首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The globus pallidus (GP) contains abundant GABAergic synapses and GABA(B) receptors. To investigate whether synaptically released GABA can activate pre- and postsynaptic GABA(B) receptors in the GP, physiological recordings were performed using rat brain slice preparations. Cell-attached recordings from GABA(A) antagonist-treated preparations revealed that repetitive local stimulation induced a GABA(B) antagonist-sensitive pause in spontaneous firings of GP neurons. Whole cell recordings revealed that the repetitive stimulation evoked fast excitatory postsynaptic potentials followed by a slow inhibitory postsynaptic potential (IPSP) in GP neurons. The slow IPSP was insensitive to a GABA(A) receptor antagonist, increased in amplitude with the application of ionotropic glutamate receptor antagonists, and was suppressed by the GABA(B) antagonist CGP55845. The reversal potential of the slow IPSP was close to the potassium equilibrium potential. These results suggest that synaptically released GABA activated postsynaptic GABA(B) receptors and induced the pause and the slow IPSP. On the other hand, in the neurons that were treated to block postsynaptic GABA(B) responses, CGP55845 increased the amplitudes of repetitive local stimulation-induced GABA(A)-mediated inhibitory postsynaptic currents (IPSCs) but not the ionotropic glutamate-mediated excitatory postsynaptic currents. Moreover, the GABA(B) receptor specific agonist baclofen reduced the frequency of miniature IPSCs without altering their amplitude distributions. These results suggest that synaptically released GABA also activated presynaptic GABA(B) autoreceptors, resulting in decreased GABA release in the GP. Together, we infer that both pre- and postsynaptic GABA(B) receptors may play crucial roles in the control of GP neuronal activity.  相似文献   

2.
Population spikes, population excitatory postsynaptic potentials and intracellular excitatory postsynaptic potentials were recorded in the CA1 area of guinea-pig hippocampal slices in response to low frequency stimulation of the stratum radiatum. Tetanic stimulation of the same afferents during an application of saccharin (10 mM, 10 min) failed to induced a long-term potentiation of the population spike, population excitatory postsynaptic potential and intracellularly recorded excitatory postsynaptic potential. A post-tetanic application of saccharin did not prevent long-term potentiation of the population spike from developing. Saccharin did not change the input resistance, the membrane potential or the ability to induce action potentials in the CA1 neurons. The slope of the intracellular excitatory postsynaptic potentials recorded in normal medium, in normal medium containing 2-amino-5-phosphonovalerate, or in Mg(2+)-free medium containing 6-cyano-7-nitroquinoxaline-2,3-dione was not significantly altered by saccharin. The depolarizations of CAI neurons produced by superfusion of N-methyl-D-aspartate or during a brief tetanic stimulation of the stratum radiation were also not altered by the drug. It therefore appears that saccharin blocks the induction of long-term potentiation by a mechanism that does not involve a blockade of N-methyl-D-aspartate receptors. Application of fluid samples collected from rabbit neocortical surface during a tetanic stimulation of the neocortex caused neurite growth in PC-12 cells, suggesting that growth-related substances were present in the collected samples. If these samples were superfused onto hippocampal slices, long-term potentiation developed. If however, the samples were co-applied with saccharin, neither neurite growth in PC-12 cells nor long-term potentiation in hippocampal slices was observed, raising the possibility that growth-related substances are involved in long-term potentiation.  相似文献   

3.
Chiou LC  Chou HH 《Neuroscience》2000,100(4):829-834
Synaptic transmission evoked by focal stimulation in the ventrolateral periaqueductal gray was characterized using the whole-cell recording technique in rat brain slices. At resting membrane potential (-62+/-1 mV), focal stimulation (0.05-0.1 ms, 0.03 Hz) usually evoked a 6-cyano-7-nitroquinoxaline-2, 3-dione-sensitive fast excitatory postsynaptic potential and a DL-2-amino-5-phosphonopentanoic acid-sensitive slow excitatory postsynaptic potential with a bicuculline-sensitive inhibitory postsynaptic potential in between. In the presence of kynurenic acid, bicuculline-sensitive inhibitory postsynaptic currents recorded in the voltage-clamp mode displayed a reversal potential of -68+/-3 mV, resembling GABA(A) receptor-mediated inhibitory postsynaptic currents. However, no GABA(B) receptor-mediated inhibitory postsynaptic current was evoked, even at stronger stimulating intensity. 6-Cyano-7-nitroquinoxaline-2,3-dione-sensitive fast excitatory postsynaptic currents were isolated by DL-2-amino-5-phosphonopentanoic acid plus bicuculline and DL-2-amino-5-phosphonopentanoic acid-sensitive slow fast excitatory postsynaptic currents by bicuculline plus 6-cyano-7-nitroquinoxaline-2,3-dione. Both types of excitatory postsynaptic current reversed at potentials near 0 mV. The I-V curve of slow fast excitatory postsynaptic currents or N-methyl-D-aspartate currents displayed a negative slope at potentials more negative than -30 mV in an Mg(2+)-sensitive manner. The control postsynaptic currents reversed at potentials between -50 and -35 mV, inclined to the reversal potential of GABA(A), but not glutamate, receptor channels. It is concluded that, in the ventrolateral periaqueductal gray, focal stimulation elicits both inhibitory and excitatory transmission, while the former is dominant. The inhibitory transmission is mediated by GABA(A) but not GABA(B) receptors. The excitatory transmission is mediated by glutamate acting on alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate as well as N-methyl-D-aspartate receptors.  相似文献   

4.
In the present study, possible mechanisms involved in the tetanus-induced potentiation of gamma-aminobutyric acid-A (GABA-A) receptor-mediated inhibitory postsynaptic currents (IPSCs) were investigated using the whole cell voltage-clamp technique on CA1 neurons in rat hippocampal slices. Stimulations (100 Hz) of the stratum radiatum, while voltage-clamping the membrane potential of neurons, induces a long-term potentiation (LTP) of evoked fast IPSCs while increasing the number but not the amplitude of spontaneous IPSCs (sIPSCs). The potentiation of fast IPSCs was input specific. During the period of IPSC potentiation, postsynaptic responses produced by 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride and baclofen, GABA-A and GABA-B agonists respectively, were not significantly different from control. CGP 36742, a GABA-B antagonist, blocked the induction of tetanus-induced potentiation of evoked and spontaneous IPSCs, while GTPgammaS, an activator of G proteins, substitution for GTP in the postsynaptic recording electrode did not occlude potentiation. Since GABA-B receptors work through G proteins, our results suggest that pre- but not postsynaptic GABA-B receptors are involved in the potentiation of fast IPSCs. A tetanus delivered when GABA-A responses were completely blocked by bicuculline suggests that GABA-A receptor activation during tetanus is not essential for the induction of potentiation. Rp-cAMPs, an antagonist of protein kinase A (PKA) activation, blocks the induction of potentiation of fast IPSCs. Forskolin, an activator of PKA, increases baseline evoked IPSCs as well as the number of sIPSCs, and a tetanic stimulation during this enhancement uncovers a long-term depression of the evoked IPSC. Sulfhydryl alkylating agents, N-ethylmaleimide and p-chloromercuribenzoic acid, which have been found to presynaptically increase GABA release and have been suggested to have effects on proteins involved in transmitter release processes occurring in nerve terminals, occlude tetanus-induced potentiation of evoked and spontaneous IPSCs. Taken together our results suggest that LTP of IPSCs originates from a presynaptic site and that GABA-B receptor activation, cyclic AMP/PKA activation and sulfhydryl-alkylation are involved. Plasticity of IPSCs as observed in this study would have significant implications for network behavior in the hippocampus.  相似文献   

5.
Repetitive stimulation of Schaffer collaterals induces activity-dependent changes in the strength of polysynaptic inhibitory postsynaptic potentials (IPSPs) in hippocampal CA1 pyramidal neurons that are dependent on stimulation parameters. In the present study, we investigated the effects of two stimulation patterns, theta-burst stimulation (TBS) and 100 Hz tetani, on pharmacologically isolated monosynaptic GABAergic responses in adult CA1 pyramidal cells. Tetanization with 100 Hz trains transiently depressed both early and late IPSPs, whereas TBS induced long-term potentiation (LTP) of early IPSPs that lasted at least 30 min. Mechanisms mediating this TBS-induced potentiation were examined using whole-cell recordings. The paired-pulse ratio of monosynaptic inhibitory postsynaptic currents (IPSCs) was not affected during LTP, suggesting that presynaptic changes in GABA release are not involved in the potentiation. Bath application of the GABAB receptor antagonist CGP55845 or the group I/II metabotropic glutamate receptor antagonist E4-CPG inhibited IPSC potentiation. Preventing postsynaptic G-protein activation or Ca2+ rise by postsynaptic injection of GDP-β-S or BAPTA, respectively, abolished LTP, indicating a G-protein- and Ca2+-dependent induction in this LTP. Finally during paired-recordings, activation of individual interneurons by intracellular TBS elicited solely short-term increases in average unitary IPSCs in pyramidal cells. These results indicate that a stimulation paradigm mimicking the endogenous theta rhythm activates cooperative postsynaptic mechanisms dependent on GABABR, mGluR, G-proteins and intracellular Ca2+, which lead to a sustained potentiation of GABAA synaptic transmission in pyramidal cells. GABAergic synapses may therefore contribute to functional synaptic plasticity in adult hippocampus.  相似文献   

6.
Jang IS  Nakamura M  Ito Y  Akaike N 《Neuroscience》2006,138(1):25-35
Mossy fiber-derived giant spontaneous miniature excitatory postsynaptic currents have been suggested to be large enough to generate action potentials in postsynaptic CA3 pyramidal neurons. Here we report on the functional roles of presynaptic GABA(A) receptors on excitatory terminals in contributing to spontaneous glutamatergic transmission to CA3 neurons. In mechanically dissociated rat hippocampal CA3 neurons with adherent presynaptic nerve terminals, spontaneous excitatory postsynaptic currents were recorded using conventional whole-cell patch clamp recordings. In most recordings, unusually large spontaneous excitatory postsynaptic currents up to 500 pA were observed. These large spontaneous excitatory postsynaptic currents were highly sensitive to group II metabotropic glutamate receptor activation, and were still observed even after the blockade of voltage-dependent Na(+) or Ca(2+) channels. Exogenously applied muscimol (0.1-3 microM) significantly increased the frequency of spontaneous excitatory postsynaptic currents including the large ones. This facilitatory effect of muscimol was completely inhibited in the presence of 10 microM 6-imino-3-(4-methoxyphenyl)-1(6H)-pyridazinebutanoic acid HBr, a specific GABA(A) receptor antagonist. Pharmacological data suggest that activation of presynaptic GABA(A) receptors directly depolarizes glutamatergic terminals resulting in the facilitation of spontaneous glutamate release. In the current-clamp condition, a subset of large spontaneous excitatory postsynaptic potentials triggered action potentials, and muscimol greatly increased the frequency of spontaneous excitatory postsynaptic potential-triggered action potentials in postsynaptic CA3 pyramidal neurons. The results suggest that presynaptic GABA(A) receptors on glutamatergic terminals play an important role in the excitability of CA3 neurons as well as in the presynaptic modulation of glutamatergic transmission onto hippocampal CA3 neurons.  相似文献   

7.
The GABAA antagonist bicuculline methiodide and the GABAB antagonist phaclofen were used to examine the function of the fast inhibitory postsynaptic potential and slow inhibitory postsynaptic potential, in hippocampal slice cultures in the rat. These cultures form easily-visualized monolayers of nerve cells which maintain the structure and synaptic organization of transverse hippocampal slices. The present study shows that the cellular and synaptic physiological properties of slice cultures are very similar, but not identical, to those observed in acutely-prepared hippocampal slices. The major difference is a higher incidence of fast excitatory postsynaptic potentials and inhibitory postsynaptic potentials compared to slices, and the appearance of spontaneous slow inhibitory postsynaptic potentials. This increase in synaptic drive has been useful for our investigation of the role of GABA-mediated inhibitory postsynaptic potentials. Bath application of 10 microM bicuculline blocked the fast inhibitory postsynaptic potentials and gave rise to bursts 1-11 s in duration. The presence of the slow inhibitory postsynaptic potentials did not prevent bicuculline-induced burst activity. Phaclofen (1 mM) perfused in the bath reversibly blocked the slow inhibitory postsynaptic potential, but did not result in the formation of large paroxysmal depolarizing shift-like bursts as seen with bicuculline. Rather, block of the slow inhibitory postsynaptic potential resulted in the formation of repetitive "afterdischarge bursts". These afterdischarge potentials typically appeared with a delay of 2-15 min following block of the slow inhibitory postsynaptic potential, during which time there was a gradual increase in non-synchronized excitatory activity. Once established, this cycle of increasing excitatory activity culminating in afterdischarge potentials recurred at 2-4 min intervals while phaclofen was present.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Activation of mu-opioid receptors (MORs) alters information coding, synaptic plasticity, and spatial memory in hippocampal CA1. In CA1, MORs act by inhibiting GABA release onto both GABA(A) and GABA(B) receptors exclusively. MOR activation can facilitate excitatory inputs in CA1 dendritic layers by inhibiting synaptic activation of GABA(A) receptors. In this study, we use voltage-sensitive dye imaging to show that MOR activation by the MOR agonist DAMGO suppressed GABA(B) inhibitory postsynaptic potentials in all layers of CA1. When stimulating excitatory input in stratum oriens (SO), stratum radiatum (SR), or stratum lacunosum-moleculare (SLM) with five pulses at 20 Hz in the presence of bicuculline (50 microM), DAMGO (1 muM) was most effective at increasing the amplitude of the last excitatory event. This effect was reversed by the MOR antagonist CTOP (1 muM) and occluded by the GABA(B) receptor agonist CGP 55845 (10 microM). DAMGO was less effective at increasing the amplitude of later excitatory events compared with the effect of CGP 55845. DAMGO was relatively ineffective at increasing the amplitude of excitatory inputs in SLM but had significantly greater effects on excitatory events as they propagated to stratum pyramidale (SP). When stimulating in SR, DAMGO was least effective at increasing excitatory amplitudes in SLM and most effective in SP and SO. Finally, DAMGO was equally effective at increasing excitatory activity amplitudes in all layers of CA1 after stimulating in SO. Therefore MOR suppresses GABA(B) synaptic hyperpolarizations in all layers of CA1 and most effectively facilitates excitatory activity in CA1 output layers.  相似文献   

9.
Developmental alterations in GABAergic synaptic transmission were examined physiologically and biochemically in hippocampus of rats from 3 days of age to adulthood. Neither antidromic nor orthodromic stimulation could elicit identifiable inhibitory postsynaptic potentials in CA1 neurons in slices from rats 5 or 6 days of age. In contrast, at this age these stimuli result in large inhibitory postsynaptic potentials in CA3 pyramidal cells. In the latter cells orthodromic stimulation produced a brief monosynaptic excitatory postsynaptic potential which was followed by a large prolonged biphasic hyperpolarization. These signals were strikingly similar to those recorded in 1-month-old rats. In addition, large recurrent inhibitory postsynaptic potentials were produced by antidromic stimulation. By postnatal day 9 similar inhibitory postsynaptic potentials could be elicited in a majority of neurons of the CA1 subfield. As in mature pyramidal cells, application of GABA antagonists, such as bicuculline, selectively eliminated the antidromic inhibitory postsynaptic potential and the first component of the biphasic inhibitory postsynaptic potential generated by stimulation of stratum radiatum. In the CA3 subfield, this blockade of GABA receptors resulted in prolonged afterdischarges in slices from immature but not month-old rats. Measurements of the equilibrium potential and the conductance of antidromic inhibitory postsynaptic potentials in CA3 neurons were very similar when made during the first postnatal week and at 1 month of age. While on days 10-11 the equilibrium potential was very similar to measurements made at these other ages, the conductance was 3-4 times greater. The activity of glutamate decarboxylase, the synthetic enzyme for GABA, was very low at 3 days in hippocampus, and increased until 30 days of age at which time adult values were obtained. By comparison, hippocampal GABA levels were high early in postnatal life. Glutamate decarboxylase activities in microdissected CA3 and CA1 subfields were similar in immature hippocampus. These results demonstrate dramatic differences in the ontogenesis of functional GABAergic inhibitory synaptic transmission in the CA1 and CA3 subfields of rat hippocampus. The late development of GABA-mediated synaptic inhibition in the CA1 subfield could play a role in the susceptibility of immature hippocampus to seizures. However, the large GABA-mediated inhibitory postsynaptic potentials present in the CA3 subfield at the same age have a critical role in dampening neuronal excitability.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
1. gamma-Aminobutyric acidA (GABAA) receptor-mediated inhibition of pyramidal neuron dendrites was studied in area CA1 of the rat hippocampal slice preparation with the use of intracellular and extracellular recording and one-dimensional current source-density (CSD) analysis. 2. Electrical stimulation of Schaffer collateral/commissural fibers evoked monosynaptic excitatory postsynaptic potentials (EPSPs) and population EPSPs, which were followed by biphasic inhibitory postsynaptic potentials (IPSPs). In the presence of the excitatory amino acid receptor antagonists 6,7-dinitroquinoxaline-2,3-dione (DNQX) and D,L-2-amino-5-phosphonovalerate (APV), stimulation in stratum radiatum evoked monosynaptic fast, GABAA and late, GABAB receptor-mediated IPSPs and fast and late positive field potentials recorded in s. radiatum. 3. Fast monosynaptic IPSPs and fast positive field potentials evoked in the presence of DNQX and APV were reversibly abolished by the GABAA receptor antagonist bicuculline methiodide (BMI; 30 microM) and were not changed by the GABAB receptor antagonist P-[3-aminopropyl]-P-diethoxymethylphosphinic acid (CGP 35,348; 0.1-1.0 mM). CGP 35,348 (0.1 mM) reversibly blocked late monosynaptic IPSPs and late positive field potentials. These results suggest that fast field potentials are GABAA receptor-mediated population IPSPs (GABAA, fast pIPSPs) and that late field potentials are GABAB receptor-mediated population IPSPs (GABAB, late pIPSPs). 4. Fast pIPSPs were reversibly abolished when the extracellular Cl- concentration [( Cl-]o) was reduced from 132 to 26 mM in parallel with a depolarizing shift in the reversal potential of fast IPSPs. Paired or repetitive stimulation in s. radiatum reversibly depressed fast pIPSPs and fast IPSPs. Paired-pulse depression of fast pIPSPs was reversibly antagonized by CGP 35,348 (0.4-0.8 mM). 5. Laminar analysis of s. radiatum-evoked fast pIPSPs and one-dimensional CSD analysis revealed active current sources in s. radiatum and passive current sinks in s. oriens and s. lacunosum moleculare. S. radiatum sources were abolished by pressure application of BMI in s. radiatum but not in s. oriens. Stimulation in s. oriens, s. pyramidale, or s. lacunosum moleculare evoked GABAA current sources horizontal to the stimulation site. Changes in the dendritic location of inhibitory current with changes in stimulus location paralleled changes in the distribution of excitatory current. 6. In the presence of 4-aminopyridine (50-100 microM), DNQX and APV long-lasting depolarizing GABAA receptor-mediated responses (LLDs) occurred spontaneously or could be evoked. Current sinks associated with s. radiatum-evoked LLDs were located in the same dendritic area as sources associated with hyperpolarizing fast IPSPs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Tetanic stimulation (100 Hz), which can induce long-term potentiation in synaptic connections in the hippocampal CA1 region, causes γ-aminobutyric acid (GABA)A receptor-mediated long-lasting depolarization of postsynaptic neurons. However, it is not clear how this stimulation modulates neuronal activity propagation. We studied tetanic burst-induced neuronal responses in the hippocampal CA1 region by using optical-recording methods employing a voltage-sensitive dye and focused on GABAA receptor-mediated modulation. We observed that burst stimulation induced long-lasting depolarization and progressive decrease in individual excitatory postsynaptic potentials (EPSPs). Both these effects were suppressed by picrotoxin, a GABAA receptor antagonist. Under whole-cell voltage-clamp conditions, we observed a long-lasting inhibitory current (IPSC) and a prominent progressive decrease in the amplitude of the excitatory postsynaptic current (EPSC). Further, picrotoxin inhibited the IPSC and the progressive decrease in EPSC. The optically recorded long-lasting depolarization and progressive decrease of EPSPs were strongly dependent on the distance between the recording electrode and the stimulation site. Optical recordings performed across a wide swatch of CA1 revealed that the decrease in activity propagation was followed by facilitation of propagation after recovery and that this facilitation also depended on GABAA receptors. Intense activation of GABAA receptors is a key factor shaping the spatiotemporal patterns of high-frequency stimulation-induced responses in the CA1 region.  相似文献   

12.
Grabauskas G  Bradley RM 《Neuroscience》1999,94(4):1173-1182
Whole-cell recordings were made from neurons in the rostral nucleus of the solitary tract in horizontal brainstem slices. Monosynaptic GABAA receptor-mediated inhibitory postsynaptic potentials were evoked by single stimulus shocks or by high-frequency tetanic stimulation in the presence of glutamate receptor blockers. While single stimulus-evoked inhibitory postsynaptic potentials had variable amplitudes, tetanic stimulation-induced, hyperpolarizing postsynaptic potentials were of a more constant amplitude. Furthermore, tetanic stimulation resulted in potentiation of the amplitude of single stimulus shock-evoked inhibitory postsynaptic potentials. Of 55 neurons that were tested, potentiation lasted over 30 min for 11, 10-30 min for 13, less than 10 min for 23 and no potentiation occurred in eight. Tetanic stimulation did not result in potentiation of the tetanic stimulus-evoked hyperpolarizing postsynaptic potentials. Both the single stimulus shock- and tetanic stimulus-evoked potentials had similar inhibition concentration-response curves to the GABAA antagonist, bicuculline methiodide (EC50 = 0.75 and 0.83, respectively), indicating that they were mediated by the same postsynaptic receptors. By comparing the effect of bicuculline methiodide on the amplitude of the single stimulus shock-evoked inhibitory postsynaptic potentials and the tetanic stimulus-evoked hyperpolarizing potentials, we concluded that a single stimulus shock does not activate all postsynaptic GABAA receptors. However, tetanic stimulation results in activation of all postsynaptic GABAA receptors and induces long-lasting changes in the presynaptic GABAergic neuron. These long-lasting changes of the presynaptic neuron facilitate the release of GABA during single stimulus shock and, as a consequence, more postsynaptic receptors are activated during single stimulus shock-evoked synaptic transmission. This conclusion is supported by the results of experiments in which the extracellular Ca2+ concentration was manipulated to change the amount of neurotransmitter released from the presynaptic GABAergic terminals. The single stimulus shock-evoked inhibitory postsynaptic potentials were sensitive to the extracellular Ca2+ concentration, whereas tetanic stimulus-evoked inhibitory post-synaptic potentials were essentially insensitive to extracellular Ca2+ concentration. The relationship between the single stimulus shock-evoked inhibitory postsynaptic potential amplitude and extracellular Ca2+ concentration indicates that, in control physiological saline containing 2.5 mM Ca2+, a single stimulus shock activates less than half the postsynaptic GABA receptors. The phenomenon of long-lasting potentiation of inhibitory transmission within the rostral nucleus of the solitary tract may be important in the processing of gustatory information and play a role in taste-guided behaviors.  相似文献   

13.
Intracellular and extracellular recordings were made from pyramidal neurons in hippocampal slices in order to study spontaneous paroxysmal bursting induced by raising the extracellular potassium concentration from 3.5 to 8.5 mM. Extracellular recordings from all hippocampal subfields indicated that spontaneous bursts appeared to originate in region CA3c or CA3b as judged by burst onset. Burst intensity was also greatest in regions CA3b and CA3c and became progressively less toward region CA2. Intracellular recordings indicated that in 8.5 mM potassium, large spontaneous excitatory postsynaptic potentials (EPSPs), large burst afterhyperpolarizations, and rhythmic hyperpolarizing-depolarizing waves of membrane potential were invariably present in CA3c neurons. High potassium (8.5 mM) induced a positive shift (+9 mV) in the reversal potential of GABAergic inhibitory postsynaptic potentials (IPSPs) in CA3c neurons without changing input resistance or resting potential. This resulted in a drastic reduction in amplitude of the IPSP. Reduction of IPSP amplitude occurred before the onset of spontaneous bursting and was reversible upon return to normal potassium. A new technique to quantify the relative intensity of interictal-like burst discharges is described. Pentobarbital, diazepam, and GABA uptake inhibitors, which enhance GABA-mediated synaptic inhibition, reduced the intensity of potassium-induced bursts, whereas the GABA antagonist bicuculline increased burst intensity. Diphenylhydantoin and phenobarbital, anticonvulsants that have little effect on GABAergic inhibition, were without effect on spontaneous bursts. Burst frequency was reduced by bicuculline and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol but was unaffected by other drugs. Reduction of slice temperature from 35 to 19 degrees C dramatically reduced burst intensity but did not markedly affect burst frequency. We hypothesize that high potassium induces a rise in intracellular chloride concentration, possibly by activating an inward KCl pump or by a passive Donnan effect, which results in a decreased IPSP amplitude. With inhibition suppressed, the large spontaneous EPSPs that appear in high potassium cause individual CA3c neurons to fire. A combination of synaptic and electrical interactions among CA3c cells then synchronizes discharges into interictal spike bursts.  相似文献   

14.
K Z Shen  S W Johnson 《Neuroscience》2001,108(3):431-436
Effects of baclofen on synaptic transmission were studied in rat subthalamic neurons using whole-cell patch clamp recording from brain slices. Focal electrical stimulation of the brain slice evoked GABAergic inhibitory postsynaptic currents and glutamatergic excitatory postsynaptic currents. Baclofen reduced the amplitude of evoked inhibitory postsynaptic currents in a concentration-dependent manner with an IC(50) of 0.6+/-0.2 microM. Evoked excitatory postsynaptic currents were also reduced by baclofen concentration-dependently (IC(50) of 1.6+/-0.2 microM), but baclofen was more potent at reducing the GABA(A) receptor inhibitory postsynaptic currents. The GABA(B) receptor antagonist CGP 35348 blocked these inhibitory effects of baclofen on evoked inhibitory and excitatory postsynaptic currents. Baclofen increased the paired-pulse ratios of evoked inhibitory and excitatory postsynaptic currents. Furthermore, baclofen reduced the frequency of spontaneous miniature excitatory postsynaptic currents, but had no effect on their amplitude.These results provide evidence for presence of presynaptic GABA(B) receptors that modulate both GABA and glutamate release from afferent terminals in the subthalamus.  相似文献   

15.
A M Thomson  A Destexhe 《Neuroscience》1999,92(4):1193-1215
Dual intracellular recordings in slices of adult rat neocortex and hippocampus investigated slow, putative GABA(B) receptor-mediated inhibitory postsynaptic potentials. In most pairs tested in which the interneuron elicited a fast inhibitory postsynaptic potential in the pyramid, this GABA(A) receptor mediated inhibitory postsynaptic potential was entirely blocked by bicuculline or picrotoxin (3:3 in neocortex, 6:8 in CA1, all CA1 basket cells), even when high-frequency presynaptic spike trains were elicited. However, in three of 85 neocortical paired recordings involving an interneuron, although no discernible response was elicited by single presynaptic interneuronal spikes, a long latency (> or =20 ms) inhibitory postsynaptic potential was elicited by a train of > or =3 spikes at frequencies > or =50-100 Hz. This slow inhibitory postsynaptic potential was insensitive to bicuculline (one pair tested). In neocortex, slow inhibitory postsynaptic potential duration reached a maximum of 200 ms even with prolonged presynaptic spike trains. In contrast, summing fast, GABA(A) inhibitory postsynaptic potentials, elicited by spike trains, lasted as long as the train. Between four and 10 presynaptic spikes, mean peak slow inhibitory postsynaptic potential amplitude increased sharply to 0.38, 2.6 and 2.9 mV, respectively, in the three neocortical pairs (membrane potential -60 to -65 mV). Thereafter increases in spike number had little additional effect on amplitude. In two of eight pairs in CA1, one involving a presynaptic basket cell and the other a putative bistratified interneuron, the fast inhibitory postsynaptic potential was blocked by bicuculline revealing a slow inhibitory postsynaptic potential that was greatly reduced by 100 microM CGP 35348 (basket cell pair). The sensitivity of this slow inhibitory postsynaptic potential to spike number was similar to that of neocortical 'pure' slow inhibitory postsynaptic potentials, but was of longer duration, its plateau phase outlasting 200 ms spike trains and its maximum duration exceeding 400 ms. Computational models of GABA release, diffusion and uptake suggested that extracellular accumulation of GABA cannot alone account for the non-linear relationship between spike number and inhibitory postsynaptic potential amplitude. However, cooperativity in the kinetics of GABA(B) transduction mechanisms provided non-linear relations similar to experimental data. Different kinetic models were considered for how G-proteins activate K+ channels, including allosteric models. For all models, the best fit to experimental data was obtained with four G-protein binding sites on the K+ channels, consistent with a tetrameric structure for the K+ channels associated with GABA(B) receptors. Thus some inhibitory connections in neocortex and hippocampus appear mediated solely by fast GABA(A) receptors, while others appear mediated solely by slow, non-ionotropic, possibly GABA(B) receptors. In addition, some inhibitory postsynaptic potentials arising in proximal portions of CA1 pyramidal cells are mediated by both GABA(A) and GABA(B) receptors. Our data indicate that the GABA released by a single interneuron can saturate the GABA(B) receptor mechanism(s) accessible to it and that 'spillover' to extrasynaptic sites need not necessarily be proposed to explain these slow inhibitory postsynaptic potential properties.  相似文献   

16.
Salivary secretion results from reflex stimulation of autonomic neurons via afferent sensory information relayed to neurons in the rostral nucleus of the solitary tract (rNST), which synapse with autonomic neurons of the salivatory nuclei. We investigated the synaptic properties of the afferent sensory connection to neurons in the inferior salivatory nucleus (ISN) controlling the parotid and von Ebner salivary glands. Mean synaptic latency recorded from parotid gland neurons was significantly shorter than von Ebner gland neurons. Superfusion of GABA and glycine resulted in a concentration-dependent membrane hyperpolarization. Use of glutamate receptor antagonists indicated that both AMPA and N-methyl-D-aspartate (NMDA) receptors are involved in the evoked excitatory postsynaptic potentials (EPSPs). Inhibitory postsynaptic potential (IPSP) amplitude increased with higher intensity ST stimulation. Addition of the glycine antagonist strychnine did not affect the amplitude of the IPSPs significantly. The GABA(A) receptor antagonist, bicuculline (BMI) or mixture of strychnine and BMI abolished the IPSPs in all neurons. IPSP latency was longer than EPSP latency, suggesting that more than one synapse is involved in the inhibitory pathway. Results show that ISN neurons receive both excitatory and inhibitory afferent input mediated by glutamate and GABA respectively. The ISN neuron response to glycine probably derives from descending connections. Difference in the synaptic characteristics of ISN neurons controlling the parotid and von Ebner glands may relate to the different function of these two glands.  相似文献   

17.
Tetanization of Schaffer collaterals, which induces long-term potentiation of excitatory transmission in the hippocampus of the rat, also affects local inhibitory circuits. Mechanisms controlling plasticity of early and late components of inhibitory postsynaptic potentials in CA1 pyramidal cells were studied using intracellular recordings and Ca2+ imaging in rat hippocampal slices. High-frequency stimulation (100 Hz/s) of Schaffer collaterals resulted in no change in the mean amplitude of early or late inhibitory postsynaptic potentials 30 min post-tetanus. However, intracellular injection of the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetate unmasked a significant increase in mean amplitude of both inhibitory postsynaptic potentials 30 min post-tetanus and the induction of this potentiation was blocked by the N-methyl-D-aspartate receptor antagonist(+/-)-2-amino-5-phosphopentanoic acid. In contrast to high-frequency tetanization, "theta-burst" stimulation in normal medium resulted in a significant potentiation of the mean amplitude of both early and late inhibitory postsynaptic potentials 30 min post-tetanus. This potentiation was blocked by the N-methyl-D-aspartate receptor antagonist. The more physiological tetanization pattern, which mimics the endogenous theta rhythm, therefore resulted in an N-methyl-D-aspartate-dependent increase in inhibition 30 min post-tetanus. Calcium imaging during whole-cell recordings from pyramidal cells revealed differences in the Ca2+ signal associated with high-frequency and theta-burst stimulations. During theta-burst stimulation of Schaffer collaterals, the mean time to peak of Ca2+ signals was significantly longer, and the mean peak amplitude and area under the Ca2+ response were larger than during high-frequency stimulation. These results indicate that tetanization induces long-lasting synaptic plasticity in hippocampal inhibitory circuits. This plasticity involves an interaction between a Ca2(+)-mediated postsynaptic depression and an N-methyl-D-aspartate-mediated potentiation of GABAA and GABAB inhibition, and these processes are differentially sensitive to tetanization parameters.  相似文献   

18.
Ma CL  Kelly JB  Wu SH 《Neuroscience》2002,114(1):207-215
Whole-cell patch clamp recordings were made from neurons in a brain slice preparation of the inferior colliculus in 11-15-day-old rat pups. Synaptic responses were elicited by applying a current pulse to the lateral lemniscus just below the central nucleus of the inferior colliculus. To examine GABAergic inhibition in the inferior colliculus all excitatory postsynaptic potentials and glycinergic inhibitory postsynaptic potentials were blocked by bath application of their respective antagonists and the contribution of GABA(B) receptors was determined for the remaining inhibitory postsynaptic potentials. For most cells the isolated inhibitory postsynaptic potential was completely blocked by the GABA(A) receptor antagonist, bicuculline, but was unaffected by the GABA(B) receptor antagonist, phaclofen. The GABA(B) receptor agonist, baclofen (10-20 microM), decreased the amplitude of the inhibitory postsynaptic potentials. This effect was completely blocked by phaclofen. Baclofen did not increase the cell membrane conductance or alter the rate of firing produced by depolarization of the cell membrane. In contrast, muscimol, a GABA(A) receptor agonist, greatly increased membrane conductance and lowered the firing rate produced by depolarization. Our results indicate that GABAergic inhibition in the auditory midbrain can be reduced by the activation of GABA(B) receptors and suggest that the effects are presynaptic.  相似文献   

19.
Galantamine increases excitability of CA1 hippocampal pyramidal neurons   总被引:2,自引:0,他引:2  
Oh MM  Wu WW  Power JM  Disterhoft JF 《Neuroscience》2006,137(1):113-123
Galantamine is a third generation cholinesterase inhibitor and an allosteric potentiating ligand of nicotinic acetylcholine receptors. It enhances learning in aging rabbits and alleviates cognitive deficits observed in patients with Alzheimer's disease. We examined galantamine's effect on CA1 neurons from hippocampal slices of young and aging rabbits using current-clamp, intracellular recording techniques. Galantamine (10-200 microM) dose-dependently reduced the postburst afterhyperpolarization and the spike-frequency accommodation of CA1 neurons from both young and aging animals. These reductions were partially, but significantly, reversed by the addition of the muscarinic receptor antagonist, atropine (1 microM), to the perfusate. In contrast, the nicotinic acetylcholine receptor antagonist, alpha-bungarotoxin (10 nM), had no effect; i.e. alpha-bungarotoxin did not reverse the afterhyperpolarization and accommodation reductions. The allosteric potentiating ligand effect was examined by stimulating the Schaffer collateral and measuring the excitatory postsynaptic potentials for 30 min during bath application of galantamine. Galantamine (200 microM) significantly enhanced the excitatory postsynaptic potential amplitude and area over time. These effects were blocked by 10 nM alpha-bungarotoxin, supporting a role for galantamine as an allosteric potentiating ligand. We did not observe a facilitation of the excitatory postsynaptic potentials with 1 microM galantamine. However, when the excitatory postsynaptic potential was pharmacologically isolated by adding 10 microM gabazine (GABA(A) receptor antagonist) to the perfusate, 1 microM galantamine potentiated the subthreshold excitatory postsynaptic potentials into action potentials. We propose that the learning enhancement observed in aging animals and the alleviation of cognitive deficits associated with Alzheimer's disease after galantamine treatment may in part be due to the enhanced function of both nicotinic and muscarinic excitatory transmission on hippocampal pyramidal neurons.  相似文献   

20.
The subthalamic nucleus (STN) is one of the principal sources of excitatory glutamatergic input to dopaminergic neurons of the substantia nigra, yet stimulation of the STN produces both excitatory and inhibitory effects on nigral dopaminergic neurons recorded extracellularly in vivo. The present experiments were designed to determine the sources of the excitatory and inhibitory effects. Synaptic potentials were recorded intracellularly from substantia nigra pars compacta dopaminergic neurons in parasagittal slices in response to stimulation of the STN. Synaptic potentials were analyzed for onset latency, amplitude, duration, and reversal potential in the presence and absence of GABA and glutamate receptor antagonists. STN-evoked depolarizing synaptic responses in dopaminergic neurons reversed at approximately -31 mV, intermediate between the expected reversal potential for an excitatory and an inhibitory postsynaptic potential (EPSP and IPSP). Blockade of GABA(A) receptors with bicuculline caused a positive shift in the reversal potential to near 0 mV, suggesting that STN stimulation evoked a near simultaneous EPSP and IPSP. Both synaptic responses were blocked by application of the glutamate receptor antagonist, 6-cyano-7-nitroquinoxalene-2,3-dione. The confounding influence of inhibitory fibers of passage from globus pallidus and/or striatum by STN stimulation was eliminated by unilaterally transecting striatonigral and pallidonigral fibers 3 days before recording. The reversal potential of STN-evoked synaptic responses in dopaminergic neurons in slices from transected animals was approximately -30 mV. Bath application of bicuculline shifted the reversal potential to approximately 5 mV as it did in intact animals, suggesting that the source of the IPSP was within substantia nigra. These data indicate that electrical stimulation of the STN elicits a mixed EPSP-IPSP in nigral dopaminergic neurons due to the coactivation of an excitatory monosynaptic and an inhibitory polysynaptic connection between the STN and the dopaminergic neurons of substantia nigra pars compacta. The EPSP arises from a direct monosynaptic excitatory glutamatergic input from the STN. The IPSP arises polysynaptically, most likely through STN-evoked excitation of GABAergic neurons in substantia nigra pars reticulata, which produces feed-forward GABA(A)-mediated inhibition of dopaminergic neurons through inhibitory intranigral axon collaterals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号