首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The specific role of PITX2 in the pathogenesis of anterior segment dysgenesis has yet to be clearly defined. We provide here new insight into PITX2 pathogenesis through mutational and functional analyses. Three PITX2 mutations were found in a screen of 38 unrelated individuals affected with anterior segment anomalies (8%). All three mutations were found among the 21 individuals affected with Axenfeld-Rieger syndrome (ARS). We have identified two novel mutations, a valine-->leucine (V45L) missense mutation at position 45 within the PITX2 homeodomain, and a seven amino acid duplication (7aaDup) of residues 6-12 of the homeodomain. DNA-binding studies of the two mutant PITX2 proteins demonstrated a <10-fold reduction in the DNA-binding activity of the V45L mutant, and a >100-fold reduction in activity of the 7aaDup mutant. Luciferase reporter assays showed a >200% increase in PITX2 transactivation activity of the V45L mutant, while the 7aaDup mutant was unable to transactivate at detectable levels. Our analyses of the V45L PITX2 mutant reveal that the DNA-binding domain of PITX2 can influence transactivation activity independently of DNA binding. Furthermore, our findings expand the hypothesis that the amount of residual PITX2 activity underlies the variable severity of ocular phenotypes that result from PITX2 mutation. For the first time, we present evidence that increased PITX2 activity may underlie the severe ARS ocular phenotype. We conclude that increased activity of one PITX2 allele may be as physiologically disruptive as a mutation that nullifies a PITX2 allele, with either condition resulting in ARS.  相似文献   

4.
Axenfeld-Rieger Syndrome (ARS) is a genetically heterogeneous birth defect characterized by malformation of the anterior segment of the eye associated with glaucoma. Mutation of the PITX2 homeobox gene has been identified as a cause of ARS. We report a novel Arg5Trp missense mutation in the PITX2 homeodomain, which is associated with brain abnormalities. One patient had a small sella turcica likely to reflect hypoplasia of the pituitary gland and consistent with the critical role identified for Pitx2 in pituitary development in mice. Two patients had an enlarged cisterna magna, one with a malformed cerebellum, and two had executive skills deficits one in isolation and one in association with a below average intellectual capacity. The mutation caused a typical ARS ocular phenotype. All affected had iris hypoplasia, anterior iris to corneal adhesions, and corectopia. The ocular phenotype varied significantly in severity and showed some asymmetry. All affected also had redundant peri-umbilical skin, a hypoplastic maxilla, microdontia, and hypodontia missing between 20 and 27 teeth with an unusual pattern of tooth loss. Dental phenotypes were documented as they are often poorly characterized in ARS patients. All affected individuals showed an absence of first permanent molars with variable absence of other rarely absent teeth: the permanent upper central incisors, maxillary and mandibular first and second molars, and the mandibular canines. Based on the distinctive dental anomalies, we suggest that the dental phenotype can assist in predicting the presence of a PITX2 mutation and the possibility of brain abnormalities.  相似文献   

5.
6.
7.
Mutations in the forkhead-like 7 (FKHL7) gene have been recently shown to cause juvenile glaucoma and anterior segment anomalies. We report on a three-generation family with Axenfeld-Rieger syndrome (ARS), harboring an alteration in the FKHL7 gene. Genetic linkage analyses excluded the ARS phenotype from chromosomes 4q25 and 13q14, the locations of the PITX2 and RIEG2 loci, respectively. Evidence of linkage was observed with markers at 6p25, near the FKHL7 gene. Direct sequencing of FKHL7 detected a C67T mutation that segregated with the ARS phenotype in this family, but was not detected in over 80 control chromosomes. This mutation is predicted to cause a nonsense mutation of the FKHL7 protein (Gln23Stop) upstream of the forkhead DNA-binding domain, and thus to generate a truncated FKHL7 protein product. This discovery broadly implicates FKHL7 in ocular, craniofacial, dental, and umbilical development.  相似文献   

8.
9.
10.
Peters anomaly and Axenfeld-Rieger syndrome (ARS) belong to the overlapping spectrum of disorders summarized as anterior segment dysgenesis (ASD). Five patients from a family with Peters' anomaly and ARS were screened for mutations in the PITX2, CYP1B1 and FOXC1 genes by direct sequencing. All affected family members examined were heterozygous for a single nucleotide substitution, resulting in a nonsense mutation (Q120X) at a highly conserved residue of the FOXC1 gene that is essential for DNA binding. In this pedigree, all affected family members were diagnosed with ARS except for one who shows bilateral Peters' anomaly. Our findings support the role of FOXC1 mutations in the spectrum of ASD.  相似文献   

11.
12.
Axenfeld‐Rieger syndrome (ARS) is a clinically and genetically heterogeneous group of developmental disorders affecting primarily the anterior segment of the eye, often leading to secondary glaucoma. Patients with ARS may also present with systemic changes, including dental defects, mild craniofacial dysmorphism, and umbilical anomalies. ARS is inherited in an autosomal‐dominant fashion; the underlying defect in 40% of patients is mutations in PITX2 or FOXC1. Here, an overview of the clinical spectrum of ARS is provided. As well, the known underlying genetic defects, clinical diagnostic possibilities, genetic counseling and treatments of ARS are discussed in detail.  相似文献   

13.
14.
15.
16.
Mutations in the homeobox gene PITX2 are responsible for a range of clinical phenotypes involving ocular and craniofacial development. Several mutations within the Pitx2 homeodomain region are specifically responsible for the development of the related autosomal-dominant disorders Rieger syndrome and iridogoniodysgenesis. To address the question of the structural effect of disease-causing mutations on the Pitx2 homeodomain, we used threading techniques to examine the tertiary structure of the Pitx2 wild-type and mutant homeodomain, using the crystal structure of Drosophila engrailed homeodomain bound with DNA as a template [Kissinger et al., 1990]. The threading analysis reveals that the wild-type Pitx2 homeodomain is indeed capable of forming the typical three-helical bundle-fold characteristic of homeodomain proteins. Energy calculations indicate that the homeodomain structure is stabilized primarily by hydrophobic interactions between residues at the helical interface. Point mutations responsible for the development of these genetic disorders were also examined; the results suggest that these mutations lead to the inability of Pitx2 to adopt its proper structure and bind to the regulatory sequences of its target gene(s), which in turn affects its metabolic role in the cell. Published 1999 Wiley-Liss, Inc.  相似文献   

17.
18.
19.
20.
Regulation and function of Dlx3 in vertebrate development.   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号