首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mechanisms underlying poststroke pain have not been clearly identified. Although motor cortex stimulation (MCS) sometimes reduces poststroke pain successfully, the exact mechanism is not yet known. For further investigation of the neural pathways involved in the processing of poststroke pain and in pain reduction by MCS, the authors used positron emission tomography (PET) scanning to determine significant changes in regional cerebral blood flow (rCBF). This 58-year-old right-handed man suffered from right-sided poststroke pain for which he underwent implantation of a stimulation electrode in the right motor cortex. After 30 minutes of stimulation, his pain was remarkably reduced (Visual Analog Scale scores decreased 8 to 1) and he felt warmth in his left arm. The rCBF was studied using PET scanning with 15O-labeled water when the patient was in the following states: before MCS (painful condition, no stimulation) and after successful MCS (painless condition, no stimulation). The images were analyzed using statistical parametric mapping software. State-dependent differences in global blood flow were covaried using analysis of covariance. Comparisons of the patient's rCBF in the painful condition with that in the painless condition revealed significant rCBF increases in the left rectus gyrus (BA11), left superior frontal lobe (BA9), left anterior cingulate gyms (BA32), and the left thalamus (p < 0.05, corrected). On the other hand, there were significant decreases in rCBF in the right superior temporal gyrus (BA22, p < 0.01, corrected) and the left middle occipital gyrus (BA19, p < 0.05, corrected). The efficacy of MCS was mainly related to increased synaptic activity in the thalamus, whereas the activations in the rectus gyrus, anterior cingulate gyrus, and superior frontal cortex as well as the inactivation of the superior temporal lobe may be related to emotional processes. This is the first report in which the contralateral thalamus was significantly activated and pain relief was achieved using MCS.  相似文献   

2.
The effect of motor cortex stimulation (MCS) therapy for deafferentation pain was evaluated based on c-Fos, a known pain marker. Nineteen mature cats weighing 1.5–3.5 kg were used. Cats were divided into three groups: a deafferentation pain group in which the left trigeminal ganglion was destroyed, an MCS group in which MCS was used following destruction of the trigeminal ganglion, and a control group. Sites and levels of c-Fos expression were examined immunohistochemically. The percentage of c-Fos-positive cells in the left spinal nucleus of the trigeminus, the bilateral insula, and the bilateral operculum increased in both the deafferentation pain and the MCS groups. There were no statistically significant differences between these groups. In the cingulate gyrus, the percentage of c-Fos-positive cells increased bilaterally in the deafferentation pain group and the MCS group, but the increase was greater in the MCS group. The increase in c-Fos-positive cells in the left spinal nucleus of the trigeminus in the deafferentation group may reflect reported electrical hyperactivity. The cingulate gyrus, insula, and parietal operculum were activated after deafferentation. This change (increase in c-Fos positive cells) is related to the development of deafferentation pain. Pain relief due to MCS is not dependent on the suppression of the activated left spinal nucleus of the trigeminus or the descending analgesic mechanism of the brain stem. Activation of the cingulate gyrus appears to be a factor in the analgesic mechanism of MCS.  相似文献   

3.
BACKGROUND: We tested the hypothesis that escalating drug concentrations of sevoflurane are associated with a significant decline of cerebral blood flow in regions subserving conscious brain activity, including specifically the thalamus. METHODS: Nine healthy human volunteers received three escalating doses using 0.4%, 0.7% and 2.0% end-tidal sevoflurane inhalation. During baseline and each of the three levels of anaesthesia one PET scan was performed after injection of . Cardiovascular and respiratory parameters were monitored and electroencephalography and bispectral index (BIS) were registered. RESULTS: Sevoflurane decreased the BIS values dose-dependently. No significant change in global cerebral blood flow (CBF) was observed. Increased regional CBF (rCBF) in the anterior cingulate (17-21%) and decreased rCBF in the cerebellum (18-35%) were identified at all three levels of sedation compared to baseline. Comparison between adjacent levels sevoflurane initially (0 vs. 0.2 MAC) decreased rCBF significantly in the inferior temporal cortex and the lingual gyrus. At the next level (0.2 MAC vs. 0.4 MAC) rCBF was increased in the middle temporal cortex and in the lingual gyrus, and decreased in the thalamus. At the last level (0.4 MAC vs. 1 MAC) the rCBF was increased in the insula and decreased in the posterior cingulate, the lingual gyrus, precuneus and in the frontal cortex. CONCLUSION: At sevoflurane concentrations at 0.7% and 2.0% a significant decrease in relative rCBF was detected in the thalamus. Interestingly, some of the most profound changes in rCBF were observed in structures related to pain processing (anterior cingulate and insula).  相似文献   

4.
Background: Changes in regional cerebral blood flow (rCBF) determined with H215 O positron emission tomographic imaging can identify neural circuits affected by centrally acting drugs.

Methods: Fourteen volunteers received one of two midazolam infusions adjusted according to electroencephalographic response. Low or high midazolam effects were identified using post-hoc spectral analysis of the electroencephalographic response obtained during positron emission tomographic imaging based on the absence or presence of 14-Hz spindle activity. The absolute change in global CBF was calculated, and relative changes in rCBF were determined using statistical parametric mapping with localization to standard stereotactic coordinates.

Results: The low-effect group received 7.5 +/- 1.7 mg midazolam (serum concentrations, 74 +/- 24 ng/ml), and the high-effect group received 9.7 +/- 1.3 mg midazolam (serum concentrations, 129 +/- 48 ng/ml). Midazolam decreased global CBF by 12% from 39.2 +/- 4.1 to 34.4 +/- 6.1 ml [center dot] 100 g sup -1 [center dot] min sup -1 (P < 0.02 at a partial pressure of carbon dioxide of 40 mmHg). The rCBF changes in the low-effect group were a subset of the high-effect group. Decreased rCBF (P < 0.001) occurred in the insula, the cingulate gyrus, multiple areas in the prefrontal cortex, the thalamus, and parietal and temporal association areas. Asymmetric changes occurred, particularly in the low-effect group, and were more significant in the left frontal cortex and thalamus and the right insula. Relative rCBF was increased in the occipital areas.  相似文献   


5.
OBJECTIVE: The aim of this study was to observe areas of brain activation with painful hot stimulation to the trigeminal nerve. STUDY DESIGN: Nine healthy pain-free women (mean age 26.2 +/- 6.9 yrs) with a natural, regular menstrual cycle participated in the study. Whole-brain functional magnetic resonance imaging (fMRI) data were acquired for each participant on day 2 or 3 after the onset of menses using echo-planar imaging at 1.5T with near-isotropic spatial resolution and a temporal resolution of 4 s. RESULTS: Whole-brain fMRI with a Peltier thermode inside the head coil yielded a feasible imaging protocol with little disturbance from the thermode. Painful thermal stimulation of the left trigeminal system activated discrete brain regions within the insula, cingulate gyrus, thalamus, inferior parietal lobe/postcentral gyrus, right middle and inferior frontal gyri, cuneus, precuneus, and precentral gyrus. CONCLUSION: Painful stimulation of the trigeminal nerve resulted in activation of similar brain areas generally known for pain processing of painful peripheral stimulation.  相似文献   

6.
目的 利用功能MR研究三叉神经痛患者半月节射频热凝术(PRT)前后脑功能局部一致性(ReHo)变化。方法 对31例接受PRT手术的三叉神经痛患者在术前1周及术后6个月分别进行MR扫描,采集其大脑结构及静息态功能图像;同时记录患者的疼痛视觉模拟量表(VAS)评分、面部麻木程度及患病时间。比较患者手术前后全脑ReHo值出现显著变化的脑区,再将这些脑区的平均ReHo值与临床观察指标进行相关分析。结果 与术前相比,患者术后右侧梭状回(FG)和双侧前扣带回(ACC)的ReHo值显著增高(P均0.05),而左侧顶下小叶(IPL)、右侧距状回、右侧颞中回(MTG)、左侧中央后回(PoCG)以及左侧岛叶的ReHo值显著降低(P均0.05)。左侧PoCG的ReHo值与手术前后VAS评分呈正相关,术前右侧MTG的ReHo值与手术前后VAS的变化值呈负相关。结论 PRT术后多个脑区的Re-Ho出现显著变化,这些区域与痛觉感知、情感表达及情绪体验密切相关,其中左侧PoCG具有作为靶点判断疼痛部位及评估疼痛强度的潜在价值。  相似文献   

7.
Because awareness of emotional states in the self is a prerequisite to recognizing such states in others, alexithymia (ALEX), difficulty in identifying and expressing one's own emotional states, should involve impairment in empathy. Using functional magnetic resonance imaging (fMRI), we compared an ALEX group (n = 16) and a non-alexithymia (non-ALEX) group (n = 14) for their regional hemodynamic responses to the visual perception of pictures depicting human hands and feet in painful situations. Subjective pain ratings of the pictures and empathy-related psychological scores were also compared between the 2 groups. The ALEX group showed less cerebral activation in the left dorsolateral prefrontal cortex (DLPFC), the dorsal pons, the cerebellum, and the left caudal anterior cingulate cortex (ACC) within the pain matrix. The ALEX group showed greater activation in the right insula and inferior frontal gyrus. Furthermore, alexithymic participants scored lower on the pain ratings and on the scores related to mature empathy. In conclusion, the hypofunction in the DLPFC, brain stem, cerebellum, and ACC and the lower pain-rating and empathy-related scores in ALEX are related to cognitive impairments, particularly executive and regulatory aspects, of emotional processing and support the importance of self-awareness in empathy.  相似文献   

8.
OBJECTIVE: To compare changes in regional cerebral blood flow (rCBF), using positron emission tomography (PET), during chronic and acute sacral neuromodulation (SN). SN is an effective long-term treatment for chronic urge incontinence due to urinary bladder hyperactivity, as sensory nerves, spinal and supraspinal structures are probably responsible for the action of SN. It is not known which brain areas are involved, and the optimum benefit of SN is not immediate, suggesting that induced plasticity of the brain is necessary. PATIENTS AND METHODS: Brain activity was measured in two groups: 12 urge incontinent patients (11 women and one man; mean age 52 years) in whom an implanted unilateral S3 nerve neurostimulator had been effective for >6 months (mean time after implantation 4.5 years); and eight urge incontinent patients (seven women and one man; mean age 49 years) in whom the neurostimulator was activated for the first time in the PET scanner. RESULTS: During SN in chronically implanted patients, there were significant decreases in rCBF in the middle part of the cingulate gyrus, the ventromedial orbitofrontal cortex, midbrain and adjacent midline thalamus, and rCBF increases in the dorsolateral prefrontal cortex. During acute SN in newly implanted patients, there were significant decreases in rCBF the medial cerebellum, and increases in the right postcentral gyrus cortex, the right insular cortex and the ventromedial orbitofrontal cortex. Group analysis between chronic and newly implanted patients showed significant differences in the associative sensory cortex, premotor cortex and the cerebellum, all three involved in learning behaviour. CONCLUSIONS: These findings suggests that chronic SN influences, presumably via the spinal cord, brain areas previously implicated in detrusor hyperactivity, awareness of bladder filling, the urge to void and the timing of micturition. Furthermore, SN affects areas involved in alertness and awareness. Acute SN modulates predominantly areas involved in sensorimotor learning, which might become less active during the course of chronic SN.  相似文献   

9.
目的观察MR磁化传递对比(MTC)成像在轻度窒息新生儿中的应用价值。方法对15例轻度窒息新生儿(Apgar评分10分,病例组)及25名正常新生儿(对照组)采集脑常规T1WI、3D-T1WI和T1WI-MTC,计算脑磁化率(MTR),配准于标准新生儿脑模板后行统计分析。采用3dRegAna对病例组MTR与Apgar评分进行回归分析。结果相比对照组,病例组右颞极、左颞下回、左额上回、右缘上回、右眶额皮质、左额中叶、右额中回及左上额叶MTR显著降低;右梭状回、右顶叶下回、右枕中回、右颞中回、右颞下回、右颞上极、右楔叶、右角回、右舌回及右颞上回MTR显著增加。回归分析显示,病例组左中央后回、右颞下叶(前)、右额中回、右颞上极、左眶额皮质及右颞下叶(后)MTR与Apgar评分呈正相关,右壳核、右眶额皮质、左杏仁核、右颞下回、左舌回、右舌回、左颞中回、左枕中回、延髓及右梭状回呈负相关。组间MTR差异有统计学意义、且病例组MTR与Apgar评分呈正相关脑区为右额中叶、右颞极,呈负相关脑区则为右舌叶及右梭状回。结论 MR MTC成像能检出轻度窒息新生儿缺血缺氧脑区;缺血缺氧主要导致新生儿右侧脑损害。  相似文献   

10.
Background:  In this study, we tested the hypothesis that escalating drug concentrations of isoflurane are associated with a significant decline in cerebral blood flow (CBF) in regions sub-serving conscious brain activity, including specifically the thalamus.
Methods:  Nine human volunteers received three escalating drug concentrations: 0.2, 0.4 and 1.0 MAC end-tidal inhalation. During waking, baseline and the three levels of sedation, a     O PET scan was performed.
Results:  Isoflurane decreased the bispectral index (BIS) values dose-dependently. Cardiovascular and respiratory parameters were maintained constant over time. No significant change in global CBF was observed. Throughout all three MAC levels of sedation, isoflurane caused an increased regional cerebral blood flow (rCBF) in the anterior cingulate and decreased rCBF in the cerebellum. Initially, isoflurane (0 vs. 0.2 MAC) significantly increased relative rCBF in the medial frontal gyrus and in the nucleus accumbens. At the next level (0.2 vs. 0.4 MAC), relative rCBF was significantly increased in the caudate nucleus and decreased in the lingual gyrus and cuneus. At the last level (0.4 vs. 1 MAC), relative rCBF was significantly increased in the insula and decreased in the thalamus, the cuneus and lingual gyrus. Compared with flow distribution in awake volunteers, 1 MAC of isoflurane significantly raised relative activity in the anterior cingulate and insula regions. In contrast, a significant relative flow reduction was identified in the thalamus, the cerebellum and lingual gyrus.
Conclusions:  Isoflurane, like sevoflurane, induced characteristic flow redistribution at doses of 0.2–1.0 MAC. At 1 MAC of isoflurane, rCBF decreased in the thalamus. Specific areas affected by both isoflurane and sevoflurane included the anterior cingulate, insula regions, cerebellum, lingual gyrus and thalamus.  相似文献   

11.
Tone recognition is partially subserved by neural activity in the right frontal and primary auditory cortices. First we determined the brain areas associated with tone perception and recognition. This study then examined how regional cerebral blood flow (rCBF) in these and other brain regions correlates with the behavioral characteristics of a difficult tone recognition task. rCBF changes were assessed using H2(15)O positron emission tomography. Subtraction procedures were used to localize significant change regions and correlational analyses were applied to determine how response times (RT) predicted rCBF patterns. Twelve trained normal volunteers were studied in three conditions: REST, sensory motor control (SMC) and decision (DEC). The SMC-REST contrast revealed bilateral activation of primary auditory cortices, cerebellum and bilateral inferior frontal gyri. DEC-SMC produced significant clusters in the right middle and inferior frontal gyri, insula and claustrum; the anterior cingulate gyrus and supplementary motor area; the left insula/claustrum; and the left cerebellum. Correlational analyses, RT versus rCBF from DEC scans, showed a positive correlation in right inferior and middle frontal cortex; rCBF in bilateral auditory cortices and cerebellum exhibited significant negative correlations with RT These changes suggest that neural activity in the right frontal, superior temporal and cerebellar regions shifts back and forth in magnitude depending on whether tone recognition RT is relatively fast or slow, during a difficult, accurate assessment.   相似文献   

12.
目的采用静息态fMRI基于分数低频振荡幅度(fALFF)方法评估急性酒精暴露后恒河猴脑功能改变。方法分别对7只健康雄性恒河猴于静脉注射酒精前及注射后10、28、46min进行BOLD fMRI序列及3D结构像扫描,采用fALFF算法获得并比较4个时间点fALFF差异的脑区。结果 4个时间点fALFF总体差异显著的脑区为右侧中央后回、右侧岛叶、右侧小脑、左侧海马旁回、双侧额下回、小脑蚓部、右枕叶、楔前叶、左侧缘上回(P均0.05);静脉注射酒精后fALFF值减低的脑区为双侧额上回、右侧额下回、右侧梭状回、右侧角回、双侧颞上回、右枕叶、左侧外侧沟、左侧中央后回、左侧楔状叶、左侧丘脑、左侧岛叶、前扣带回(P均0.05);静脉注射酒精后fALFF值增高的脑区为右侧额下回、右侧颞中回(P均0.05)。结论酒精暴露急性期脑代谢活动发生显著变化,主要涉及默认网络、奖赏及情绪加工系统、视听皮层等。  相似文献   

13.
To define the cortical areas that subserve spatial working memory in a nonhuman primate, we measured regional cerebral blood flow (rCBF) with [(15)O]H(2)O and positron emission tomography while monkeys performed a visually guided saccade (VGS) task and an oculomotor delayed-response (ODR) task. Both Statistical Parametric Mapping and regions of interest-based analyses revealed an increase of rCBF in the area surrounding the principal sulcus (PS), the superior convexity, the anterior bank of the arcuate sulcus (AS), the lateral orbitofrontal cortex (lOFC), the frontal pole (FP), the anterior cingulate cortex (ACC), the lateral bank of the intraparietal sulcus (lIPS) and the prestriate cortex. In the prefrontal cortex (PS, superior convexity, AS, lOFC and FP), rCBF values correlated positively with ODR task performance scores. From the hippocampus, rCBF values correlated negatively with ODR task performance. From the AS, superior convexity, lOFC, FP, ACC and lIPS, rCBF values of the PS correlated positively with rCBF values and negatively with hippocampus rCBF values. These results suggest that neural circuitry in the prefrontal cortex directly contributes the spatial working memory processes and that, in spatial working memory processes, the posterior parietal cortex and hippocampus have a different role to the prefrontal cortex.  相似文献   

14.
We report the first instance of the use of 3-dimensional magnetic resonance imaging anatomically correlated to positron emission tomography (PET) scanning to identify language areas in a patient with an arteriovenous malformation (AVM) in the posterior speech region. The patient was a 24-year-old right-handed woman with an angiographically proven AVM (3-4 cm) in the left mid-posterior second temporal convolution in whom a left intracarotid injection of sodium Amytal produced significant language disruption. A baseline PET cerebral blood flow study identified the AVM, and an activation PET scan performed during the reading and speaking of simple words showed increased activity in the left parastriate cortex (the second visual area), in the left posterior third frontal convolution (Broca's area), and in the left inferior and midtemporal gyri (Wernicke's area). Increased activity was also noted in the right and left transverse temporal (Heschl's) gyri, in the left precentral gyrus, in the left medial superior frontal gyrus (the supplementary motor area), and in the right cerebellum. We conclude that activation PET scanning is useful in the preoperative assessment of patients who harbor cerebral AVMs in classically described speech regions.  相似文献   

15.
The aim of this (15)O-labelled H(2)O bolus positron emission tomography (PET) study was to analyse the hemispheric dominance of the vestibular cortical system. Therefore, the differential effects of caloric vestibular stimulation (right or left ear irrigation with warm water at 44 degrees C) on cortical and subcortical activation were studied in 12 right-handed and 12 left-handed healthy volunteers. Caloric irrigation induces a direction-specific sensation of rotation and nystagmus. Significant regional cerebral blood flow increases were found in a network within both hemispheres, including the superior frontal gyrus/sulcus, the precentral gyrus and the inferior parietal lobule with the supramarginal gyrus. These areas correspond best to the cortical ocular motor centres, namely the prefrontal cortex, the frontal eye field and the parietal eye field, known to be involved in the processing of caloric nystagmus. Furthermore, distinct temporo-parietal activations could be separated in the posterior part of the insula with the adjacent superior temporal gyrus, the inferior parietal lobule and precuneus. These areas fit best to the human homologues of multisensory vestibular cortex areas identified in the monkey and correspond to the parieto-insular vestibular cortex (PIVC), the visual temporal sylvian area (VTS) and areas 7 and 6. Further cortical activations were seen in the anterior insula, the inferior frontal gyrus and anterior cingulum. The subcortical activation pattern in the putamen, thalamus and midbrain is consistent with the organization of efferent ocular motor pathways. Cortical and subcortical activation of the described areas was bilateral during monaural stimulation, but predominant in the hemisphere ipsilateral to the stimulated ear and exhibited a significant right hemispheric dominance for vestibular and ocular motor structures in right-handed volunteers. Similarly, a significant left hemispheric dominance was found in the 12 left-handed volunteers. Thus, this PET study showed for the first time that cortical and subcortical activation by vestibular caloric stimulation depends (i) on the handedness of the subjects and (ii) on the side of the stimulated ear. Maximum activation was therefore found when the non-dominant hemisphere was ipsilateral to the stimulated ear, i.e. in the right hemisphere of right-handed subjects during caloric irrigation of the right ear and in the left hemisphere of left-handed subjects during caloric irrigation of the left ear. The localization of handedness and vestibular dominance in opposite hemispheres might conceivably indicate that the vestibular system and its hemispheric dominance, which matures earlier during ontogenesis, determine right- or left-handedness.  相似文献   

16.
BACKGROUND: Animal studies have demonstrated a strong neuroprotective property of xenon. Its usefulness in patients with cerebral pathology could be compromised by deleterious effects on regional cerebral blood flow (rCBF). METHODS: 15O-labeled water was used to determine rCBF in nine healthy male subjects at baseline and during 1 minimum alveolar concentration (MAC) of xenon (63%). Anesthesia was based solely on xenon. Absolute changes in rCBF were quantified using region-of-interest analysis and voxel-based analysis. RESULTS: Mean arterial blood pressure and arterial partial pressure for carbon dioxide remained unchanged. The mean (+/-SD) xenon concentration during anesthesia was 65.2+/-2.3%. Xenon anesthesia decreased absolute rCBF by 34.7+/-9.8% in the cerebellum (P<0.001), by 22.8+/-10.4% in the thalamus (P=0.001), and by 16.2+/-6.2% in the parietal cortex (P<0.001). On average, xenon anesthesia decreased absolute rCBF by 11.2+/-8.6% in the gray matter (P=0.008). A 22.1+/-13.6% increase in rCBF was detected in the white matter (P=0.001). Whole-brain voxel-based analysis revealed widespread cortical reductions and increases in rCBF in the precentral and postcentral gyri. CONCLUSIONS: One MAC of xenon decreased rCBF in several areas studied. The greatest decreases were detected in the cerebellum, the thalamus and the cortical areas. Increases in rCBF were observed in the white matter and in the pre- and postcentral gyri. These results are in clear contradiction with ketamine, another N-methyl-D-aspartate antagonist and neuroprotectant, which induces a general increase in cerebral blood flow at anesthetic concentrations.  相似文献   

17.
The cortical areas that represent affectively positive and negative aspects of touch were investigated using functional magnetic resonance imaging (fMRI) by comparing activations produced by pleasant touch, painful touch produced by a stylus, and neutral touch, to the left hand. It was found that regions of the orbitofrontal cortex were activated more by pleasant touch and by painful stimuli than by neutral touch and that different areas of the orbitofrontal cortex were activated by the pleasant and painful touches. The orbitofrontal cortex activation was related to the affective aspects of the touch, in that the somatosensory cortex (SI) was less activated by the pleasant and painful stimuli than by the neutral stimuli. This dissociation was highly significant for both the pleasant touch (P < 0.006) and for the painful stimulus (P < 0.02). Further, it was found that a rostral part of the anterior cingulate cortex was activated by the pleasant stimulus and that a more posterior and dorsal part was activated by the painful stimulus. Regions of the somatosensory cortex, including SI and part of SII in the mid-insula, were activated more by the neutral touch than by the pleasant and painful stimuli. Part of the posterior insula was activated only in the pain condition and different parts of the brainstem, including the central grey, were activated in the pain, pleasant and neutral touch conditions. The results provide evidence that different areas of the human orbitofrontal cortex are involved in representing both pleasant touch and pain, and that dissociable parts of the cingulate cortex are involved in representing pleasant touch and pain.  相似文献   

18.
Event-related functional magnetic resonance imaging was usedto investigate brain processing of the signals ascending fromperipheral C and A fibers evoked by phasic laser stimuli onthe right hand in humans. The stimulation of both C and A nociceptorsactivated the bilateral thalamus, bilateral secondary somatosensorycortex, right (ipsilateral) middle insula, and bilateral Brodmann'sarea (BA) 24/32, with the majority of activity found in theposterior portion of the anterior cingulate cortex (ACC). However,magnitude of activity in the right (ipsilateral) BA32/8/6, includingdorsal parts in the anterior portion of the ACC (aACC) and pre-supplementarymotor area (pre-SMA), and the bilateral anterior insula wassignificantly stronger following the stimulation of C nociceptorsthan A nociceptors. It was concluded that the activation ofC nociceptors, related to second pain, evokes different brainprocessing from that of A nociceptors, related to first pain,probably due to the differences in the emotional and motivationalaspects of either pain, which are mainly related to the aACC,pre-SMA, and anterior insula.  相似文献   

19.
Background: Animal studies have demonstrated a strong neuroprotective property of xenon. Its usefulness in patients with cerebral pathology could be compromised by deleterious effects on regional cerebral blood flow (rCBF).

Methods: 15O-labeled water was used to determine rCBF in nine healthy male subjects at baseline and during 1 minimum alveolar concentration (MAC) of xenon (63%). Anesthesia was based solely on xenon. Absolute changes in rCBF were quantified using region-of-interest analysis and voxel-based analysis.

Results: Mean arterial blood pressure and arterial partial pressure for carbon dioxide remained unchanged. The mean (+/- SD) xenon concentration during anesthesia was 65.2 +/- 2.3%. Xenon anesthesia decreased absolute rCBF by 34.7 +/- 9.8% in the cerebellum (P < 0.001), by 22.8 +/- 10.4% in the thalamus (P = 0.001), and by 16.2 +/- 6.2% in the parietal cortex (P < 0.001). On average, xenon anesthesia decreased absolute rCBF by 11.2 +/- 8.6% in the gray matter (P = 0.008). A 22.1 +/- 13.6% increase in rCBF was detected in the white matter (P = 0.001). Whole-brain voxel-based analysis revealed widespread cortical reductions and increases in rCBF in the precentral and postcentral gyri.  相似文献   


20.
Background: Arterial carbon dioxide tension (PaCO2) is an important factor controlling cerebral blood flow (CBF) in neurosurgical patients. It is still unclear whether the hypocapnia‐induced decrease in CBF is a general effect on the brain or rather linked to specific brain regions. We evaluated the effects of hyperventilation on regional cerebral blood flow (rCBF) in healthy volunteers during sevoflurane anaesthesia measured with positron emission tomography (PET). Methods: Eight human volunteers were anaesthetized with sevoflurane 1 MAC, while exposed to hyperventilation. During 1 MAC sevoflurane at normocapnia and 1 MAC sevoflurane at hypocapnia, one H215O scan was performed. Statistical parametric maps and conventional regions of interest analysis were used for estimating rCBF differences. Results: Cardiovascular parameters were maintained constant over time. During hyperventilation, the mean PaCO2 was decreased from 5.5 ± 0.7 to 3.8 ± 0.9 kPa. Total CBF decreased during the hypocapnic state by 44%. PET revealed wide variations in CBF between regions. The greatest values of vascular responses during hypocapnia were observed in the thalamus, medial occipitotemporal gyrus, cerebellum, precuneus, putamen and insula regions. The lowest values were observed in the superior parietal lobe, middle and inferior frontal gyrus, middle and inferior temporal gyrus and precentral gyrus. No increases in rCBF were observed. Conclusions: This study reports highly localized and specific changes in rCBF during hyperventilation in sevoflurane anaesthesia, with the most pronounced decreases in the sub cortical grey matter. Such regional heterogeneity of the cerebral vascular response should be considered in the assessment of cerebral perfusion reserve during hypocapnia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号