首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast growth factor (FGF)-2 is an established neurotrophic factor for dopaminergic (DAergic) neurons in the ventral midbrain. Its survival and differentiation-promoting effects on DAergic neurons in vitro and in vivo are crucially dependent on the presence, numerical expansion and maturation of astroglial cells. We show now that transforming growth factor (TGF)-β, an established trophic factor for DAergic neurons and product of astroglial cells, mediates the trophic effect of FGF-2 on DAergic neurons cultured from the embryonic rat midbrain floor. Antibodies to TGF-β that neutralize the isoforms -β1, -β2 and -β3 abolish the trophic effect of FGF-2. FGF-2 increases TGF-β3 mRNA and amounts of biologically active TGF-β determined in a mink lung epithelial cell assay in a time-dependent manner. FGF-2 also induces levels of active TGF-β in neonatal rat astrocytes cultured from midbrain, striatum and cortex. We conclude that TGF-β is required for mediating the survival promoting effect of FGF-2 on DAergic and, possibly, cortical and striatal neurons grown in the presence of glial cells.  相似文献   

2.
Fibroblast growth factor (FGF)-2 is an abundant astroglial cytokine. We have previously shown that FGF-2 downregulates gap junctions in primary astroglial cultures (B. Reuss et al., 1998, Glia 22, 19-30). We demonstrate now that FGF-2 induces astroglial dopamine (DA) sensitivity and D1 dopamine-receptor (D1DR) antigen and message in cortical and striatal astroglial cultures. On the functional level 10 micromol/L DA triggered transient increases in astroglial [Ca(2+)](i). In gap-junction-coupled cells, no FGF-2-dependent changes in proportions of DA-responsive cells were observable. However, uncoupling with octanol or 18alpha-glycirrhetinic acid isolated the smaller population of astrocytes intrinsically sensitive to DA which was significantly increased by FGF-2 in cortical and striatal cultures. Administration of DR-specific substances revealed that FGF-2 upregulated D1DR. These results indicate that downregulation of astroglial gap junctions by FGF-2 is accompanied by an upregulation of D1DR and DA sensitivity, adding a new aspect to the role of FGF-2 in the regulation of brain functions.  相似文献   

3.
At focal CNS injury sites, several cytokines accumulate, including ciliary neurotrophic factor (CNTF) and interleukin-1beta (IL-1beta). Additionally, the CNTF alpha receptor is induced on astrocytes, establishing an autocrine/paracrine loop. How astrocyte function is altered as a result of CNTF stimulation remains incompletely characterized. Here, we demonstrate that direct injection of CNTF into the spinal cord increases GFAP expression and astroglial size and that primary cultures of spinal cord astrocytes treated with CNTF, IL-1beta, or leukemia inhibitory factor exhibit nuclear hypertrophy comparable to that observed in vivo. Using a coculture bioassay, we further demonstrate that CNTF treatment of astrocytes increases their ability to support ChAT(+) ventral spinal cord neurons (presumably motor neurons) more than twofold compared with untreated astrocytes. Also, the complexity of neurites was significantly increased in neurons cultured with CNTF-treated astrocytes compared with untreated astrocytes. RT-PCR analysis demonstrated that CNTF increased levels of FGF-2 and nerve growth factor (NGF) mRNA and that IL-1beta increased NGF and hepatocyte growth factor mRNA levels. Furthermore, both CNTF and IL-1beta stimulated the release of FGF-2 from cultured spinal cord astrocytes. These findings demonstrate that cytokine-activated astrocytes better support CNS neuron survival via the production of neurotrophic molecules. We also show that CNTF synergizes with FGF-2, but not epidermal growth factor, to promote DNA synthesis in spinal cord astrocyte cultures. The significance of these findings is discussed by presenting a new model depicting the sequential activation of astrocytes by cytokines and growth factors in the context of CNS injury and repair.  相似文献   

4.
The protective role of basic fibroblast growth factor (FGF-2) for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- and methylpyridiniumion (MPP+)-lesioned dopaminergic (DAergic) nigrostriatal neurons was studied, using dissociated cell cultures of embryonic day (E) 14 rat mesencephalon. Cells were grown in different culture media and received FGF-2 (5 ng/ml) and/or the toxins (5 μM) at various schedules, but were consistently allowed to differentiate for 3 days prior to becoming exposed to the toxin. Survival of tyrosine hydroxylase (TH)-immunoreactive cells at 7 days was only markedly impaired by MPTP, if horse serum (HS) or bovine serum albumine (BSA) were omitted from the culture medium. FGF-2 increased the number of TH-immunoreactive cells, and this increase not diminished by MPTP under any culture condition. Uptake of 3H-DA was significantly reduced by MPTP in HS- and BSA-containing, but not in protein-less cultures. A protective effect by FGF-2 was only seen in the presence of BSA. MPP+ caused a more pronounced reduction in 3H-DA uptake than MPTP, and this effect was partially reversed by the addition of FGF-2, unless cultures contained HS. Neurofilament protein (NF), an indirect measure for the total number of neurons present in the cultures, was not significantly reduced by MPTP or MPP+ corroborating the specificity of the toxin for DAergic neurons, which constitute only a minor fraction in these cultures. In line with the wide spectrum of target neurons of FGF-2, this factor significantly increased NF contents under any culture condition. Quantification of the amounts of glial fibrillary acidic protein (GFAP) revealed stimulatory effects of FGF-2 (2.5- to 4-fold) and at least 10-fold higher levels in the presence as compared to the absence of HS. These data show that FGF-2 can protect DAergic neurons against MPTP- and MPP+-mediated damage. However, the effects of the toxins as well as of FGF-2 are partially dependent on culture conditions. Variations in the effectiveness of toxins and FGF-2 are not overtly related to the total numbers of neurons or astroglial cells, but may reflect culture type-dependent alterations of neuronal and glial metabolism. © 1993 Wiley-Liss, Inc.  相似文献   

5.
In addition to dopaminergic (DAergic) neurons, which possess all of the enzymes of dopamine synthesis (DA), there are neurons that express only one of the enzymes, tyrosine hydroxylase (TH) or aromatic L-amino acid decarboxylase (AAAD). These so-called monoenzymatic neurons are widely distributed in the brain and, in some areas, are even more numerous than dopaminergic (DAergic) neurons. Using in an vitro experimental approach that we developed it was first demonstrated that monoenzymatic neurons that contain complementary enzymes of DA synthesis, TH and AAAD, co-synthesize DA. L-3,4-dihydroxyphenylalanine (L-DOPA), which is synthesized from L-tyrosine in monoenzymatic TH-containing neurons, is transferred to monoenzymatic AAAD-containing neurons, where L-DOPA is converted to DA. We have also shown that cooperative synthesis of DA, although performed in some parts of the brain in the norm, is predominantly a manifestation of neuroplasticity in pathology. This additional source of DA synthesis contributes to compensation of the DA deficit, which occurs in neurodegenerative diseases such as hyperprolactinemia and Parkinson’s disease, whose pathogenesis is associated with degeneration of dopaminergic (DAergic) neurons. It is also possible that L-DOPA, which is secreted by monoenzymatic TH-containing neurons, plays the role of a neurotransmitter or neuromodulator and acts on target neurons through receptors to L-DOPA, DA, and norepinephrine. Thus, numerous non-dopaminergic monoenzymatic neurons, which are widely distributed in the brain, jointly synthesize DA, which is the most important mechanism of neuroplasticity; this compensates for the DA deficit during the degeneration of DAergic neurons.  相似文献   

6.
We examined the expression of fibroblast growth factor-18 (FGF-18) in the rat brain during postnatal development by in situ hybridization. FGF-18 was transiently expressed at the early postnatal stages in various regions of the rat brain including the cerebral cortex and hippocampus. FGF-18 in the brain was preferentially expressed in neurons but not in glial cells. To elucidate the role of FGF-18 in the brain, we examined the ligand-specificity of FGF-18 by the BIAcore system. FGF-18 was found to bind to FGF receptors (FGFRs)-3c and -2c but not to FGFR-1c, suggesting that FGF-18 acts on glial cells but not on neurons. Therefore, we examined the mitogenic activity of FGF-18 for cultured rat astrocytes and microglia. FGF-18 was found to have mitogenic activity for both astrocytes and microglia. We also examined the neurotrophic activity of FGF-18 for cultured rat cortical neurons. FGF-18 was found to have no neurotrophic activity. The present findings indicated that FGF-18 is a unique FGF that plays a role as a neuron-derived glial cell growth factor in early postnatal development when gliogenesis occurs.  相似文献   

7.
目的:观察左旋多巴和DA对中脑原代培养细胞的毒性作用。方法:采用大鼠胚胎中脑原代细胞培养法,运用TH免疫荧光染色和[^3H]DA摄取率检测DA能神经元的存活数和功能;GFAP免疫荧光染色检测星形胶质细胞的存活数;以及MTT检测非DA能神经元的存活数。结果:左旋多巴或DA处理后的TH阳性和GFAP阳性细胞数以及细胞存活率均显著低于加药前基数,且呈剂量依赖性;同时残存细胞体积变小,突起减少,变短或断裂。TH阳性细胞和GFAP阳性细胞比非DA能神经元更易受损。结论:左旋多巴和DA对中脑原代细胞培养中的DA能神经元和非DA能神经元均有毒性作用。  相似文献   

8.
Fibroblast growth factor (FGF)-2 is a peptide growth factor that promotes the generation, differentiation, and survival of neurons and glial cells. In the CNS, astroglial cells are coupled in a region-specific manner by gap junctions consisting of connexin 43 (cx43). In the present study we have investigated effects of FGF-2 and of other growth factors on the expression and function of cx43 in astroglial cells cultured from telencephalic cortex, striatum, and mesencephalon of newborn rats. Confluent cultures were maintained for two days in low serum, and then exposed to FGF-2 (10 ng/ml) for 48 h. FGF-2 caused a reduction of cx43-protein, -mRNA, and intercellular communication revealed by dye spreading. These changes occurred in cortical and striatal cells, but not in mesencephalic astroglial cells. Effects of FGF-2 were time- and concentration-dependent, with a minimal effective dose of 1 ng/ml FGF-2, and an onset of effects after 6 h of incubation. The reduction of coupling by FGF-2 was transient, since in cortical and striatal cultures coupling recovered to control levels 48 h after removal of the growth factor. Like FGF-2, transforming growth factor-β3 (TGF-β3) decreased coupling of cortical and striatal, but not mesencephalic astroglial cells. Astroglial cells from all brain regions showed a slight FGF-mediated increase in 5-bromo-2′-desoxy-uridine (BrdU) incorporation, which was abolished upon co-treatment with TGF-β3. However, TGF-β3 did not interfere with the repression of cx43-function by FGF-2. Epidermal growth factor (EGF) that has been demonstrated to influence coupling in other cell types had no effect on dye spreading but significantly increased BrdU incorporation. Our results reveal a novel function of FGF-2 on cultured astroglial cells which may be relevant to the regulation of astroglial cell connectivity in vivo. GLIA 22:19–30, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Lithium, the most prevalent treatment for manic-depressive illness, might have a neuroprotective effect after brain injury. In culture, lithium can exert neurotoxic effects associated with reduction in polyamine synthesis but neuroprotective effects as cultured neurons mature. Cumulative evidence suggests that lithium may exert some of its effects on neurons indirectly, by initially acting on glial cells. We used rat cerebellar cultures to ascertain the effects of lithium on ornithine decarboxylase (ODC) activity, the enzyme catalyzing the first step in polyamine synthesis, and to compare effects of lithium with those of the ODC inhibitor alpha-difluoromethylornithine (DFMO) on neuron survival and glial growth. Switching cultures from high (25 mM) to low (5 mM) KCl concentrations served as the traumatic neuronal insult. The results indicate the following. 1) Whereas high depolarizing KCl concentration enhances neuron survival, it inhibits astroglial growth. 2) Lithium (LiCl; 1-5 mM) enhances neuronal survival but inhibits astroglial growth. 3) Lithium treatment leads to reduced ODC activity. 4) DFMO enhances neuron survival but inhibits astroglial growth. 5) Lithium and DFMO lead to transformation of astroglia from epithelioid (flat) to process-bearing morphology and to increased numbers of microglia. 6) Combined lithium plus DFMO treatment is cytolethal to both neurons and glia in culture. In conclusion, lithium treatment results in growth retardation and altered cell morphology of cultured astroglia and increased microglia proliferation, and these effects may be associated with inhibition of polyamine synthesis. This implies that direct effects on astrocytes and microglia may contribute to the effects of lithium on neurons.  相似文献   

10.
Basic fibroblast growth factor (FGF-2) is a physiological relevant neurotrophic factor in the nigrostriatal system and hence a promising candidate for the establishment of alternative therapeutic strategies in Parkinson's disease. FGF-2 and its high-affinity receptors (FGFR) display an expression in the developing, postnatal, and adult substantia nigra (SN) and in the striatum. Exogenous application promoted survival, neurite outgrowth and protection from neurotoxin-induced death of dopaminergic (DA) neurons both in vitro and in vivo. In animal models of Parkinson's disease, co-transplantation of fetal DA cells with FGF-2 expressing cells increased survival and functional integration of the grafted DA neurons resulting in improved behavioral performance. Analyzing the physiological function of the endogenous FGF-2 system during development and after neurotoxin-induced lesion revealed for the DA neurons of the SNpc a dependence on FGFR3 signaling during development. In addition, in the absence of FGF-2 an increased number of DA neurons was found, whereas enhanced levels of FGF-2 resulted in a reduced DA cell density. Following neurotoxin-induced lesion of DA neurons, FGF-2-deleted mice displayed a higher extent of DA neuron death whereas in FGF-2 overexpressing mice more DA neurons were protected. According to the data, FGF-2 seems to promote DA neuron survival via FGFR3 during development, whereas absence of this ligand could be compensated by other members of the FGF family. In contrast, in the adult organism, FGF-2 cannot be compensated by other factors under lesion conditions suggesting a central role for this molecule in the nigrostriatal system.  相似文献   

11.
Using in vitro techniques, we looked for a possible downregulation of rat astroglia proliferation by neuronal cells. We demonstrate that medium conditioned by 7-day-old rat cerebellar granule neurons or by 16-day-old rat embryo hippocampal neurons strongly inhibits the proliferation of cultured astroglial cells. Two neuronal cell lines, the PC12 rat pheocromocytoma and the neuro 2A (N2A) murine neuroblastoma also release such an activity. This release in N2A-conditioned medium (CM) occurs when the cells are at high density and show a low proliferation rate. This activity is present in media conditioned by neuronal cells, but not in media conditioned by normal astrocytes, by two glioma cell lines, or by one fibroblastic cell line. This proliferation inhibitor addresses normal astrocytes: the proliferation of two glioma cell lines, of a fibroblastic cell line, and of the two neuronal cell lines (PC12, N2A) is not inhibited by N2A CM. Moreover, this activity is directed against type 1 astrocytes, but not against type 2. Using three different assays, we demonstrate that DNA synthesis by astroglial cells is inhibited. N2A CM has no cytotoxic effect on astrocytes and does not modify their overall protein synthesis. Using affinity and gel filtration chromatography, we show that this activity is associated with a protein whose molecular weight ranges between 15 and 20 kDa. The possible relationship between this N2A cell-derived astroglia proliferation inhibitor and other types of potential glial proliferation inhibitors has been investigated. A brain glycoprotein immunologically related to epidermal growth factor receptor (EGFR) was reported to inhibit astroglial cell proliferation in vitro. Using polyclonal and monoclonal antibodies against EGFR, we were unable to immunoprecipitate the astrocyte proliferation inhibitor in N2A CM or to demonstrate by immunoblotting the presence of an EGFR-like immunoreactivity in the N2A CM or in the active chromatographic fractions of N2A CM. Transforming growth factor beta (TGF beta) is a well-known modulator of the proliferation of various cell types and was shown to be present in N2A CM. Using a polyclonal anti-TGF beta antibody that recognizes TGF beta on Western blots of N2A CM, we were unable to immunoprecipitate the astrocyte proliferation inhibitor of N2A CM. It seems thus far that the neuronal astroglia proliferation inhibitor is a new protein for which we propose the name astrostatine.  相似文献   

12.
To understand what kind of trophic factors are up-regulated in dopamine (DA)-depleted striatum, we first analysed the up-regulation of mRNAs using a DNA microarray in DA-depleted striatum where DAergic inputs were denervated by 6-OHDA. We then investigated whether or not such trophic factors had an effect on cultured dopaminergic neurons. The microarray analysis revealed that pleiotrophin (PTN), glial-derived neurotopic factor (GDNF) and others were up-regulated in DA-depleted striatum. As PTN has been reported to have a wide range of trophic effects on neurons, we focused on the functional role of PTN in the present study. The increase in PTN mRNA was confirmed by Northern blotting at 1-3 weeks after the lesion, reaching a peak at 1 week. In embryonic day 15 mesencephalic neuron culture, PTN increased the number of tyrosine hydroxylase (TH) -positive neurons in a dose-dependent manner (125.2 +/- 2.0% of the control at 50 ng/mL), while a family protein, midkine (10 ng/mL) did not show any trophic effect (99.3 +/- 0.7%). In addition, the PTN effect on DAergic neurons was additive to the GDNF effect. As PTN did not increase the number of microtubule-associated protein-2 (MAP 2)-positive neurons or promote the proliferation of dopaminergic progenitors in a bromodeoxyuridine (BrdU) labelling study, the effect appeared to enhance the specific survival of dopaminergic neurons. Expression of PTN receptors (syndecan-3, PTP-zeta) was detected on the cultured mesencephalic neurons, and also up-regulated in DA-depleted striatum. The data indicate that PTN is up-regulated in DA-depleted striatum and exhibits a trophic effect specifically on the survival of cultured dopaminergic neurons.  相似文献   

13.
Basic fibroblast growth factor (bFGF; FGF-2) has potent trophic effects on developing and toxically impaired midbrain dopaminergic (DAergic) neurons which are crucially affected in Parkinson's disease. The trophic effects of FGF-2 are largely indirect, both in vitro and in vivo, and possibly involve intermediate actions of astrocytes and other glial cells. To further investigate the cellular and molecular mechanisms underlying the restorative actions of FGF-2, and to analyse in more detail the changes within astroglial cells in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-lesioned striatum, we have studied striatal expression and regulation of connexin-43 (cx43), the principal gap junction protein of astroglial cells, along with the expression of glial fibrillary acidic protein (GFAP), FGF-2, and functional coupling. Our results show an immediate, yet transient increase in cx43 mRNA, and a sustained increase in FGF-2 mRNA, GFAP-positive cells, and cx43-immunoreactive punctata following the MPTP lesion, without any induction of functional coupling between astrocytes and other glial cells as revealed by dye coupling of patched cells. Unilateral administration of FGF-2 in a piece of gelfoam caused a further increase in cx43-positive punctata immediately adjacent to the implant, which was more pronounced than after application of a gelfoam containing the non-trophic control protein in cytochrome C. These changes were parallelled by a small increase in cx43 protein determined by Western blot, but not by alterations in the coupling state of cells in the vicinity of the gelfoam implant. Although our data indicate that MPTP and exogenous FGF-2 may alter expression and protein levels of cx43, they do not support the notion that increases in cellular coupling may underly the trophic and widespread actions of FGF-2 in the MPTP-model of Parkinson's disease. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Reuss B  Hertel M  Werner S  Unsicker K 《Glia》2000,30(3):231-241
Astroglial cells contribute to neuronal maintenance and function in the normal and diseased brain. Gap junctions formed predominantly by connexin43 (cx43) provide important pathways to coordinate astroglial responses. We have previously shown that fibroblast growth factor (FGF)-2, which occurs ubiquitously in the CNS, downregulates gap junction communication in cortical and striatal, but not in mesencephalic astroglial cells in vitro (Reuss et al. Glia 22:19-30, 1998). Other members of the FGF family expressed in the CNS include FGF-5 and FGF-9. We show that both FGF-5 and FGF-9, like FGF-2, downregulate astroglial gap junctions and functional coupling. However, their effects are strikingly different from different brain regions, with regard to astroglial cells. FGF-5 specifically affects mesencephalic astroglial cells without changing coupling of cortical and striatal astroglia, while FGF-9 reduces gap junctional coupling in astroglia from all three brain regions. Both cx43 mRNA and protein levels as well as functional coupling assessed by dye spreading are affected. To clarify whether brain region-specific effects of FGFs on astroglial coupling are due to differential expression of FGF receptors (FGFR), we monitored expression of the four known FGFR mRNAs in astroglial cultures by RT-PCR. Irrespective of their regional origin, astroglial cells express mRNAs for FGFR-2 and FGFR-3. In summary, our results provide evidence for an important role of FGF-2, -5, and -9 in a distinct, CNS region-specific regulation mechanism of astroglial gap junction communication. The molecular basis underlying the regionally distinct responsiveness of astrocytes to different FGFs may be sought beyond distinct FGFR expression.  相似文献   

15.
16.
Neurons from embryonic (E18) rat hippocampus were chosen to identify and characterize neurite growth-stimulating proteins accumulating in serum-free conditioned media (CM) obtained from primary or secondary cultures of cerebral astrocytes (less than 5% nonglial cells) using a quantitative cell culture bioassay. CM were fractionated by FPLC on an anion exchange column (Mono Q) and by gel filtration (Superose 6). Column fractions were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, immunoblotting and enzyme-linked immunosorbent assay (ELISA) using antibodies to laminin (LN) and fibronectin (FN). The neurite-promoting activity (NPA) was tested by incubating aliquots of the eluted fractions with poly-L-lysine precoated glass coverslips prior to addition of neurons suspended in chemically defined medium. We provide evidence that the NPA in astroglial CM could be assigned mainly to a negatively charged, highly sulfated LN complex consisting predominantly of the B-chains of LN and presumably a sulfated proteoglycan that was sensitive for chondroitinase and to a lower degree to heparinase degradation. In addition, a smaller proportion of the NPA was associated with uncomplexed LN and free FN. FN reached approximately 10 times the concentration of LN in astroglial CM. As revealed by immunofluorescence microscopy, both LN and FN are simultaneously expressed by cultured astrocytes; however, only the production of FN, measured by ELISA, increased during the time astrocytes were in culture, whereas the release of LN remained unchanged. We conclude that, besides the most active LN complex, FN bound to a polycationic matrix is able to induce neurite growth in hippocampal neurons in vitro.  相似文献   

17.
Peripheral nerve injury leads to the activation of spinal cord astrocytes, which contribute to maintaining neuropathic (NP) pain behavior. Fibroblast growth factor-2 (FGF-2), a neurotrophic and gliogenic factor, is upregulated by spinal cord astrocytes in response to ligation of spinal nerves L5 and L6 (spinal nerve ligation [SpNL]). To evaluate the contribution of spinal astroglial FGF-2 to mechanical allodynia following SpNL, neutralizing antibodies to FGF-2 were injected intrathecally. Administration of 18 microg of anti-FGF-2 antibodies attenuated mechanical allodynia at day 21 after SpNL and reduced FGF-2 and glial acidic fibrillary protein mRNA expression and immunoreactivity in the L5 spinal cord segment of rats with SpNL. These results suggest that endogenous astroglial FGF-2 contributes to maintaining NP tactile allodynia associated with reactivity of spinal cord astrocytes and that inhibition of spinal FGF-2 ameliorates NP pain signs.  相似文献   

18.
Chromaffin cells grafted to the brain of animals with experimental parkinsonism and patients with Parkinson's disease can restore nigrostriatal functions. Mechanisms underlying these beneficial effects are unknown, but may include growth factors rather than the minute amounts of dopamine (DA) liberated from chromaffin cells. We now report that protein from chromaffin granules, which release their contents by exocytosis, promotes survival and uptake of 3H-DA of mesencephalic DAergic neurons in vitro and protect against N-methylpyridinium ion toxicity. This neurotrophic effect is accompanied by cell proliferation and mediated by astroglial cells induced in these cultures. Inhibition of cell proliferation and concomitant astrogliosis by 5-fluorodeoxyuridine and α-aminoadipic acid abolishes the trophic effect. Two highly specific inhibitors of the epidermal growth factor receptor (EGFR) signal transduction pathway, 4,5-dianilinophthalimide (10 μM) and tyrphostin B56 (10 μM), selectively block the neurotrophic capacity of chromaffin granule protein. As expected, they also block the mitogenic effects of EGF and TGF-α. However, these two mitogens do not mimic the pronounced mitogenic and trophic actions of chromaffin granule protein. Culture medium conditioned by mesencephalic cells pretreated with chromaffin granule protein promotes survival of DAergic neurons without increasing numbers of astroglial cells. The effective molecule is unlikely to be glial cell line-derived neurotrophic factor, whose mRNA is not detectable in cultures treated with chromaffin granule protein. We conclude that chromaffin granules contain a putatively novel growth factor, which signals through the EGFR and may be responsible for the known protective and restorative actions of chromaffin cell grafts to the lesioned nigrostriatal system. J. Neurosci. Res. 48:18–30, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Fibroblast growth factor-2 (FGF-2), locally administered in gelfoam to the striatum of mice treated with the neurotoxic drug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), has restorative and neuroprotective effects on dopaminergic neurons and associated striatal transmitter systems. Most of the beneficial alterations are apparently indirect. FGF-2 must therefore act through a series of cellular and molecular intermediate steps, which have not been explored. We have previously shown that FGF-2 does not significantly affect the astroglial reaction at the time, when the neuroprotective effect of FGF-2 reaches a peak (Day 11). In this study we have investigated the effect of FGF-2 at earlier time points after MPTP treatment. We report now that as early as 6 h after administration of the gelfoam containing either FGF-2 or control protein, FGF-2 immunoreactivity disappears from astroglial nuclei, while appearing in small ramified GFAP- and S-100-negative cells, most likely microglia. At 18 h, numbers and staining intensities of GFAP-ir astroglial cells are greater in FGF-2- than in cytochrome C-treated animals. At this time FGF-2-ir reappears in astroglia nuclei of cytochrome C-treated animals, but remains undetectable in the striatum carrying the FGF-2-containing gelfoam. Ramified GFAP/S-100-negative presumed microglial cells are now intensely ir for FGF-2. Signs of an FGF-2-mediated astrogliotic reaction are very pronounced at 18 h and 2 days, but no longer at 11 days, when the astrogliosis reaction has become equally strong in FGF-2- and cytochrome C-treated striata. Our results suggest that administration of FGF-2 to the MPTP-lesioned striatum has early effects on astro- and presumed microglia cells, notably on the nuclear FGF-2-ir of astrocytes. These changes may be involved in mediating the neuro-protective effects of FGF-2 in the MPTP-model of Parkinsonism.  相似文献   

20.
The effect of fibroblast growth factor-2 (FGF-2) on synapse formation was investigated using rat cultured hippocampal neurons. Treatment with FGF-2 (0.4-10 ng/mL) for 6 days enhanced synaptogenesis on these neurons by approximately 50%, as determined by counting puncta immunostained for presynaptic- or postsynaptic-specific proteins. This enhancement was statistically significant, and was abolished by a specific inhibitor of mitogen-activated protein kinase (MAPK). The majority of neurons expressed FGF receptors (types 1-3) abundantly on the membrane of somata, dendrites, and growth cones, and in these regions phosphorylation of MAPK was enhanced after FGF-2 application. Furthermore, our experiments showed that the majority of synapses formed in cultures containing FGF-2 were positive both for presynaptic proteins and postsynaptic excitatory synapse-specific proteins, and that these synapses had a similar capacity to recycle the fluorescent styryl dye FM4-64 as those in the control culture. These results indicate that: (i) FGF-2 increases excitatory synapses on hippocampal neurons by activating MAPK activity through FGF receptors; and (ii) synapses formed in FGF-2-treated culture are capable of cycling vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号