi; (2) in the midbrain: the periaqueductal gray, interpeduncular, dorsal and ventral tegmental, pretectal, and Edinger-Westphal nuclei; and (3) in the hindbrain: the superior central and parabrachial nuclei, nucleus incertus, locus coeruJeus, and nucleus reticularis gigantocellularis. Other areas containing SLI included the striatum (caudate nucleus and putamen), zona incerta, infundibulum, supramammiilary and premammillary nuclei, medial and dorsal lateral geniculate nuclei, entopeduncular nucleus, lateral habenular nucleus, central medial thalamic nucleus, central tegmental field, linear and dorsal raphe nuclei, nucleus of Darkschewitsch, superior and inferior colliculi, nucleus ruber, substantia nigra, mesencephalic nucleus of V, inferior olivary nucleus, inferior central nucleus, nucleus prepositus, and deep cerebellar nuclei. While these results were similar in some respects to those previously reported in rodents, they also provided interesting contrasts.  相似文献   

17.
The present study investigated the organization and distribution of amygdaloid axons within the various brainstem dopaminergic, noradrenergic and adrenergic cell groups. This was accomplished via Phaseolus vulgaris leucoagglutinin lectin (PHA-L) anterograde tracing technique combined with glucose-oxidase immunocytochemistry to catecholamine markers (i.e. tyrosine hydroxylase, dopamine beta-hydroxylase, and phenylethanolamine N-methyltransferase). Injections of PHA-L within the medial part of the central amygdaloid nucleus resulted in axonal labeling within most catecholamine containing cell groups within the brainstem. The most heavily innervated catecholaminergic groups were the A9 (lateral) cells of the substantia nigra, the A8 dopaminergic cells of the retrorubral field and the C2 adrenergic cells of nucleus of the solitary tract. Amygdaloid terminals frequently contacted cells within these regions. A moderate amount of amygdaloid terminals were located within the rostral A6 (locus coeruleus) and A2 (nucleus of the solitary tract) groups. Amygdaloid terminal contacts were apparent on the majority of the rostral A6 and A2 neurons. Light or no amygdaloid terminal labeling was observed within the other brainstem catecholaminergic cell groups. Thus, the amygdala mainly innervates the A8 and lateral A9 dopaminergic cells of midbrain, rostral locus coeruleus (A6) noradrenergic neurons and the adrenergic (C2) and noradrenergic (A2) cells within the nucleus of the solitary tract. Selective innervation of these brainstem catecholaminergic systems may be important for integration of amygdaloid-mediated defensive and stress-induced behaviors.  相似文献   

18.
Summary The destruction of th central amygdaloid nucleus (Ce), which contains a large group of neurons with leucine-enkephalin (L-ENK)-like immunoreactivity (L-ENKI), resulted in a marked ipsilateral reduction of these fibers in the bed nucleus of the stria terminalis (BST) suggesting that L-ENKI neurons in the Ce project ipsilaterally to the BST. This was supported by the finding that injection of biotin-wheat germ agglutinin into the BST labeled many neurons in the Ce. Simultaneous staining with antiserum showed that some of these neurons are L-ENKI. The L-ENKI fibers from the Ce reach the BST via two pathways; one from the ventral amygdalofugal pathway (VA), which terminate in the ventral subdivision of the BST pars lateralis (BSTL), and the other from the stria terminalis (ST), which terminates in the lateral subdivision of the BSTL, because (1) accumulation of L-ENKI structures appeared in the axons of these two systems on the amygdaloid side, (2) transection or destruction of the ST alone caused only a slight reduction of ENKI fibers in the lateral subdivision of the BSTL ipsilaterally and (3) transection or destruction of VA alone markedly reduced the number of L-ENKI fibers in the ventral subdivision of the ipsilateral BSTL. Thus, the VA L-ENKI fiber system is the major source of L-ENKI fibers in the ventral subdivision, while the ST L-ENKI fiber system is a minor source of the L-ENKI fibers in the lateral subdivision. The presence of an intrinsic L-ENKI system in the BST which may innervate the lateral subdivision was also suggested.Abbreviations used in Figures ac anterior commissure - AHy anterior hypothalamic nucleus - AM anteromedial thalamic nucleus - AV anteroventral thalamic nucleus - BST bed nucleus of stria terminalis - BSTL BST pars lateralis - BSTM BST pars medialis - Ce central amygdaloid nucleus - f fornix - GP globus pallidus - HDB horizontal limb of diagonal band of Broca - ic internal capsule - l lateral subdivision of the BSTL - LH lateral hypothalamus - LPO lateral preoptic area - LS lateral septal nucleus - m medial subdivision of the BSTL - Mfb medial forebrain bundle - MPO medial preoptic area - MS medial septal nucleus - ox optic chiasma - Re reuniens thalamic nucleus - Rt reticular thalamic nucleus - SI substantia innominata - sm stria medularis thalami - st stria terminalis - v ventral subdivision of the BSTL - va ventral amygdalofugal pathway - VDB vertical limb of diagonal band of Broca - VP ventral pallium - 2n optic nerve - 3v third ventricle  相似文献   

19.
The efferent projections of the periaqueductal gray in the rabbit have been described by anterograde tract-tracing techniques following deposits of tritiated leucine, or horseradish peroxidase, into circumscribed sites within dorsal, lateral or ventral periaqueductal gray. No attempts were made to place labels in the fourth, extremely narrow (medial), region immediately surrounding the aqueduct whose size and disposition did not lend itself to confined placements of label within it. These anatomically distinct regions, defined in Nissl-stained sections, corresponded to the same regions into which deposits of horseradish peroxidase were made in order for us to describe afferent projections to the periaqueductal gray. In this present study distinct ascending and descending fibre projections were found throughout the brain. Terminal labelling was detected in more than 80 sites, depending somewhat upon which of the three regions of the periaqueductal gray received the deposit. Therefore, differential projections with respect to both afferent and efferent connections of these three regions of the periaqueductal gray have now been established. Ventral deposits disclosed a more impressive system of ramifying, efferent fibres than did dorsal or lateral placements of labels. With ventral deposits, ascending fibres were found to follow two major pathways from periaqueductal gray. The periventricular bundle bifurcates at the level of the posterior commissure to form hypothalamic and thalamic components which distribute to the anterior pretectal region, lateral habenulae, and nuclei of the posterior commissure, the majority of the intralaminar and midline thalamic nuclei, and to almost all of the hypothalamus. The other major ascending pathway from the periaqueductal gray takes a ventrolateral course from the deposit site through the reticular formation or, alternatively, through the deep and middle layers of the superior colliculus, to accumulate just medial to the medial geniculate body. This contingent of fibres travels more rostrally above the cerebral peduncle, distributing terminals to the substantia nigra, ventral tegmental area and parabigeminal nucleus before fanning out and turning rostrally to contribute terminals to ventral thalamus, subthalamus and zona incerta, then continuing on to supply amygdala, substantia innominata, lateral preoptic nucleus, the diagonal band of Broca and the lateral septal nucleus. Caudally directed fibres were also observed to follow two major routes. They either leave the periaqueductal gray dorsally and pass through the gray matter in the floor of the fourth ventricle towards the abducens nucleus and ventral medulla, or are directed ventrally after passing through either the inferior colliculus or parabrachial nucleus. These ventrally directed fibres merge just dorsal to the pons on the ventral surface of the brain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Summary We have studied the early development of subcortical projections to presumptive somatic sensory-motor areas of neocortex in the North American opossumDidelphis virginiana. The opossum is born in a very immature state, 12–13 days after conception, and climbs into an external pouch where it is available for experimental manipulation. Using the retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase, we have obtained evidence that axons from the dorsal raphe and superior central nuclei, the substantia nigra, the locus coeruleus and the parabrachial nuclei reach presumptive somatic sensory-motor areas of neocortex by at least postnatal day (PND) 10. Axons showing serotonin-like immunoreactivity, presumably from the dorsal raphe and/or superior central nuclei, and axons containing tyrosine hydroxylase immunoreactivity, presumably from the substantia nigra and/or locus coeruleus, are present in the same areas at birth or shortly thereafter. Thalamic axons do not grow into comparable areas of neocortex until after PND 10. Such axons reach the subplate region of ventrolateral neocortex first and then proceed dorsomedially; by estimated PD (EPND) 21, they are present in presumptive layers I, V and VI, but they do not innervate an identified layer IV until EPND 48. The developmental sequences suggested by our study are compared with those reported for other species and are discussed in light of their importance in the formation of major sensory and motor circuits.Abbreviations qq cerebral aqueduct - ca anterior commissure - Cb cerebellum - CcD dorsal cochlear nucleus - Cd caudate nucleus - CeS superior central nucleus - CI interior colliculus - Coe locus coeruleus - CP cortical plate - CS superior colliculus - CxA cortex ammonis - DB nucleus of the diagonal band - Dien diencephalon - Dor dorsal - EP ependyma - Fac facial nucleus - GLD dorsal lateral geniculate nucleus - GM medial geniculate body - HVM ventromedial hypothalamic nucleus - IC internal capsule - Lat lateral - Med medial - ML medial lemniscus - mlf medial longitudinal fasciculus - OSL superior olivary nucleus - PB parabrachial complex - ped cerebral peduncle - PFP parafascicular nuclei - Pu putamen - RaD dorsal raphe nucleus - rfl fasciculus retroflexus - RN red nucleus - SN substantia nigra - SNc substantia nigra, pars compacta - SNr substantia nigra, pars reticulata - STh subthalamic nucleus - Tect tectum - TgV ventral tegmental area - TrMo motor trigeminal nucleus - xVB ventrobasal nucleus of thalamus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号