首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Aligned electrospun scaffolds are promising tools for engineering fibrous musculoskeletal tissues, as they reproduce the mechanical anisotropy of these tissues and can direct ordered neo-tissue formation. However, these scaffolds suffer from a slow cellular infiltration rate, likely due in part to their dense fiber packing. We hypothesized that cell ingress could be expedited in scaffolds by increasing porosity, while at the same time preserving overall scaffold anisotropy. To test this hypothesis, poly(varepsilon-caprolactone) (a slow-degrading polyester) and poly(ethylene oxide) (a water-soluble polymer) were co-electrospun from two separate spinnerets to form dual-polymer composite fiber-aligned scaffolds. Adjusting fabrication parameters produced aligned scaffolds with a full range of sacrificial (PEO) fiber contents. Tensile properties of scaffolds were functions of the ratio of PCL to PEO in the composite scaffolds, and were altered in a predictable fashion with removal of the PEO component. When seeded with mesenchymal stem cells (MSCs), increases in the starting sacrificial fraction (and porosity) improved cell infiltration and distribution after three weeks in culture. In pure PCL scaffolds, cells lined the scaffold periphery, while scaffolds containing >50% sacrificial PEO content had cells present throughout the scaffold. These findings indicate that cell infiltration can be expedited in dense fibrous assemblies with the removal of sacrificial fibers. This strategy may enhance in vitro and in vivo formation and maturation of functional constructs for fibrous tissue engineering.  相似文献   

2.
Cardiac tissue engineering (TE) is one of the most promising strategies to reconstruct the infarct myocardium and the major challenge involves producing a bioactive scaffold with anisotropic properties that assist in cell guidance to mimic the heart tissue. In this study, random and aligned poly(ε-caprolactone)/gelatin (PG) composite nanofibrous scaffolds were electrospun to structurally mimic the oriented extracellular matrix (ECM). Morphological, chemical and mechanical properties of the electrospun PG nanofibers were evaluated by scanning electron microscopy (SEM), water contact angle, attenuated total reflectance Fourier transform infrared spectroscopy and tensile measurements. Results indicated that PG nanofibrous scaffolds possessed smaller fiber diameters (239 ± 37 nm for random fibers and 269 ± 33 nm for aligned fibers), increased hydrophilicity, and lower stiffness compared to electrospun PCL nanofibers. The aligned PG nanofibers showed anisotropic wetting characteristics and mechanical properties, which closely match the requirements of native cardiac anisotropy. Rabbit cardiomyocytes were cultured on electrospun random and aligned nanofibers to assess the biocompatibility of scaffolds, together with its potential for cell guidance. The SEM and immunocytochemical analysis showed that the aligned PG scaffold greatly promoted cell attachment and alignment because of the biological components and ordered topography of the scaffolds. Moreover, we concluded that the aligned PG nanofibrous scaffolds could be more promising substrates suitable for the regeneration of infarct myocardium and other cardiac defects.  相似文献   

3.
Tissue engineered heart valves (TEHVs) that can grow and remodel have the potential to serve as permanent replacements of the current non-viable prosthetic valves particularly for pediatric patients. A major challenge in designing functional TEHVs is to mimic both structural and anisotropic mechanical characteristics of the native valve leaflets. To establish a more biomimetic model of TEHV, we fabricated tri-layered scaffolds by combining electrospinning and microfabrication techniques. These constructs were fabricated by assembling microfabricated poly(glycerol sebacate) (PGS) and fibrous PGS/poly(caprolactone) (PCL) electrospun sheets to develop elastic scaffolds with tunable anisotropic mechanical properties similar to the mechanical characteristics of the native heart valves. The engineered scaffolds supported the growth of valvular interstitial cells (VICs) and mesenchymal stem cells (MSCs) within the 3D structure and promoted the deposition of heart valve extracellular matrix (ECM). MSCs were also organized and aligned along the anisotropic axes of the engineered tri-layered scaffolds. In addition, the fabricated constructs opened and closed properly in an ex vivo model of porcine heart valve leaflet tissue replacement. The engineered tri-layered scaffolds have the potential for successful translation towards TEHV replacements.  相似文献   

4.
Lee SJ  Oh SH  Liu J  Soker S  Atala A  Yoo JJ 《Biomaterials》2008,29(10):1422-1430
Nonwoven nanofiber scaffolds fabricated by electrospinning technology have been widely used for tissue engineering applications. Although electrospun nanofiber scaffolds fulfill many requirements for tissue engineering applications, they sometimes lack the necessary biomechanical properties. To attempt to improve the biomechanical properties of electrospun poly(epsilon-caprolactone) (PCL) scaffolds, fibers were bonded by thermal treatment. The thermal fiber bonding was performed in Pluronic F127 solution at a range of temperatures from 54 degrees C to 60 degrees C. Thermally bonded electrospun PCL scaffolds were characterized by analyzing the changes in morphology, fiber diameter, pore area, tensile properties, suture retention strength, burst pressure strength, and compliance. The biomechanical properties of the thermally bonded electrospun PCL scaffolds were significantly increased without any gross observable and ultrastructural changes when compared to untreated PCL scaffolds. This study suggests that the introduction of thermal fiber bonding to electrospun PCL scaffolds improved the biomechanical properties of these scaffolds, making them more suitable for tissue engineering applications.  相似文献   

5.
Yoshimoto H  Shin YM  Terai H  Vacanti JP 《Biomaterials》2003,24(12):2077-2082
Microporous, non-woven poly( epsilon -caprolactone) (PCL) scaffolds were made by electrostatic fiber spinning. In this process, polymer fibers with diameters down to the nanometer range, or nanofibers, are formed by subjecting a fluid jet to a high electric field. Mesenchymal stem cells (MSCs) derived from the bone marrow of neonatal rats were cultured, expanded and seeded on electrospun PCL scaffolds. The cell-polymer constructs were cultured with osteogenic supplements under dynamic culture conditions for up to 4 weeks. The cell-polymer constructs maintained the size and shape of the original scaffolds. Scanning electron microscopy (SEM), histological and immunohistochemical examinations were performed. Penetration of cells and abundant extracellular matrix were observed in the cell-polymer constructs after 1 week. SEM showed that the surfaces of the cell-polymer constructs were covered with cell multilayers at 4 weeks. In addition, mineralization and type I collagen were observed at 4 weeks. This suggests that electrospun PCL is a potential candidate scaffold for bone tissue engineering.  相似文献   

6.
Electrospinning can be used to selectively process a variety of natural and synthetic polymers into highly porous scaffolds composed of nano-to-m diameter fibers. This process shows great potential as a gateway to the development of physiologically relevant tissue engineering scaffolds. In this study, we examine how incremental changes in fiber alignment modulate the material properties of a model scaffold. We prepared electrospun scaffolds of gelatin composed of varying fiber diameters and degrees of anisotropy. The scaffolds were cut into a series of "dog-bone" shaped samples in the longitudinal, perpendicular and transverse orientations and the relative degree of fiber alignment, as measured by the fast Fourier transform (FFT) method, was determined for each sample. We measured peak stress, peak strain and the modulus of elasticity as a function of fiber diameter and scaffold anisotropy. Fiber alignment was the variable most closely associated with the regulation of peak stress, peak strain and modulus of elasticity. Incremental changes, as judged by the FFT method, in the proportion of fibers that were aligned along a specific axis induced incremental changes in peak stress in the model scaffolds. These results underscore the critical role that scaffold anisotropy plays in establishing the material properties of an electrospun tissue engineering scaffold and the native extracellular matrix.  相似文献   

7.
《Acta biomaterialia》2014,10(2):709-721
Scaffolds for tissue engineering (TE) require the consideration of multiple aspects, including polymeric composition and the structure and mechanical properties of the scaffolds, in order to mimic the native extracellular matrix of the tissue. Electrospun fibers are frequently utilized in TE due to their tunable physical, chemical, and mechanical properties and porosity. The mechanical properties of electrospun scaffolds made from specific polymers are highly dependent on the processing parameters, which can therefore be tuned for particular applications. Fiber diameter and orientation along with polymeric composition are the major factors that determine the elastic modulus of electrospun nano- and microfibers. Here we have developed a neural network model to investigate the simultaneous effects of composition, fiber diameter and fiber orientation of electrospun polycaprolactone/gelatin mats on the elastic modulus of the scaffolds under ambient and simulated physiological conditions. The model generated might assist bioengineers to fabricate electrospun scaffolds with defined fiber diameters, orientations and constituents, thereby replicating the mechanical properties of the native target tissue.  相似文献   

8.
Bone-mimetic electrospun scaffolds consisting of polycaprolactone (PCL), collagen I and nanoparticulate hydroxyapatite (HA) have previously been shown to support the adhesion, integrin-related signaling and proliferation of mesenchymal stem cells (MSCs), suggesting these matrices serve as promising degradable substrates for osteoregeneration. However, the small pore sizes in electrospun scaffolds hinder cell infiltration in vitro and tissue-ingrowth into the scaffold in vivo, limiting their clinical potential. In this study, three separate techniques were evaluated for their capability to increase the pore size of the PCL/col I/nanoHA scaffolds: limited protease digestion, decreasing the fiber packing density during electrospinning, and inclusion of sacrificial fibers of the water-soluble polymer PEO. The PEO sacrificial fiber approach was found to be the most effective in increasing scaffold pore size. Furthermore, the use of sacrificial fibers promoted increased MSC infiltration into the scaffolds, as well as greater infiltration of endogenous cells within bone upon placement of scaffolds within calvarial organ cultures. These collective findings support the use of sacrificial PEO fibers as a means to increase the porosity of complex, bone-mimicking electrospun scaffolds, thereby enhancing tissue regenerative processes that depend upon cell infiltration, such as vascularization and replacement of the scaffold with native bone tissue.  相似文献   

9.
Scaffold, as an essential element of tissue engineering, should provide proper chemical and structural cues to direct tissue regeneration. In this study, aligned and random polycaprolactone (PCL)/gelatin fibrous scaffolds with different mass ratio were electrospun. Chemical, structural, and mechanical properties of PCL/gelatin fibrous scaffolds were characterized by FTIR and tensile measurements. The average diameters of different groups were between 334.96?±?41.43?nm and 363.78?±?50.49?nm. Blending PCL with gelatin increased the mechanical properties of the scaffolds. The cell culture results demonstrated that the mass ratio of PCL and gelatin showed no obvious effects on cell behavior, whereas the cell growth behavior was affected by the fibers orientation. Higher elongation ratio, enhanced cell proliferation and elevated alkaline phosphatase activity were observed for cells cultured on aligned fibers. The findings in our research provide insightful information for the design and fabrication of scaffolds for bone tissue engineering.  相似文献   

10.
Despite the attractive features of nanofibrous scaffolds for cell attachment in tissue-engineering (TE) applications, impeded cell ingrowth has been reported in electrospun scaffolds. Previous findings have shown that the scaffold can function as a sieve, keeping cells on the scaffold surface, and that cell migration into the scaffold does not occur in time. Because fiber diameter is directly related to the pore size of an electrospun scaffold, the objective of this study was to systematically evaluate how cell delivery can be optimized by tailoring the fiber diameter of electrospun poly(epsilon-caprolactone) (PCL) scaffolds. Five groups of electrospun PCL scaffolds with increasing average fiber diameters (3.4-12.1 microm) were seeded with human venous myofibroblasts. Cell distribution was analyzed after 3 days of culture. Cell penetration increased proportionally with increasing fiber diameter. Unobstructed delivery of cells was observed exclusively in the scaffold with the largest fiber diameter (12.1 microm). This scaffold was subsequently evaluated in a 4-week TE experiment and compared with a poly(glycolic acid)-poly(4-hydroxybutyrate) scaffold, a standard scaffold used successfully in cardiovascular tissue engineering applications. The PCL constructs showed homogeneous tissue formation and sufficient matrix deposition. In conclusion, fiber diameter is a crucial parameter to allow for homogeneous cell delivery in electrospun scaffolds. The optimal electrospun scaffold geometry, however, is not generic and should be adjusted to cell size.  相似文献   

11.
Electrospinning of hybrid polymer has gained widespread interest by taking advantages of the biological property of the natural polymer and the mechanical property of the synthetic polymer. However, the effect of the blend ratio on the above two properties has been less reported despite the importance to balance these two properties in various tissue engineering applications. To this aim, we investigated the electrospun PCL/Gelatin composite fibrous scaffolds with different blend ratios of 4:1, 2:1, 1:1, 1:2, 1:4, respectively. The morphology of the electrospun samples was observed by SEM and the result showed that the fiber diameter distribution became more uniform with the increase of the gelatin content. The mechanical testing results indicated that the 2:1 PCL/Gelatin sample had both the highest tensile strength of 3.7 MPa and the highest elongation rate of about 90%. Surprisingly, the 2:1 PCL/Gelatin sample also showed the best mesenchymal stem cell responses in terms of attachment, spreading, and cytoskeleton organization. Such correlation might be partly due to the fact that the enhanced mechanical property, an integral part of the physical microenvironment, likely played an important role in regulating the cellular functions. Overall, our results indicated that the PCL/Gelatin sample with the blend ratio of 2:1 was a superior candidate for scaffolds for tissue engineering applications.  相似文献   

12.
Nanofiber scaffolds have proven their various advantages for tissue engineering and have been analyzed extensively. However, to date the three-dimensional pattern of vascularization inside nanofibrous scaffolds is unknown. This study introduces a novel method to visualize and quantify vascularization of electrospun nanofibrous PCL/collagen scaffolds in 3D in vivo. Randomly spun PCL/collagen blend and parallel aligned PCL/collagen blend/PEO scaffolds were analyzed for numbers and patterns of sprouting vessels inside the constructs using microCT scans at different time points. The image data derived from the microCT scans was converted into three-dimensional vessel trees. The aligned scaffold showed a significantly smaller number of sprouting vessels but vascularization in the center of the constructs occurred considerably earlier than in the nonwoven scaffold. Thus, for the first time the actual pattern of vascularization in nanofibrous scaffolds can be visualized three-dimensionally. These results demonstrate that the 3D pattern of vessel trees could be an essential parameter to evaluate nanofiber scaffolds for their suitability for tissue engineering as well as in vivo applications in general.  相似文献   

13.
Understanding the interplay of composition, organization and mechanical function in load-bearing tissues is a prerequisite in the successful engineering of tissues to replace diseased ones. Mesenchymal stem cells (MSCs) seeded on electrospun scaffolds have been successfully used to generate organized tissues that mimic fibrocartilages such as the knee meniscus and the annulus fibrosus of the intervertebral disc. While matrix deposition has been observed in parallel with improved mechanical properties, how composition, organization, and mechanical function are related is not known. Moreover, how this relationship compares to that of native fibrocartilage is unclear. Therefore, in the present work, functional fibrocartilage constructs were formed from MSC-seeded nanofibrous scaffolds, and the roles of collagen and glycosaminoglycan (GAG) in compressive and tensile properties were determined. MSCs deposited abundant collagen and GAG over 120 days of culture, and these extracellular molecules were organized in such a way that they performed similar mechanical functions to their native roles: collagen dominated the tensile response while GAG was important for compressive properties. GAG removal resulted in significant stiffening in tension. A similar stiffening response was observed when GAG was removed from native inner annulus fibrosus, suggesting an interaction between collagen fibers and their surrounding extrafibrillar matrix that is shared by both engineered and native fibrocartilages. These findings strongly support the use of electrospun scaffolds and MSCs for fibrocartilage tissue engineering, and provide insight on the structure-function relations of both engineered and native biomaterials.  相似文献   

14.
Choi JS  Lee SJ  Christ GJ  Atala A  Yoo JJ 《Biomaterials》2008,29(19):2899-2906
Current treatment options for restoring large skeletal muscle tissue defects due to trauma or tumor ablation are limited by the host muscle tissue availability and donor site morbidity of muscle flap implantation. Creation of implantable functional muscle tissue that could restore muscle defects may bea possible solution. To engineer functional muscle tissue for reconstruction, scaffolds that mimic native fibers need to be developed. In this study we examined the feasibility of using poly(epsilon-caprolactone) (PCL)/collagen based nanofibers using electrospinning as a scaffold system for implantable engineered muscle. We investigated whether electrospun nanofibers could guide morphogenesis of skeletal muscle cells and enhance cellular organization. Nanofibers with different fiber orientations were fabricated by electrospinning with a blend of PCL and collagen. Human skeletal muscle cells (hSkMCs) were seeded onto the electrospun PCL/collagen nanofiber meshes and analyzed for cell adhesion, proliferation and organization. Our results show that unidirectionally oriented nanofibers significantly induced muscle cell alignment and myotube formation as compared to randomly oriented nanofibers. The aligned composite nanofiber scaffolds seeded with skeletal muscle cells may provide implantable functional muscle tissues for patients with large muscle defects.  相似文献   

15.
Neural tissue engineering may be a promising option for neural repair treatment, for which a well-designed scaffold is essential. Smart materials that can stimulate neurite extension and outgrowth have been investigated as potential scaffolding materials. A piezoelectric polymer polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) was used to fabricate electrospun aligned and random scaffolds having nano- or micron-sized fiber dimensions. The advantage of using a piezoelectric polymer is its intrinsic electrical properties. The piezoelectric characteristics of PVDF-TrFE scaffolds were shown to be enhanced by annealing. Dorsal root ganglion (DRG) neurons attached to all fibrous scaffolds. Neurites extended radially on random scaffolds, whereas aligned scaffolds directed neurite outgrowth for all fiber dimensions. Neurite extension was greatest on aligned, annealed PVDF-TrFE having micron-sized fiber dimensions in comparison with annealed and as-spun random PVDF-TrFE scaffolds. DRG on micron-sized aligned, as-spun and annealed PVDF-TrFE also had the lowest aspect ratio amongst all scaffolds, including non-piezoelectric PVDF and collagen-coated substrates. Findings from this study demonstrate the potential use of a piezoelectric fibrous scaffold for neural repair applications.  相似文献   

16.
In tissue engineering, it is important to fabricate a three-dimensional scaffold that resemble the extracellular matrix (ECM) and topographical appearance of native tissue. The aim of this study is to test the hypothesis that varying microstructures of electrospun fibrous scaffolds by manipulating the relative degree of fiber alignment would influence the behaviors of porcine annulus fibrosus cells. Five types of electrospun fibrous scaffolds with polycaprolactone fibers having random or partially aligned arrangements have been prepared and investigated. The scaffold microstructures have been examined, and in vitro experiments have been carried out to assess cell-material interaction, cell proliferation, and ECM production. The results indicate that the scaffold with oriented fibers provides strong guidance to the cell orientation and ECM distribution. In addition, albeit the tensile moduli of electrospun fibrous scaffolds are lower than that of native tissue, they are comparable to those reported in literature; hence, the constructs cultured with optimized conditions including the scaffold material selection and dynamic mechanical conditioning would have the potential to possess the moduli closer to that of native tissue. ? 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2011.  相似文献   

17.
To avoid complications of prosthetic vascular grafts, engineered vascular constructs have been investigated as an alternative for vascular reconstruction. The scaffolds for vascular tissue engineering remain a cornerstone of these efforts and yet many currently available options are limited by issues of inconsistency, poor adherence of vascular cells, or inadequate biomechanical properties. In this study, we investigated whether PCL/collagen scaffolds could support cell growth and withstand physiologic conditions while maintaining patency in a rabbit aortoiliac bypass model. Our results indicate that electrospun scaffolds support adherence and growth of vascular cells under physiologic conditions and that endothelialized grafts resisted adherence of platelets when exposed to blood. When implanted in vivo, these scaffolds were able to retain their structural integrity over 1 month of implantation as demonstrated by serial ultrasonography. Further, at retrieval, these scaffolds continued to maintain biomechanical strength that was comparable to native artery. This study suggests that electrospun scaffolds combined with vascular cells may become an alternative to prosthetic vascular grafts for vascular reconstruction.  相似文献   

18.
Mechanical and morphological studies of aligned nanofibrous meshes of poly(epsilon-caprolactone) (PCL) fabricated by electrospinning at different collector rotation speeds (0, 3000 and 6000 rpm) for application as bone tissue scaffolds are reported. SEM, XRD and DSC analyses were used for the morphological characterization of the nanofibers. Scaffolds have a nanofibrous morphology with fibers (majority) having a diameter in the range of 550-350 nm (depending on fiber uptake rates) and an interconnected pore structure. With the increase of collector rotation speed, the nanofibers become more aligned and oriented perpendicular to the axis of rotation. Deposition of fibers at higher fiber collection speeds has a profound effect on the morphology and mechanical properties of individual fibers and also the bulk fibrous meshes. Nanoindentation was used for the measurement of nanoscopic mechanical properties of individual fibers of the scaffolds. The hardness and Young's modulus of aligned fibers measured by nanoindentation decreased with collector rotation speeds. This reveals the difference in the local microscopic structure of the fibers deposited at higher speeds. The sequence of nanoscopic mechanical properties (hardness and modulus) of three fibers is PCL at 0 rpm > PCL at 3000 rpm > PCL at 6000 rpm. This may be explained due to the decrease in crystallinity of fibers at higher uptake rates. However, uni-axial tensile properties of (bulk) scaffolds (tensile strength and modulus) increased with increasing collector rotation speed. The average ultimate tensile strength of scaffolds (along the fiber alignment) increased from 2.21 +/- 0.23 MPa for PCL at uptake rate of zero rpm, to a value of 4.21 +/- 0.35 MPa for PCL at uptake rate of 3000 rpm and finally to 9.58 +/- 0.71 MPa for PCL at 6000 rpm. Similarly, the tensile modulus increased gradually from 6.12 +/- 0.8 MPa for PCL at uptake rate of zero rpm, to 11.93 +/- 1.22 MPa for PCL at uptake rate of 3000 rpm and to 33.20 +/- 1.98 MPa for PCL at 6000 rpm. The sequence of macroscopic mechanical properties (tensile strength and modulus) of three fibers, from highest to lowest, is PCL at 0 rpm < PCL at 3000 rpm < PCL at 6000 rpm. This is attributed to the increased fiber alignment and packing and decrease in inter-fiber pore size at higher uptake rates.  相似文献   

19.
The objective of this study was to assess bone formation from mesenchymal stem cells (MSCs) on a novel nanofibrous scaffold in a rat model. A highly porous, degradable poly(epsilon-caprolactone) (PCL) scaffold with an extracellular matrix-like topography was produced by electrostatic fiber spinning. MSCs derived from the bone marrow of neonatal rats were cultured, expanded, and seeded on the scaffolds. The cell-polymer constructs were cultured with osteogenic supplements in a rotating bioreactor for 4 weeks, and subsequently implanted in the omenta of rats for 4 weeks. The constructs were explanted and characterized by histology, immunohistochemistry, and scanning electron microscopy. The constructs maintained the size and shape of the original scaffolds. Morphologically, the constructs were rigid and had a bone-like appearance. Cells and extracellular matrix (ECM) formation were observed throughout the constructs. In addition, mineralization and type I collagen were also detected. This study establishes the ability to develop bone grafts on electrospun nanofibrous scaffolds in a well-vascularized site using MSCs.  相似文献   

20.
Electrospun fibrous mats have emerged as powerful tissue engineering scaffolds capable of providing highly effective and versatile physical guidance, mimicking the extracellular environment. However, electrospinning typically produces a sheet-like structure, which is a major limitation associated with current electrospinning technologies. To address this challenge, highly porous, volumetric hydrogel-hybrid fibrous scaffolds were fabricated by one Taylor cone-based side-by-side dual electrospinning of poly (ε-caprolactone) (PCL) and poly (vinyl pyrrolidone) (PVP), which possess distinct properties (i.e., hydrophobic and hydrogel properties, respectively). Immersion of the resulting scaffolds in water induced spatial tortuosity of the hydrogel PVP fibers while maintaining their aligned fibrous structures in parallel with the PCL fibers. The resulting conformational changes in the entire bicomponent fibers upon immersion in water led to volumetric expansion of the fibrous scaffolds. The spatial fiber tortuosity significantly increased the pore volumes of electrospun fibrous mats and dramatically promoted cellular infiltration into the scaffold interior both in vitro and in vivo. Harmonizing the flexible PCL fibers with the soft PVP-hydrogel layers produced highly ductile fibrous structures that could mechanically resist cellular contractile forces upon in vivo implantation. This facile dual electrospinning followed by the spatial fiber tortuosity for fabricating three-dimensional hydrogel-hybrid fibrous scaffolds will extend the use of electrospun fibers toward various tissue engineering applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号