首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Trees of the family Oleaceae are important allergen sources, with a strongly varying geographic distribution. For example, olive pollen is an important allergen source in Mediterranean countries, whereas ash pollen dominates in Northern and Central Europe and North America. The aim of this study was to compare the profiles of olive and ash pollen allergens and to study the degree of cross-reactivity using populations of allergic patients selectively exposed to olive or ash pollen. METHODS: Olive and ash pollen extracts were analyzed by IgE immunoblotting using sera from Spanish patients highly exposed to olive pollen and Austrian patients without olive but ash pollen exposure. IgE cross-reactivity was studied by qualitative immunoblot inhibition assays and semiquantitative ELISA inhibitions using olive, ash, birch, mugwort, timothy grass pollen extracts and the major olive pollen allergen, Ole e 1. RESULTS: Spanish and Austrian patients exhibited an almost identical IgE-binding profile to olive and ash pollen allergens, with major reactivity directed against Ole e 1, and its homologous ash counterpart, Fra e 1. IgE inhibition experiments demonstrated extensive cross-reactivity between olive and ash pollen allergens. However, whereas cross-reactions between profilins and calcium-binding allergens also occurred between unrelated plant species, cross-reactivity to Ole e 1 was confined to plants belonging to the Oleaceae. CONCLUSIONS: Ole e 1 is a marker allergen for the diagnosis of olive and ash pollen allergy.  相似文献   

2.
Characteristics and immunobiology of grass pollen allergens   总被引:12,自引:0,他引:12  
Grass pollens are one of the most important airborne allergen sources worldwide. About 20 species from five subfamilies are considered to be the most frequent causes of grass pollen allergy, and the allergenic relationships among them closely follow their phylogenetic relationships. The allergic immune response to pollen of several grass species has been studied extensively over more than three decades. Eleven groups of allergens have been identified and described, in most cases from more than one species. The allergens range from 6 to 60 kD in apparent molecular weight and display a variety of physicochemical properties and structures. The most complete set of allergens has so far been isolated and cloned from Phleum pratense (timothy grass) pollen. Based on the prevalence of IgE antibody recognition among grass pollen-sensitized individuals, several allergens qualify as major, but members of two groups, groups 1 and 5, have been shown to dominate the immune response to grass pollen extract. Isoform variation has been detected in members of several of the allergen groups, which in some cases can be linked to observed genetic differences. N-linked glycosylation occurs in members of at least three groups. Carbohydrate- reactive IgE antibodies have been attributed to grass pollen sensitization and found to cross-react with glycan structures from other allergen sources, particularly vegetable foods. Another cause of extensive cross-reactivity are the group 12 allergens (profilins), which belong to a family of proteins highly conserved throughout the plant kingdom and present in all tissues. Members of eight allergen groups have been cloned and expressed as recombinant proteins capable of specific IgE binding. This development now allows diagnostic dissection of the immune response to grass pollen with potential benefits for specific immunotherapy.  相似文献   

3.
Background Specific immunotherapy is the only causal treatment of allergy available today. Traditionally, therapeutic products based on either a single grass species or a mix of such extracts are used for grass pollen immunotherapy. Investigations comparing the immunological response to these allergen preparations are needed to ensure optimal treatment. The objective of this study was to investigate patterns of T and B cell cross-reactivity to Pooideae single-species extracts and to extract mixes.
Methods IgG4 induced by immunotherapy with Phleum pratense extract was investigated for cross-reactivity using nine single-species extracts and four mixes. For the mixes, studies of IgE cross-reactivity were also performed. T cell cross-reactivity was investigated in lines specific to nPhl p 1 or nPhl p 5 allergens, and the amounts of group 1 and 5 allergens in the extracts were quantified by a single radial immunodiffusion.
Results The levels of treatment-induced IgG4 detected by all the extracts displayed a clear correlation to that detected by the P. pratense pollen extract. The IgE studies confirmed the cross-reactivity of P. pratense -specific B cells towards the allergens contained in the mixes, and the T cell studies demonstrated cross-reactivity towards group 1 and 5 major allergens in extracts of six temperate grass species.
Conclusion Extensive T and B cell cross-reactivity was observed towards the allergens of the Pooideae grasses, and the degree of B cell cross-reactivity was independent of the number of species included in the extract mixes. This implies that treatment with pollen extract of just one Pooideae species will affect the allergic responses caused by any of the temperate grasses in this subfamily.  相似文献   

4.
OBJECTIVE: To provide guidelines for the rational formulation of allergen immunotherapy extracts based on knowledge of pollen allergen and epitope cross-reactivity. DATA SOURCES: A PubMed search was performed for articles published from 1966 to 2007 using the keywords pollen, allergen, and cross-reactivity. Older literature was found through cross-referencing of older articles and older reviews on pollen cross-reactivity. Study Selection: Articles that dealt with crude pollen extracts and characterized allergens that addressed cross-reactivity were selected for inclusion in this review. RESULTS: In addition to unique allergens, several families of botanic proteins have similarities that allow them to act as pan-allergens. Although frequently these are minor allergens, in some circumstances they may also be major allergens. Recent studies have investigated nonspecific lipid transfer proteins, calcium-binding proteins, pathogenesis-related protein families, and profilins. Calcium-binding proteins and nonspecific lipid transfer proteins are responsible for pollen-fruit interactions and pollen cross-reactivity. Clarification of pollen allergen enzymatic activity helps explain the ubiquitous nature of these proteins. CONCLUSION: Characterization of specific pollen allergens and their protein families has provided insight into cross-reactivity. Clarification of these relationships allows for consolidation or substitution in formulation of inhalant extracts.  相似文献   

5.
BACKGROUND: Sera of patients allergic to olive (Olea europaea) pollen were used to analyze the IgE cross-reactivity between olive-pollen extract and other pollens obtained from phylogenetically unrelated species. METHODS: We used IgE immunostaining of pollen extracts blotted to nitrocellulose membranes after SDS-PAGE and inhibition analysis of this binding. RESULTS: A high inhibition of the IgE binding on olive-pollen extract was exhibited by birch, mugwort, pine, and cypress pollens, suggesting that these extracts contain proteins which share common epitopes and thus can be recognized by olive-allergic sera. IgE binding to Gramineae pollen extracts was not inhibited by olive-pollen extract, indicating a primary sensitization of the patients to these species. From the inhibition assays, the presence of an allergen of 45 kDa in the olive pollen, which has no homologous counterparts in other allergenic species, has been inferred. CONCLUSIONS: Olive pollen contains allergens which cross-react with pollens from unrelated species, a fact that could simplify the diagnosis and treatment of pollinosis.  相似文献   

6.
BACKGROUND: Ash, a wind-pollinated tree belonging to the family Oleaceae, is distributed world-wide and has been suggested as a potent allergen source in spring time. OBJECTIVE: The aim of this study was to determine the profile of allergen components in ash pollen in order to refine diagnosis and therapy for patients with sensitivity to ash pollen METHODS: The IgE reactivity profile of 40 ash pollen-allergic patients was determined by immunoblotting. Antibodies raised to purified pollen allergens from tree and grass pollens were used to identify cross-reactive structures in ash pollen extract. IgE immunoblot inhibition studies were performed with recombinant and natural pollen allergens to characterize ash pollen allergens and to determine the degree of cross-reactivity between pollen allergens from ash, olive, birch, grasses and weeds. RESULTS: The allergen profile of ash pollen comprises Fra e 1, a major allergen related to the major olive allergen, Ole e 1, and to group 11 grass pollen allergens, the panallergen profilin, a two EF-hand calcium-binding protein, a pectinesterase-like molecule and an allergen sharing epitopes with group 4 grass pollen allergens. Thus, the relevant allergens of ash are primarily allergens that share epitopes with pollen allergens from other tree, grass and weed species. CONCLUSIONS: Allergic symptoms to ash pollen can be the consequence of sensitization to cross-reactive allergens from other sources. The fact that ash pollen-allergic patients can be discriminated on the basis of their specific IgE reactivity profile to highly or moderately cross-reactive allergens has implications for the selection of appropriate forms of treatment.  相似文献   

7.
Pollen from various Fagales tree species prolongs the season and makes tree pollen allergy a major health problem. Despite involving the same causative allergens, allergy immunotherapy (AIT) treatment habits differ significantly across different geographical regions. Diagnosis and treatment with AIT in patients allergic to tree pollen were discussed by a group of German medical experts who give practical recommendations based on the available data. Regulatory perspective: According to current guidelines on allergen products, birch pollen are the representative allergen source of the birch homologous group including several Fagales trees based on sequence and structural similarity of their allergen proteins. Immunological perspective: A high level of IgE cross-reactivity towards allergens from the birch homologous group has been observed in basic research and clinical trials. Clinical perspective: Clinical trial data show that the efficacy of birch pollen AIT is not only related to birch pollen allergy but extends to pollen from other trees, especially alder, hazel and oak. In order to optimize diagnosis and treatment of tree pollen allergy, the experts recommend to focus diagnosis and respective treatment with AIT primarily to birch as the representative allergen of the Fagales tree homologous group, but further diagnostics may be needed for some patients to determine adequate treatment.  相似文献   

8.
The aim of this review is to show the impact of the use of purified and recombinant allergens to discriminate between co- and cross-sensitization to respiratory allergens. The author describes the evolution of diagnostic tests over the last decades; the tests initially allowed the detection of simultaneously positive cutaneous tests and/or simultaneous positivity of specific IgE to different allergen extracts, but they did not differentiate cross-sensitization from co-sensitization. RAST inhibition studies with crude extracts then established cross-reactivity, but did not identify the cross-reactive allergens involved. Later, immunoblot and CRIE inhibition were able to detect multiple cross-reactive allergens and to assess their physicochemical properties. But it is only since purified and recombinant allergens have been used in the different investigations that identification of cross-reactive allergens has been made possible at a molecular level. This historical approach is illustrated by examples selected from some of the main respiratory allergen sources: tree pollen, grass pollen, weed pollen, acarids, cockroaches and mammalians. For each of these allergen sources, the author gives an updated presentation of major and minor cross-reactive allergen molecules and refers to the last decade's major publications concerning immunochemical investigations carried out in the field of cross-reactive respiratory allergens. Emphasis is placed on the clinical applications for allergic patients: improvement in the accuracy of the diagnosis of sensitization, new concepts of immunotherapy based on genetically engineered hypoallergenic variants of cross-reactive allergens used alone or in combination, evaluation of allergen load with environmental tests using monoclonal antibodies against cross-reactive allergens.  相似文献   

9.
OBJECTIVE: To discuss major pollen aeroallergens in North America that are essential for effective immunotherapy and to propose a list of pollen aeroallergens that could be prioritized for allergen standardization. DATA SOURCES: PubMed was used to search the existing medical literature. No date restrictions were used. Keywords included allergy, aeroallergen, taxonomy, cross-reactivity, pollen, and specific genus and species names. RESULTS: Tree species possess relatively unique allergens, and representative members should be chosen at the genus or family level. In the Composite family, there is significant cross-reactivity between ragweed species within the Ambrosia genus. Selection of one species should be sufficient for skin testing and immunotherapy. Extensive allergenic cross-reactivity exists among grasses. Selection of timothy grass alone or in combination with a single northern grass species provides adequate coverage in the northeastern regions of North America. CONCLUSIONS: One of the goals within the field of allergy should be to identify high-priority targets for future development of standardized commercial extracts. The standardization of increasing numbers of allergen extracts potentially benefits the discipline of allergy by facilitating transfer of care among physician practices, improving uniformity of patient care, and providing a template on which geographically specific extract choices can be built.  相似文献   

10.
BACKGROUND: Grass pollen extracts currently used for allergy diagnosis and immunotherapy are a complex mixture of proteins of which only a few have allergenic activity. Lol p 1 is one of the most important allergens in grass pollen extracts. OBJECTIVES: To develop a two-site enzyme-linked immunosorbent assay for the quantification of Lol p 1 and other group 1 allergens from grass species, and to assess its suitability for quantifying this group of allergens. METHODS: Balb/c mice immunized with recombinant Lol p 1 were used for the production of monoclonal antibodies. Screening of hybridomas was performed by direct ELISA, and selected monoclonal antibodies were immobilized on ELISA plates and incubated with samples containing group 1 allergens. Bound allergens were detected by a combination of biotinylated Lol p 1-specific monoclonal antibody and peroxidase-streptavidin conjugate. RESULTS: The assay is based on three Lol p 1-specific monoclonal antibodies with different epitope specificities. The optimized ELISA measured Lol p 1 concentrations ranging from 125 to 1000 ng/mL and could quantify group 1 allergen from grass species belonging to the Pooidea subfamily. The assay does not depend on anti-sera production or availability of human sera and thus reactives can be produced in unlimited amounts. CONCLUSION: This sensitive and specific Lol p 1 assay will be helpful both for quantifying the group 1 allergen content of Pooideae pollen extracts intended for clinical use and for studying cross-reactivities among pollen extracts.  相似文献   

11.
BACKGROUND: Most studies on pollen-related food allergy have so far focused on the association of birch/weed pollen allergens and plant food allergy. The aim of this study was to elucidate the allergen spectrum among a group of grass pollen-allergic patients from northern Europe and to relate the results to clinical histories of pollen-related food allergy. METHODS: Fifty-eight grass pollen-allergic patients answered a questionnaire regarding allergy to foods. Blood samples were taken to test IgE-reactivity to a large panel of pollen allergens and pollen- and nonpollen-related food allergens using crude allergen extracts and recombinant and native allergens. RESULTS: Three different groups of grass pollen-allergic patients were identified according to their IgE antibody profile: a grass pollen group only (19%), a grass and tree pollen group (29%) and a grass, tree and compositae (pan-) pollen group (48%). No sensitization to Bet v 1 as well as almost no IgE to plant food was observed in the grass pollen group. In contrast, nearly all patients in the two tree-related groups had IgE to Bet v 1, which reflected the high frequency of adverse reactions to typical birch-related food in these groups. Only four patients belonging to the pan-pollen group displayed IgE to profilin Phl p 12/Bet v 2. Patients in the pan-pollen group reported significantly more symptoms to food allergens compared with patients in the two other groups. The most frequently reported symptom was the oral allergy syndrome. CONCLUSIONS: Sensitization to grass pollen alone is rare among grass pollen-allergic patients from northern Europe. The majority of patients are in addition sensitized to birch (Bet v 1), which seems to be closely related to their pollen-derived food allergy. The study highlights the advantage of using well-defined allergen molecules for the diagnosis of cross-reactivity between pollen and food allergens.  相似文献   

12.
BACKGROUND: IgE antibodies specific for the major birch-pollen allergen, Bet v 1, cross-react with homologous allergens in particular foods, e.g. apples, carrots and hazelnuts. In a high number of tree pollen-allergic individuals, this cross-reactivity causes clinical symptoms, commonly known as the 'birch-fruit-syndrome'. OBJECTIVE: To characterize the T cell response to the Bet v 1-related major allergen in hazelnuts, Cor a 1.04, and its cellular cross-reactivity with Bet v 1 and the homologous hazel pollen allergen, Cor a 1. METHODS: Using recombinant Cor a 1.04, T cell lines (TCL) and T cell clones (TCC) were established from peripheral blood mononuclear cells of tree pollen-allergic patients with associated food allergy. T cell epitopes were determined using overlapping synthetic peptides in Cor a 1.04-reactive TCL and TCC. In parallel, reactivity to Bet v 1 and Cor a 1 was tested. RESULTS: In total, 20 distinct T cell epitopes on the hazelnut allergen were identified. Several Cor a 1.04-specific TCL and TCC reacted with pollen allergens albeit less pronounced than with the hazelnut allergen. Several Cor a 1.04-specific TCC did not react with pollen allergens. Interestingly, these clones were found to react with the Bet v 1-related major allergen in carrots, Dau c 1. The cellular cross-reactivity between both food allergens could be associated with the most frequently recognized T cell epitope of Cor a 1.04, Cor a 1.04(142-153). CONCLUSIONS: The major hazelnut allergen cross-reacts with the major allergens of birch and hazel pollen but apparently contains a relevant T cell epitope not shared with pollen allergens. Our finding may have important implications for the specific immunotherapy of tree pollen-allergic patients suffering from concomitant hazelnut allergy.  相似文献   

13.
BACKGROUND: Tree pollen contains many allergens showing cross-reactivity to proteins from pollen, seeds, and fruits of different plant species. Amongst Fagales, responsible for several allergenic responses, hazel provides the best material to study pollen as well as food allergens in one species. The aim of this study was to identify and characterize the physiological function of an allergen from hazel pollen and to determine possible cross-reactivity to proteins from hazelnut. METHODS: Monoclonal antibodies (mAbs) against hazel pollen crude extract were produced. On the basis of IgE binding, demonstrated by sera from patients allergic to hazel pollen, one mAb indicating the best correlation has been selected, and the putative allergen was purified by preparative gel electrophoresis. Isoforms were investigated by two-dimensional PAGE, and for molecular identification a hazel pollen cDNA library was constructed. In situ localization of the allergen during pollen development was performed by immunofluorescence labelling. RESULTS: Immunological staining of crude hazel pollen extract with specific IgE and mAb revealed a 70-kD protein. Immunoblot studies with mAb showed cross-reactive proteins of 70-72 kD in different plant tissues and species. After protein purification, the IgE-binding reactivity of the allergen has been reconfirmed, and two isoforms were detected. Molecular cloning identified the allergen as a luminal binding protein (BiP) of the Hsp70 family with 88-92% sequence identity in various plants. Further immunocytological studies indicated involvement of BiP during pollen development. CONCLUSIONS: Chaperons like BiP play an important role in protein synthesis and in the protection of cellular structures during stress-related processes. Because of their highly conserved protein sequences, we propose that such allergens could be responsible for at least a part of the allergenic cross-reactivity between proteins from different pollens and plant foods.  相似文献   

14.
Grass pollen allergy affects approximately 40% of allergic patients. Subcutaneous allergen immunotherapy (SCIT) is the only allergen‐specific and disease‐modifying treatment available. Currently available therapeutic vaccines for the treatment of grass pollen allergy are based on natural grass pollen extracts which are either made from pollen of one cross‐reactive grass species or from several related grass species. Clinical studies have shown that SCIT performed with timothy grass pollen extract is effective for the treatment of grass pollen allergy. Moreover, it has been demonstrated that recombinant timothy grass pollen allergens contain the majority of relevant epitopes and can be used for SCIT in clinical trials. However, recent in vitro studies have suggested that mixes consisting of allergen extracts from several related grass species may have advantages for SCIT over single allergen extracts. Here, we review current knowledge regarding the disease‐relevant allergens in grass pollen allergy, available clinical studies comparing SCIT with allergen extracts from timothy grass or from mixes of several related grass species of the Pooideae subfamily, in vitro cross‐reactivity studies performed with natural allergen extracts and recombinant allergens and SCIT studies performed with recombinant timothy grass pollen allergens. In vitro and clinical studies performed with natural allergen extracts reveal no relevant advantages of using multiple grass mixes as opposed to single grass pollen extracts. Several studies analysing the molecular composition of natural allergen extracts and the molecular profile of patients' immune responses after SCIT with allergen extracts indicate that the major limitation for the production of a high quality grass pollen vaccine resides in intrinsic features of natural allergen extracts which can only be overcome with recombinant allergen‐based technologies.  相似文献   

15.
Background The diagnosis and specific immunotherapy of allergy is currently performed with allergen extracts prepared from natural allergen sources.
Objective To analyse commercial timothy grass pollen allergen extracts used for in vivo diagnosis regarding their qualitative and quantitative allergen composition and in vivo biological activity.
Methods Antibodies specific for eight timothy grass pollen allergens (Phl p 1, Phl p 2, Phl p 4, Phl p 5, Phl p 6, Phl p 7, Phl p 12, Phl p 13) were used to detect these allergens in timothy grass pollen extracts from four manufacturers by immunoblotting. ELISA assays were developed and used to quantify the three major allergens (Phl p 1, Phl p 2, Phl p 5) in the extracts. The magnitude of skin responses to the four extracts was studied by skin prick testing in 10 grass pollen-allergic patients.
Results The allergen extracts showed broad variations in protein compositions and amounts (24.1–197.7 μg/mL extract). Several allergens could not be detected in certain extracts or appeared degraded. A considerable variability regarding the contents of major allergens was found (Phl p 1: 32–384 ng/mL; Phl p 2: 1128–6530 ng/mL, Phl p 5: 40–793 ng/mL). Heterogeneous skin test results were obtained with the extracts in grass pollen-allergic patients.
Conclusions Timothy grass pollen extracts from different manufacturers exhibit a considerable heterogeneity regarding the presence of individual allergens and hence yield varying in vivo test results. Problems related to the use of natural grass pollen allergen extracts may be circumvented by using defined recombinant grass pollen allergens.  相似文献   

16.
BACKGROUND: Determination of the allergen composition of an extract is essential for the improvement of hyposensitization therapy. Surprisingly, although grass pollen extracts have been studied intensively for 20 years, a further major allergen, Phl p 13, was detected recently in timothy grass pollen. OBJECTIVES: We sought to determine the occurrence and importance of group 13 allergens in various grass species and to investigate their proteolytic stability. METHODS: The group 13 allergens were determined by means of 2-dimensional PAGE blotting with patient sera and group 13-specific mAbs. The allergens were isolated chromatographically from several pollen extracts and analyzed by means of microsequencing. Cross-reactivity among various grass species was studied by using Western blots and immunoblot inhibition tests. The stability of the allergens was tested under defined extraction conditions. RESULTS: Group 13 allergens are detectable in all common grasses and show IgE cross-reactivity among them. The allergenic components were identified in the neutral pH range with molecular masses of 50 to 60 kd, and in the case of Phl p 13, maximal binding of the isoforms was observed at 55 kd and at an isoelectric point of 6 to 7.5. Protein sequencing clearly confirms structural identities between different grass species, although individual variations are found. If low-molecular-mass components were depleted by means of gel filtration, a rapid degradation of group 13 allergens was observed. This is in contrast to other pollen allergens described thus far. CONCLUSION: Group 13 allergens are widespread and are major allergens in the grasses. Predicted from their primary structures, these allergens are polygalacturonases. This class of enzymes is already known from microorganisms, and these enzymes are recognized as potential inducers of asthma. Our studies indicate that the group 13 allergens show a considerable microheterogeneity and degradation, especially after depletion of low-molecular-mass components. One has to be aware of this pivotal fact when soluble grass pollen extracts are prepared for diagnostics and hyposensitization therapy.  相似文献   

17.
PURPOSE OF REVIEW: This review will summarize recent research on pollen allergen and epitope cross-reactivity. Knowledge of these relationships aids in the rational formulation of allergen immunotherapy vaccines. RECENT FINDINGS: There has been further clarification of panallergens and their roles as both major and minor allergens. Recent studies have targeted non-specific lipid transfer proteins and calcium-binding proteins (polcalcins), as well as pathogenesis-related protein families and profilins. Polcalcins and non-specific lipid transfer proteins are responsible for pollen-fruit interactions as well as pollen cross-reactivity, in some cases, but not all, accounting for major allergenicity. Delineation of the enzymatic activity of certain allergens explains the ubiquitous nature of these pollen proteins. SUMMARY: Characterization of specific pollen allergens and their protein families has provided insight into the grounds for cross-reactivity. Continuing clarification of these relationships will allow the substitution and consolidation of inhalant extracts as described in the conclusion.  相似文献   

18.
BACKGROUND: Individuals with birch pollen allergy frequently experience hypersensitivity reactions to certain foods, primarily because of IgE antibodies specific for the major birch pollen allergen Bet v 1 that cross-react with homologous food allergens. OBJECTIVE: We sought to characterize the major T-cell epitopes of Bet v 1 and to investigate their involvement in the cellular cross-reactivity with homologous food allergens. METHODS: T-cell epitope mapping of Bet v 1 was performed by testing Bet v 1-specific T-cell lines derived from 57 individuals with birch pollen allergy, with overlapping peptides representing the entire allergen. T-cell lines and T-cell clones were stimulated with Bet v 1-related major allergens from apple (Mal d 1), cherry (Pru av 1), hazelnut (Cor a 1), celery (Api g 1), carrot (Dau c 1), and soybean (Gly m 4) and with peptides deduced from the C-terminal amino acid sequences of these molecules. Results Bet v 1 142-156 , positioned in the highly conserved C-terminal region of Bet v 1, was identified as the major T-cell epitope recognized by 61% of individuals. Most T lymphocytes specific for Bet v 1 142-156 were activated by one or more homologous food proteins or the respective peptides, as indicated by proliferation and cytokine production. CONCLUSION: The major T-cell epitope of Bet v 1, Bet v 1 142-156 , plays an important role in the cellular cross-reactivity between this respiratory allergen and related food allergens. Thus T lymphocytes specific for Bet v 1 142-156 might be activated by various Bet v 1-related food allergens in vivo, even out of the pollen season.  相似文献   

19.
BACKGROUND: The weed Parietaria judaica is one of the most important pollen allergen sources in the Mediterranean area. OBJECTIVE: We sought to identify P judaica pollen allergen, which might be used to serologically distinguish genuine Parietaria sensitization and cross-reactivity to allergens from other weed species (eg, mugwort and ragweed). METHODS: The allergen profile of P judaica IgE-reactive sera from weed pollen-sensitized allergic individuals from the Mediterranean region (n = 36) with high Parietaria pollen exposure and from weed pollen-allergic patients with little or no Parietaria exposure (Austria, n = 42; Scandinavia, n = 8; United States, n = 19) was established by CAP FEIA measurements and by IgE immunoblot inhibition experiments with recombinant allergens. RESULTS: The majority (83%) of the Mediterranean weed pollen-allergic patients mounted high IgE antibody levels (mean specific IgE, 20.89 kUA/L) against recombinant (r) Par j 2, whereas only 7% of the non-Mediterranean weed-allergic patients showed low IgE reactivity to rPar j 2 (mean specific IgE, 1.03 kUA/L). The cytoskeletal protein profilin and a 2-EF-hand calcium-binding allergen were identified as cross-reactive Parietaria allergens, which were recognized preferentially by Parietaria -positive, non-Mediterranean weed pollen-allergic patients. CONCLUSION: rPar j 2 might be used as a diagnostic marker allergen to identify weed pollen-allergic patients who are genuinely sensitized against Parietaria pollen and thus would be particularly suited for specific immunotherapy with Parietaria pollen extract.  相似文献   

20.
Tree pollens are among the most important allergen sources. Allergic cross-reactivity to pollens of trees from various plant orders has so far been classified according to botanical relationships. In this context, cross-reactivities to pollens of trees of the Fagales order (birch, alder, hazel, hornbeam, oak, chestnut), fruits and vegetables, between pollens of the Scrophulariales (olive, ash, plantain, privet, lilac) and pollens of the Coniferales (cedar, cypress, pine) are well established. The application of molecular biology methods for allergen characterization has revealed the molecular nature of many important tree pollen allergens. We review the spectrum of tree pollen allergens and propose a classification of tree pollen and related allergies based on major allergen molecules instead of botanical relationships among the allergenic sources. This molecular classification suggests the major birch pollen allergen, Bet v 1 as a marker for Fagales pollen and related plant food allergies, the major olive pollen allergen, Ole e 1, as a possible marker for Scrophulariales pollen allergy and the cedar allergens, Cry j 1 and Cry j 2, as potential markers for allergy to Coniferales pollens. We exemplify for Fagales pollen allergy and Bet v 1 that major marker allergens are diagnostic tools to determine the disease-eliciting allergen source. Information obtained by diagnostic testing with marker allergens will be important for the appropriate selection of patients for allergen-specific forms of therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号