首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Increased oxidative stress plays an important role in the pathophysiology of cardiovascular diseases such as hypertension, atherosclerosis, diabetes, cardiac hypertrophy, heart failure, and ischemia-reperfusion. Although several sources of reactive oxygen species (ROS) may be involved, a family of NADPH oxidases appears to be especially important for redox signaling and may be amenable to specific therapeutic targeting. These include the prototypic Nox2 isoform-based NADPH oxidase, which was first characterized in neutrophils, as well as other NADPH oxidases such as Nox1 and Nox4. These Nox isoforms are expressed in a cell- and tissue-specific fashion, are subject to independent activation and regulation, and may subserve distinct functions. This article reviews the potential roles of NADPH oxidases in both cardiovascular physiological processes (such as the regulation of vascular tone and oxygen sensing) and pathophysiological processes such as endothelial dysfunction, inflammation, hypertrophy, apoptosis, migration, angiogenesis, and vascular and cardiac remodeling. The complexity of regulation of NADPH oxidases in these conditions may provide the possibility of targeted therapeutic manipulation in a cell-, tissue- and/or pathway-specific manner at appropriate points in the disease process.  相似文献   

2.
The NADPH oxidase is a multi-subunit enzyme that catalyzes the reduction of molecular oxygen to form superoxide (O(2)(-)). While classically linked to the respiratory burst in neutrophils, recent evidence now shows that O(2)(-) (and associated reactive oxygen species, ROS) generated by NADPH oxidase in nonphagocytic cells serves myriad functions in health and disease. An entire new family of NADPH Oxidase (Nox) homologues has emerged, which vary widely in cell and tissue distribution, as well as in function and regulation. A major concept in redox signaling is that while NADPH oxidase-derived ROS are necessary for normal cellular function, excessive oxidative stress can contribute to pathological disease. This certainly is true in the central nervous system (CNS), where normal NADPH oxidase function appears to be required for processes such as neuronal signaling, memory, and central cardiovascular homeostasis, but overproduction of ROS contributes to neurotoxicity, neurodegeneration, and cardiovascular diseases. Despite implications of NADPH oxidase in normal and pathological CNS processes, still relatively little is known about the mechanisms involved. This paper summarizes the evidence for NADPH oxidase distribution, regulation, and function in the CNS, emphasizing the diversity of Nox isoforms and their new and emerging role in neuro-cardiovascular function. In addition, perspectives for future research and novel therapeutic targets are offered.  相似文献   

3.
The classical nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was originally detected in neutrophils as a multicomponent enzyme that catalyzes the generation of superoxide from oxygen and the reduced form of NADPH. This enzyme is composed of two membrane-bound subunits (p22phox and gp91phox), three cytosolic subunits (p67phox, p47phox, and p40phox) and a small G-protein Rac (Rac1 and Rac2). Recently, it has been demonstrated that there are several isoforms of nonphagocytic NADPH oxidase. Endothelial cells, vascular smooth muscle cells or adventitial fibroblasts possess multiple isoforms of this enzyme. The new homologs, along with gp91phox are now designated the Nox family of NADPH oxidases and are key sources of reactive oxygen species in the vasculature. Reactive oxygen species play a significant role in regulating endothelial function and vascular tone. However, besides the participation in the processes of physiological cell, these enzymes can also be the perpetrator of oxidative stress that causes endothelial dysfunction. This review summarizes the current state of knowledge of the structure and functions of NADPH oxidase and NADPH oxidase inhibitors in the treatment of disorders with endothelial damage.  相似文献   

4.
Oxidative stress plays an important role in the pathophysiology of vascular diseases. Reactive oxygen species, especially superoxide anion and hydrogen peroxide, are important signalling molecules in cardiovascular cells. Enhanced superoxide production increases nitric oxide inactivation and leads to an accumulation of peroxynitrites and hydrogen peroxide. Reactive oxygen species participate in growth, apoptosis and migration of vascular smooth muscle cells, in the modulation of endothelial function, including endothelium-dependent relaxation and expression of proinflammatory phenotype, and in the modification of the extracellular matrix. All these events play important roles in vascular diseases such as hypertension, suggesting that the sources of reactive oxygen species and the signalling pathways that they modify may represent important therapeutic targets. Potential sources of vascular superoxide production include NADPH-dependent oxidases, xanthine oxidases, lipoxygenases, mitochondrial oxidases and nitric oxide synthases. Studies performed during the last decade have shown that NADPH oxidase is the most important source of superoxide anion in phagocytic and vascular cells. Evidence from experimental animal and human studies suggests a significant role of NADPH oxidase activation in the vascular remodelling and endothelial dysfunction found in cardiovascular diseases.  相似文献   

5.
Reactive oxygen species (ROS) including superoxide (O(2)(.-)) and hydrogen peroxide (H(2)O(2)) are produced endogenously in response to cytokines, growth factors; G-protein coupled receptors, and shear stress in endothelial cells (ECs). ROS function as signaling molecules to mediate various biological responses such as gene expression, cell proliferation, migration, angiogenesis, apoptosis, and senescence in ECs. Signal transduction activated by ROS, "oxidant signaling," has received intense investigation. Excess amount of ROS contribute to various pathophysiologies, including endothelial dysfunction, atherosclerosis, hypertension, diabetes, and acute respiratory distress syndrome (ARDS). The major source of ROS in EC is a NADPH oxidase. The prototype phagaocytic NADPH oxidase is composed of membrane-bound gp91phox and p22hox, as well as cytosolic subunits such as p47(phox), p67(phox) and small GTPase Rac. In ECs, in addition to all the components of phagocytic NADPH oxidases, homologues of gp91(phox) (Nox2) including Nox1, Nox4, and Nox5 are expressed. The aim of this review is to provide an overview of the emerging area of ROS derived from NADPH oxidase and oxidant signaling in ECs linked to physiological and pathophysiological functions. Understanding these mechanisms may provide insight into the NADPH oxidase and oxidant signaling components as potential therapeutic targets.  相似文献   

6.
The generation of reactive oxygen species (ROS) in the vasculature plays a major role in the genesis of endothelial cell (EC) activation and barrier function. Of the several potential sources of ROS in the vasculature, the endothelial NADPH oxidase family of proteins is a major contributor of ROS associated with lung inflammation, ischemia/reperfusion injury, sepsis, hyperoxia, and ventilator-associated lung injury. The NADPH oxidase in lung ECs has most of the components found in phagocytic oxidase, and recent studies show the expression of several homologues of Nox proteins in vascular cells. Activation of NADPH oxidase of nonphagocytic vascular cells is complex and involves assembly of the cytosolic (p47(phox), p67(phox), and Rac1) and membrane-associated components (Noxes and p22(phox)). Signaling pathways leading to NADPH oxidase activation are not completely defined; however, they do appear to involve the cytoskeleton and posttranslation modification of the components regulated by protein kinases, protein phosphatases, and phospholipases. Furthermore, several key components regulating NADPH oxidase recruitment, assembly, and activation are enriched in lipid microdomains to form a functional signaling platform. Future studies on temporal and spatial localization of Nox isoforms will provide new insights into the role of NADPH oxidase-derived ROS in the pathobiology of lung diseases.  相似文献   

7.
Endothelium-derived nitric oxide (NO) is a paracrine factor that controls vascular tone, inhibits platelet function, prevents adhesion of leukocytes, and reduces proliferation of the intima. An enhanced inactivation and/or reduced synthesis of NO is seen in conjunction with risk factors for cardiovascular disease. This condition, referred to as endothelial dysfunction, can promote vasospasm, thrombosis, vascular inflammation, and proliferation of vascular smooth muscle cells. Vascular oxidative stress with an increased production of reactive oxygen species (ROS) contributes to mechanisms of vascular dysfunction. Oxidative stress is mainly caused by an imbalance between the activity of endogenous pro-oxidative enzymes (such as NADPH oxidase, xanthine oxidase, or the mitochondrial respiratory chain) and anti-oxidative enzymes (such as superoxide dismutase, glutathione peroxidase, heme oxygenase, thioredoxin peroxidase/peroxiredoxin, catalase, and paraoxonase) in favor of the former. Also, small molecular weight antioxidants may play a role in the defense against oxidative stress. Increased ROS concentrations reduce the amount of bioactive NO by chemical inactivation to form toxic peroxynitrite. Peroxynitrite—in turn—can “uncouple” endothelial NO synthase to become a dysfunctional superoxide-generating enzyme that contributes to vascular oxidative stress. Oxidative stress and endothelial dysfunction can promote atherogenesis. Therapeutically, drugs in clinical use such as ACE inhibitors, AT1 receptor blockers, and statins have pleiotropic actions that can improve endothelial function. Also, dietary polyphenolic antioxidants can reduce oxidative stress, whereas clinical trials with antioxidant vitamins C and E failed to show an improved cardiovascular outcome.  相似文献   

8.
Increased vascular production of reactive oxygen species, especially superoxide anion, significantly contributes to the oxidative stress associated with hypertension. An enhanced superoxide production causes an increased inactivation of nitric oxide that diminishes nitric oxide bioavailability, thus contributing to endothelial dysfunction and hypertrophy of vascular cells. It has been shown that NADPH oxidases play a major role as the most important sources of superoxide anion in phagocytic and vascular cells. Several experimental observations have described an enhanced superoxide generation as a result of NADPH oxidase activation in hypertension. Although these enzymes respond to stimuli such as vasoactive factors, growth factors, and cytokines, recent data suggest a significant role of the genetic background in the modulation of the expression of its different components. Several polymorphisms have been identified in the promoter and in the coding region of CYBA, the gene that encodes the essential subunit of the NADPH oxidase p22phox, some of which seem to influence significantly the activity of these enzymes in the context of cardiovascular diseases. Among CYBA polymorphisms, genetic investigations have provided a novel marker, the -930(A/G) polymorphism, which determines the genetic susceptibility of hypertensive patients to oxidative stress.  相似文献   

9.
Role of Nox2 in elimination of microorganisms   总被引:1,自引:0,他引:1  
NADPH oxidase of the phagocytic cells (Nox2) transfers electrons from cytosolic NADPH to molecular oxygen in the extracellular or intraphagosomal space. The produced superoxide anion (O*2) provides the source for formation of all toxic oxygen derivatives, but continuous O*2 generation depends on adequate charge compensation. The vital role of Nox2 in efficient elimination of microorganisms is clearly indicated by human pathology as insufficient activity of the enzyme results in severe, recurrent bacterial infections, the typical symptoms of chronic granulomatous disease. The goals of this contribution are to provide critical review of the Nox2-dependent cellular processes that potentially contribute to bacterial killing and degradation and to indicate possible targets of pharmacological interventions.  相似文献   

10.
Cardiovascular diseases remain the leading cause of death in industrialised nations. Since the pathomechanisms of most cardiovascular diseases are not understood, the majority of therapeutic approaches are symptom-orientated. Knowing the molecular mechanism of disease would enable more targeted therapies. One postulated underlying mechanism of cardiovascular diseases is oxidative stress, i.e. the increased occurrence of reactive oxygen species such as superoxide. Oxidative stress leads to a dysfunction of vascular endothelium-dependent protective mechanisms. There is growing evidence that this scenario also involves impaired nitric oxide (NO)-cyclic GMP signalling. Out of a number of enzyme families that can produce reactive oxygen species, NADPH oxidases stand out, as they are the only enzymes whose sole purpose is to produce reactive oxygen species. This review focuses on the clinically validated targets of oxidative stress, NO synthase (NOS) and the NO receptor, soluble guanylate cyclase as well as the source of ROS, e.g. NADPH oxidases. We place recent knowledge in the function and regulation of these enzyme families into clinical perspective. For a comprehensive overview of the biology and pharmacology of oxidative stress and possible other sources and targets, we refer to other literature overviews.  相似文献   

11.
The generation of reactive oxygen species (ROS) plays a major role in endothelial signaling and function. Of the several potential sources of ROS in the vasculature, the endothelial NADPH oxidase (Nox) family of proteins, Nox1, Nox2, Nox4 and Nox5, are major contributors of ROS. Excess generation of ROS contributes to the development and progression of vascular disease. While hyperoxia stimulates ROS production through Nox proteins, hypoxia appears to involve mitochondrial electron transport in the generation of superoxide. ROS generated from Nox proteins and mitochondria are important for oxygen sensing mechanisms. Physiological concentrations of ROS function as signaling molecule in the endothelium; however, excess ROS production leads to pathological disorders like inflammation, atherosclerosis, and lung injury. Regulation of Nox proteins is unclear; however, antioxidants, MAP Kinases, STATs, and Nrf2 regulate Nox under normal physiological and pathological conditions. Studies related to redox regulation of Nox should provide a better understanding of ROS and its role in the pathophysiology of vascular diseases.  相似文献   

12.
Proinflammatory cytokines prime the membrane-bound NADPH oxidase of neutrophils and monocytes of mice suffering from experimental arthritis so as to attain an activated state, which, upon a second stimulus, releases 6-fold increased levels of reactive oxygen species (ROS) than do unprimed phagocytes. Enhanced NADPH oxidase activity deregulates ROS-dependent signal transduction pathways of inflammation, which play a crucial role in the pathogenesis of arthritis. The antiarthritic reactivity of two inhibitors of NADPH oxidase, diphenylene iodoniumchloride (DPI) and stauroporine, was tested in male DBA/1 × B10A(4R) hybrid mice suffering from potassium peroxochromate arthritis. Daily doses of 2.8 mol/kg of DPI or 30 nmol/kg of staurosporine sufficed to inhibit the arthritis by 50%. A complete inhibition was obtained with 10 mol/kg of DPI, and 100 nmol/kg of stauroporine suppressed the arthritis by 85%. The onset, progression, and remission of arthritis correlated to both the activity of phagocytic NADPH oxidase (r=0.750) and to overt disease symptoms as judged by the arthritis index. Our data support the hypothesis that oxidative stress plays a pivotal role in the pathology of arthritis, which can be therapeutically targeted by NADPH oxidase inhibitors.  相似文献   

13.
Oxidative stress and atherosclerosis.   总被引:3,自引:0,他引:3  
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the Western world. Its incidence has been increasing lately in developing countries. Several lines of evidence support a role for oxidative stress in atherogenesis. Growing evidence indicates that chronic and acute overproduction of reactive oxygen species (ROS) under pathophysiologic conditions is integral in the development of cardiovascular diseases (CVD). ROS mediate various signaling pathways that underlie vascular inflammation in atherogenesis from the initiation of fatty streak development through lesion progression to ultimate plaque rupture. Various animal models of oxidative stress support the notion that ROS have a causal role in atherosclerosis and other cardiovascular diseases. Human investigations also support the oxidative stress hypothesis of atherosclerosis. Oxidative stress is the unifying mechanism for many CVD risk factors, which additionally supports its central role in CVD. A main source of ROS in vascular cells is the reduced nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase system. This is a membrane-associated enzyme, composed of five subunits, catalyzing the one-electron reduction of oxygen, using NADH or NADPH as the electron donor. This system is an important target for genetic investigations. Identification of groups of patients with genetically prone or resistant of oxidative stress is therefore an obvious target of investigation. A better understanding of the complexity of cellular redox reactions, development of a new class of antioxidants targeted to specific subcellular sites, and the phenotype-genotype linkage analysis for oxidative stress will likely be avenues for future research with regards to the broader use of pharmacological therapies in the treatment and prevention of CVD.  相似文献   

14.
Phagocytic leukocytes generate reactive oxygen species important for the killing of invading microorganisms. The source of these oxidants is the NADPH oxidase, a tightly controlled multicomponent enzyme made up of a membrane-associated catalytic moiety and cytosolic regulatory components that must assemble to form the active oxidase. The phagocyte NADPH oxidase was the first mammalian system shown to be directly regulated by a Rac GTPase. We review here our understanding of NADPH oxidase regulation by Rac, as well as the regulation of Rac itself, in phagocytic leukocytes. Rather than viewing Rac as a "cog" in the NADPH oxidase machinery, we argue for a view of Rac GTPases as critical "molecular switches" regulating the formation of ROS by phagocytic leukocytes under physiologic and pathologic conditions.  相似文献   

15.
In addition to mitochondria, NADPH oxidase (NOX) is a source of oxidative stress, which can induce oxidative damage in Alzheimer's disease (AD). For this reason, several groups have investigated the effect of its inhibition. In AD mice, NADPH oxidase 2 (NOX2) deficiency improved behavior and cerebrovascular function, and reduced oxidative stress. In our study, we administered the NOX inhibitor apocynin to Tg19959 mice, and found that it did not improve cognitive and synaptic deficits, and did not decrease amyloid deposition, microgliosis and hyperphosphorylated tau. However, apocynin reduced carbonyl levels in the cerebral cortex but not the hippocampus, which may have not been sufficient to ameliorate symptoms. Also, the reduction of NOX-mediated oxidative stress may not be sufficient to prevent AD, since other sources of reactive oxygen species such as mitochondria may be more important.  相似文献   

16.
目的:探讨阿托伐他汀对高糖诱导的人脐静脉血管内皮细胞(HUVECs)产生氧化应激的影响及其作用机制。方法:体外培养HUVECs,以25 mmol/L葡萄糖干预,模拟糖尿病患者体内环境,通过流式细胞术和共聚焦显微镜检测细胞内的活性氧(ROS)水平,采用Lucigenin分析方法测定还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶活性,分别应用实时荧光定量PCR和免疫印迹杂交的方法检测 NADPH氧化酶亚基Nox4和Nox2/gp91phox的表达水平,用免疫印迹杂交方法检测蛋白激酶C(PKC)蛋白的磷酸化水平。结果:(1)在高糖环境(终浓度为25 mmol/L)下,HUVECs内ROS生成显著增加,NADPH氧化酶的活性显著增强,NADPH 氧化酶Nox4和Nox2/gp91phox亚基的mRNA和蛋白表达水平显著上调;(2)阿托伐他汀可显著抑制高糖诱导的ROS 生成、NADPH氧化酶活性的增强及NADPH 氧化酶Nox4和Nox2/gp91phox亚基表达水平的增加幅度,且具有浓度依赖性;(3)PKC抑制剂(PKC inhibitor peptide, 20 μmol/L)可显著抑制高糖环境下ROS的生成、NADPH氧化酶活性的增强及NADPH 氧化酶Nox4和Nox2/gp91phox亚基表达水平的增加幅度;(4)阿托伐他汀可抑制高糖诱导的PKC蛋白的磷酸化。结论:PKC的活化参与了高糖诱导的HUVECs产生的氧化应激反应。阿托伐他汀通过抑制PKC蛋白的活化对抗高糖诱导的内皮细胞产生的氧化应激反应。  相似文献   

17.
The phagocytic NADPH oxidase is recognized as a critical component of innate immunity, responsible for generation of microbicidal reactive oxygen species (ROS). This enzyme is one representative of the Nox family of oxidases (Nox1-Nox5, Duox1, and Duox2) that exhibit diverse expression patterns and appear to serve a variety of functions related to ROS generation. Mounting evidence now suggests that several of these novel oxidases also serve in host defense, particularly those showing high expression along epithelial surfaces exposed to the external environment. Within these sites, Nox enzymes tend to be located on apical cell surfaces and release ROS into extracellular environments, where they can be used by known antimicrobial peroxidases. Moreover, microbial factors were shown in several cases to cause higher ROS production, either by direct oxidase activation or by inducing higher oxidase expression. Several oxidases are also induced by immune cytokines, including interferon-gamma, interleukin (IL)-4, and IL-13. Although most of the evidence supporting host defense roles for mammalian nonphagocytic oxidases remains circumstantial, recent evidence indicates that Drosophila Duox plays a role in host resistance to infection. Finally, oxidative defense against invading pathogens appears to be an ancient protective mechanism, because related oxidases are known to participate in disease resistance in plants.  相似文献   

18.
The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase of phagocytes is a multi-component electron transferase that uses cytoplasmic NADPH to convert molecular oxygen to superoxide anion, consequently delivering reactive oxygen species to the site of invading microorganisms. Together with soluble factors and other phagocyte-derived agents, the resultant toxic species kill and degrade the ingested microbe. Flavocytochrome b (558), a heterodimeric protein composed of gp91 phox and p22 phox, is the membrane component of the NADPH oxidase and was previously thought to be uniquely expressed in phagocytes. Based on structural homology with gp91 phox, recent studies have defined a family of NADPH oxidase proteins (Nox) that is widely distributed throughout the plant and animal kingdoms and in many tissues in multicellular organisms. The goals of this review are to review features of the phagocyte NADPH oxidase that serve as a paradigm for exploiting oxidants for host defense, and to discuss contributions of other Nox proteins to innate immunity.  相似文献   

19.
The role of superoxide and its active byproduct peroxynitrite as mediators of nociceptive signaling is emerging. We have recently reported that nitration and inactivation of spinal mitochondrial superoxide dismutase (MnSOD) provides a critical source of these reactive oxygen and nitrogen species during central sensitization associated with the development of morphine-induced hyperalgesia and antinociceptive tolerance. In this study, we demonstrate that activation of spinal NADPH oxidase is another critical source for superoxide generation. Indeed, the development of morphine-induced hyperalgesia and antinociceptive tolerance was associated with increased activation of NADPH oxidase and superoxide release. Co-administration of morphine with systemic delivery of two structurally unrelated NADPH oxidase inhibitors namely apocynin or diphenyleneiodonium (DPI), blocked NADPH oxidase activation and the development of hyperalgesia and antinociceptive tolerance at doses devoid of behavioral side effects. These results suggest that activation of spinal NADPH oxidase contributes to the development of morphine-induced hyperalgesia and antinociceptive tolerance. The role of spinal NADPH oxidase was confirmed by showing that intrathecal delivery of apocynin blocked these events. Our results are the first to implicate the contribution of NADPH oxidase as an enzymatic source of superoxide and thus peroxynitrite in the development of central sensitization associated with morphine-induced hyperalgesia and antinociceptive tolerance. These results continue to support the critical role of these reactive oxygen and nitrogen species in pain while advancing our knowledge of their biomolecular sources.  相似文献   

20.
Alzheimer's disease is the most common cause of dementia in the elderly, and manifests as progressive cognitive decline and profound neuronal loss. The principal neuropathological hallmarks of Alzheimer's disease are the senile plaques and the neurofibrillary tangles. The senile plaques are surrounded by activated microglia, which are largely responsible for the proinflammatory environment within the diseased brain. Microglia are the resident innate immune cells in the brain. In response to contact with fibrillar beta-amyloid, microglia secrete a diverse array of proinflammatory molecules. Evidence suggests that oxidative stress emanating from activated microglia contribute to the neuronal loss characteristic of this disease. The source of fibrillar beta-amyloid induced reactive oxygen species is primarily the microglial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. The NADPH oxidase is a multicomponent enzyme complex that, upon activation, produces the highly reactive free radical superoxide. The cascade of intracellular signaling events leading to NADPH oxidase assembly and the subsequent release of superoxide in fibrillar beta-amyloid stimulated microglia has recently been elucidated. The induction of reactive oxygen species, as well as nitric oxide, from activated microglia can enhance the production of more potent free radicals such as peroxynitrite. The formation of peroxynitrite causes protein oxidation, lipid peroxidation and DNA damage, which ultimately lead to neuronal cell death. The elimination of beta-amyloid-induced oxidative damage through the inhibition of the NADPH oxidase represents an attractive therapeutic target for the treatment of Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号