首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HLA-B44 is one of the most common HLA class I alleles in Caucasians. Exon 3 oligotyping and sequence analysis have define five B44 subtypes: B*4402, B*4403, B*4404, B*4405 and B*4406, with variations in exons 2 and 3. We have developed a conventional DNA typing system by using a single B12-group specific amplification including exon2-intron2-exon3 in combination with 6 oligoprobes to define all B44 subtypes. 140 HLA-B44 positive unrelated Spanish Caucasians were typed. Family studies established 30 B44-bearing haplotypes. The distribution of B44 subtypes in our population was: B*4402 32.5%, B*4403 66.5%, B*4404 0.5%, B*4405 0.5%, B*4406 not found. B*4402 and B*4403 represented the 99% of the B44 alleles, as described in Caucasians. However, these two major subtypes showed an inverted frequency when compared with other Caucasian populations, B*4403 twice as frequently as B*4402 in Spaniards. HLA-B44-associated chromosomes showed 20 different haplotypes (including HLA-A,-C,-DR,-DQ), although demonstrating clear separated haplotype composition between B*4402 and B*4403: B*4402 associated to class I alleles A2 ( ) and Cw5 ( ), and B*4403 associated to the class II allele DRB1*0701 ( ). These findings, in addition to the validation of a complete B44 oligotyping system, revealed further evidence of antigen frequency differences among populations of the same ethnic origin.  相似文献   

2.
HLA-B44 is among the most frequent class I antigens in many populations studied so far. It has been subdivided into seven allelic forms that can only be discriminated by DNA typing. Using a simple PCR/sequence-specific oligonucleotide hybridization procedure, we have analysed the frequency distribution of B44 subtypes in three European populations from Slovenia, the Netherlands, and Switzerland. B*4402 and B*4403 were by far the predominant alleles, B*4404 and 4405 were rare, while B*4406 and B*4407 were not observed. Interestingly, B*4402 and 4403 occurred with different frequencies in the three populations, with B*4402 being most frequent in the Swiss (65% vs. 57% in the Dutch, and 46.5% in the Slovenes). Of the 139 individuals studied, 60 HLA-B44 ABDR haplotypes could be determined by family studies. In the respective populations, the linkage disequilibria between B44 and other HLA antigens occurred with different frequencies. A2-B*4402 haplotypes were very frequent in the Swiss sample, mostly associated with DRB1*0101, 0401 and 1301. B*4402 was more often linked with non-A2 antigens in the Slovenes (predominantly A24, A28) than in the Swiss and the Dutch. The predominant association of B*4403 was with DR7: this haplotype was very frequent in the Swiss (82% of the B*4403 haplotypes), while lower frequencies were found in the Dutch (72%) and Slovenian (59%) populations. In the Swiss population, more than half of the B44-DR7 haplotypes were A23-B*4403-DR7 (53% of all B*4403 haplotypes). This haplotype was significantly less frequent in the Slovenian (6%) and in the Dutch (14%) populations. The second most frequent B*4403 haplotype in both the Swiss and Slovenes is the A29-B*4403-Cw*1601-DR7 haplotype (17.6 and 29.4%, respectively). Concomitant with the increased frequency of B*4403 in the Slovenes, a higher diversity of non-DR7 B44 haplotypes was observed in this population (41% of all B*4403 haplotypes). HLA-B44 oligotyping analysis allowed us to detect B44-subtype incompatibilities in several AB-sero, DRB1/B3/B5-oligo matched unrelated bone marrow donor/patient combinations. The different frequency distributions of HLA-B44 haplotypes in the three populations analysed in this study argue in favour of local volunteer bone marrow donor recruitment. This might significantly improve the chance of finding a highly matched donor for patients with less frequent A-B-DRB1 haplotypes.  相似文献   

3.
Cytotoxic T lymphocytes (CTLs) reactive against the disparity between HLA-B*4402 and HLA-B*4403 have been reported after unrelated donor bone marrow transplantation. These CTLs have been associated with acute graft-versus-host disease and graft rejection. This study describes the HLA-B44-subtyping in the Catalan population using reference-strand mediated conformation analysis. It has been performed on 297 unrelated HLA-B44+ cord blood units from the Barcelona Cord Blood Bank (Barcelona, Spain). We have found a predominance of HLA-B*4403 (66.04%) over HLA-B*4402 (33.02%), whereas the predominant HLA-B44 allele in Northern Europe and the United States is HLA-B*4402. This inverted proportion between HLA-B44 subtypes in Mediterranean populations compared with other Caucasian populations suggests that HLA-B44 subtyping should be performed when an HLA-B44+ unrelated donor marrow is identified.  相似文献   

4.
Tiercy JM 《Tissue antigens》2005,65(5):429-436
Based on high-resolution DNA typing within 235 pedigrees, a total of 250 HLA-A/B/C/DRB1/DRB3 genotypes have been characterized. These comprise 129 different B44 haplotypes, of which 73.6% occurred only once. Only four different B*44 alleles were identified: B*4402-4405, with B*4402 and B*4403 haplotypes accounting for 57.6 and 36.8%, respectively, of all haplotypes. Although the relative numbers of different A/B/C/DRB1/B3 haplotypic associations were similar in both B*4402 and B*4403 haplotypes, the genotypic profiles were quite different in the two groups. When associated with the A*0101, A*0201, A*2402, A*3201, and A*6801 alleles, a much more extensive polymorphism of B*4402 haplotypes with respect to HLA-C and DRB1 associations was disclosed. On the other hand, B*4403 haplotypes were more diverse in the A23-B44 and A29-B44 groups with respect to DRB1 associations. Considering B-C linkage, B*4402-Cw*0501, B*4402-Cw*0704, B*4402-Cw*1604, B*4403-Cw*0401, B*4403-Cw*1601, B*4404-Cw*1601, and B*4405-Cw*0202 accounted for 98% of all genotypes. Eight A/B/C/DRB1 haplotypes occurred at a relative genotypic frequency of >0.015, with A*2902-B*4403-Cw*1601-DRB1*0701 (11.2%) and A*0201-B*4402-Cw*0501-DRB1*0401 (8.4%) as the two most frequent genotypes. Some A and DRB1 alleles were predominantly, if not exclusively, associated with specific B-C pairs: A*0301 with B*4402-Cw*0501 and B*4403-Cw*0401; A*2301 with B*4403-Cw*0401; A*2608 with B*4402-Cw*0501; A*2902 with B*4403-Cw*1601; DRB1*0101/0401/0403/0404/1101/1104/0801/1301/1302 with B*4402-Cw*0501; and DRB1*0701 with B*4403-Cw*1601. On the basis of this dataset and our experience with searches for phenotypically matched unrelated stem cell donors, several ABDR haplotypes were identified that would confer a higher probability of B44- and C-incompatibility. The analysis of 112 consecutive unrelated stem cell donor searches revealed that 24% of the 400 tested donors were B44-mismatched, and that no single B44 allele- matched donor could be identified for only 7% of the patients. HLA-C incompatibility rate was 22.2% for the patients with > or =1 B44 allele-matched donor(s). This dataset can therefore be used as a predictive tool for B44- and C-disparities in unrelated stem cell transplantation.  相似文献   

5.
Abstract: We developed a PCR-based approach to sequence exons 2 and 3 of HLA-B44 alleles from genomic DNA. We applied this method to determine the B44 alleles encoded on extended HLA-A, B, DRB1, DQB1 haplotypes and the degree of mismatching for B44 alleles among marrow transplant patients and their unrelated donors (URD). A total of 81 samples was studied and included 38 patients, 42 donors and the cell "FMB"; the 80 clinical samples were comprised of 8 unpaired patients, 12 unpaired donors, and 30 URD-recipient pairs. Three alleles encoding B44 were identified, B*4402 (N=51), 4403 (N=32) and a new allele designated B*44KB and named B*4405 (N=4). Of the 27 patients for whom family study was available, there were 13 different B*4402, 7 different B* 4403 and 2 new B*4405 haplotypes. HLA-A2, Cw*0501, B*4402, DRB1* 0401, DQB1*0301 (n=2); A2, Cw*0501, B*4402, DRB1*1501, DRB5* 0101, DQB1*0602 (n=2); and HLA-A29, Cw*1601, B*4403, DRB1* 0701, DQB1*0201 (n=5) comprised the most common patient haplotypes. Of 30 URD-recipient transplant pairs studied, 27 were HLA-A, B serologically matched and DRB1, DRB3, DRB5, DQB1 allele matched, and 3 pairs were DRB1-mismatched. All B44 allele mismatching (N=3) occurred among the 27 matched pairs. The novel B*4402-variant sequence, HLA-B*4405, was identified in 4 individuals, and in each case was associated with an HLA-B44, Cw*02022, DRB1*0101, DQB1*0501 haplotype. HLA-B*4405 and B*4402 are identical in exon 2; in exon 3 however, B*4405 encodes T instead of G at nucleotide position 75 which translates to a substitution of tyrosine for aspartic acid at codon 116. Finally, the published B*4402 sequence derived from cell "FMB" was found to contain an error; the corrected B*4402 sequence encodes G rather than C at position 146 of exon 3.  相似文献   

6.
Song EY  Whang DH  Hur M  Kang SJ  Han KS  Park MH 《Human immunology》2001,62(10):1142-1147
We have investigated the frequencies of HLA-B*44 alleles and their haplotypic associations with HLA-A, -C, and -DRB1 loci in 450 healthy unrelated Koreans, including 213 parents from 107 families. All 79 samples (17.6%) typed as B44 by serology were analyzed for B*44 alleles using polymerase chain reaction (PCR) single-strand conformation polymorphism (SSCP) method. A total of three different B*44 alleles were detected: B*44031 (allele frequency 4.7%), B*44032 (3.1%), and B*4402 (1.3%). Three characteristic haplotypes revealing strong linkage disequilibrium were A*3303-Cw*1403-B*44031-DRB1*1302 (3.6%), A*3303-Cw*07-B*44032-DRB1*0701 (2.8%), and A*3201-Cw*05-B*4402-DRB1*0405 (0.4%). In addition, a strong association was observed for B*4402 with A*0301. The B*4403-bearing haplotypes of Koreans appear to be relatively common in Asian populations, whereas the B*4402-bearing haplotypes share some similarity to those of Caucasians. HLA-B44 alleles demonstrate a limited allelic diversity and comprise distinctive extended haplotypes in the Korean population. It is suggested that the frequencies of B44 subtype mismatches among ABDRB1-matched unrelated donor-recipient pairs would be low in this population.  相似文献   

7.
The associations of HLA-B*4402 and HLA-B*4403 with alleles of HLA-A and HLA-Cw were investigated in panels of HLA-B*4403 and HLA-B*4402 homozygous individuals and in selected individuals carrying HLA-Cw*04 and HLA-B*4403. Some of these individuals were genotyped and also carried (HLA-DRB1*0701, DQB1*02). Among the latter, we studied individuals carrying the conserved extended haplotype (CEH) [HLA-Cw*04, B*4403, FC31, DRB1*0701, DQB1*02]. Four different common (HLA-Cw*, B*44) haplotypes were identified that extended to the HLA-A locus: HLA-A*0201, Cw*0501, B*4402; HLA-A*2902, Cw*1601, B*4403; HLA-A*2301, Cw*0401, B*4403; and HLA-A*2301, Cw*0409N, B*4403. We identified eight unrelated examples of the allele HLA-Cw*0409N. HLA-A*2301 was associated with both HLA-Cw*0401 and HLA-Cw*0409N, suggesting that HLA-Cw*0409N may have arisen from a mutation in a CEH. We estimate that approximately 2 to 5 in 1000 Caucasian individuals carry the allele HLA-Cw*0409N, making it one of the most frequent null HLA alleles known to date. Our findings demonstrate the first example of three different HLA-Cw-determined subtypes of a common or CEH carrying a shared HLA-B allele, in this case HLA-B*4403.  相似文献   

8.
Class I human leukocyte antigen (HLA) polymorphism was examined in a Berber population from North Morocco, named Metalsa (ME). All data were obtained at high-resolution level, using sequence-based typing. The most frequent alleles were: HLA-A*0201 and A*0101; HLA-B*44 (B*4403 and B*4402); B*0801 and the B*50 allele group (B*5001 and B*5002); HLA-Cw*0602; and Cw*07 group (Cw*070101, Cw*070102, Cw*0702, Cw*0704, and Cw*0706), and Cw*040101. The novel HLA-B*570302 allele was identified. It differs at position 486 and position 855 from B*570301, resulting in synonymous Thr and Val. The analysis also evidenced some alleles common in Africans (A*3402, A*6802, A*7401, B*1503, B*4102, B*4202, B*7801, B*5802, Cw*1701, and Cw*1703) and some uncommon alleles (A*3004, B*2702, B*2703, B*5001,02, B*3503, and Cw*0706). The predominant HLA-A-Cw-B-DRB1-extended haplotypes in ME population were A*0101-Cw*0501-B*4402-DRB1*0402, A*240201-Cw*0701-B*0801-DRB1*030101, A*2301-Cw*040101-B*4403-DRB1*040501, A*0201-Cw*040101-B*4403-DRB1*1302, and A*3002-Cw*0602-B*5002-DRB1*0406. This study demonstrates a strong relatedness of ME to other Moroccan and North African populations, some characteristics of sub-Saharan Africans and evidenced the influence of various immigrations during centuries. Nevertheless, this study highlights some unique genetic traits of the ME population compared to other ethnic groups within Morocco, which could be of great interest for clinical aims, transplantation, and diseases.  相似文献   

9.
HLA-B14 serological subtyping is very limited probably due to the internal position of the unique amino acid residue that differentiates B64 and B65 molecules. In order to carry out an accurate B14 subtyping we have designed a semi-nested PCR-SSP procedure that can differentiate B*1401 and B*1402 in any HLA-A, -B or -C antigen combination. A panel of 133 B14-positive and 31 B14-negative healthy and unrelated Spanish individuals were studied. Additionally, 45 B14-bearing haplotypes (-A,-B,-C,-DRB1,-DRB3/DRB4/DRB5,-DQA1,-DQB1) were available through family studies. The relative frequencies of HLA-B14 subtypes were 74% for B*1402 and 26% for B*1401, in agreement with those found in other Central European populations, but differing from those in Wales, where the relative presence of B64 goes to 41%. A total of 11/17 and 18/28 different haplotypes for B*1401 and B*1402, respectively, were identified. Both alleles showed the strongest association to Cw8 (43/45), indicating a primary ancestral B14-Cw8 association. However, B14 subtypes evidenced very distinguishable haplotype distributions. B*1401 is strongly associated with the common HLA class II haplotype DRB1*0701-DQA1*0201-DQB1*02 (13/17), while B*1402 is mainly associated to DRB1*0102 (16/28). Three major haplotypes were identified: A32-Cw8-B*1401-DR7-DQ2 (5/17), A33-Cw8-B*1402-DRB1*0102-DQ5 (5/28) and A2-Cw8-B*1402-DRB1*0102-DQ5 (5/28).  相似文献   

10.
The heterogeneity of HLA-B44 is confirmed and the sequence difference between the two major subtypes, B*4402,*4403, is attributed to one polymorphic site in the third exon. A method is described to discriminate B*4402 and B*4403, and the occurrence and linkage disequilibrium of B*44 subtypes is discussed. No example of B*4401 polymorphism in exon 2 was observed.  相似文献   

11.
The HLA-B*4402 and B*4403 molecules differ only at residue 156, which borders the peptide binding site. Strong in vivo allogeneic reactions mediated by cytolytic T lymphocytes (CTLs) were reported in patients who received a bone marrow graft mismatched for these B44 subtypes, indicating that HLA-B*4402 and B*4403 molecules present distinct antigens. This could be due either to the presentation of different sets of antigenic peptides or to the recognition by CTLs of conformational epitopes formed by the MHC molecules alone or in association with antigenic peptides. To address this question, we compared the two B44 subtypes in their presentation to tumor-specific CTLs of three peptides, encoded by genes MAGE-3, MUM-1 and Tyrosinase. The peptides bound with similar affinities to B*4402 or B*4403 molecules, as assessed by lytic competition assays. One HLA-B*4402-restricted and one HLA-B*4403-restricted CTL clone were derived against each peptide. When tested for lysis of B*4402 and B*4403 cells incubated with the antigenic peptides, most CTLs showed a marked preference for one of the two B44 subtypes. Using variant peptides incorporating single alanine substitutions, we compared a given CTLs' recognition of its antigenic peptide presented by both B44 subtypes. Some substitutions, which had no effect on the binding of the peptide, affected its recognition by the same CTL differently on B*4402 and B*4403 molecules. These results imply that the conformations adopted by the same peptide on the two HLA-B44 subtypes are different. We conclude that the B44 subtype specificity of T cells results mostly from distinct conformations adopted by the same peptides in the two B44 molecules. This does not exclude the possibility that in some cases the B44 subtype specificity results from the selective binding of a peptide to one subtype. We found several peptides, different from the three mentioned above, that contain the canonical HLA-B44 binding motif and bind to B*4403 but not to B*4402 molecules.  相似文献   

12.
Analysis of allele distribution at the HLA-DRB1*04 gene, as one of the frequent ones among Croatians, and their HLA-A-B-DRB1 haplotypes in the Croatian population was performed in this study. Using LABType(?) SSO and PCR-SSP method, 11 DRB1*04 subtypes were observed, of which DRB1*04:01 was the most frequent (28.0%) followed by DRB1*04:02 (26.3%), DRB1*04:03 (22.3%), and DRB1*04:04 (14.2%). The significant haplotypes (with highest P value) for given DRB1*04 allele were the following combinations: HLA-B*15:01-DRB1*04:01, HLA-B*38:01-DRB1*04:02, HLA-B*35:03-DRB1*04:03, HLA-B*35:03-DRB1*04:08, HLA-B*14:01-DRB1*04:04, and HLA-B*49-DRB1*04:05. Marked differences in the distribution of our most frequent haplotypes of HLA-B-DRB1*04 (HLA-B*38:01-DRB1*04:02 and HLA-B*15:01-DRB1*04:01) were found in comparison to other European populations investigated so far. Additionally, comparison of HLA-A-B-DRB1*04 haplotypes showed that although there are similarities in the haplotype structure between our and other populations, there are also noteworthy differences. In summary, the identification of conserved and unusual DRB1*04 haplotypes in the present study of Croats should have important clinical implications for donor-recipient matching in the hematopoietic stem cell transplantation program, help in the understanding of HLA polymorphisms in different European populations, and also prove to be very useful in the determination of possible susceptibility genes involved in HLA-DRB1*04-associated diseases.  相似文献   

13.
We have investigated the distribution of HLA-B44 subtypes in various populations, see table. Of the five B44 subtypes investigated, two are apparently quite rare because they were only found in the local central european panel (B*4404 and B*4406). The european populations are characterized by a relatively high frequency of B*4402, while in the Albanian, in the Asiatic and African populations, the subtype B*4403 is prevailing. The distribution of the B44 subtypes in the Czech and the Munich population are virtually the same. We conclude from these data, that B44 subtypes have different distributions in different populations of the world and must therefore be taken into consideration when matching for bone marrow transplantation.  相似文献   

14.
西北地区汉族人群HLA-A、-B、-DRB1基因座单倍型分析   总被引:3,自引:0,他引:3  
目的 分析西北地区汉族群体HLA-A、-B和-DRB1基因座等位基因频率和HIA-A-B、B-DRB1和A-B-DRB1单倍型,获得单倍型频率数据。方法 采用序列特异性寡核苷酸探针反向斑点杂交技术对西北地区62个家系和101个无关个体HLA-A、-B和-DRB1基因座进行基因分型,分析HLA单倍型。结果 在西北地区汉族人群中检出15个HLA-A等位基因,28个HLA-B等位基因,13个HLA-DRB1等位基因,A02、A11、A24、B13、B15、1340、DRB1*04、DRB1*07、DRB1*09和DRB1*15基因频率较高(〉10%),A02(0.3244)、B13(0.1200)和DRB1*15(0.1400)等位基因频率最高。分析得出HLA-A-B、B-DRB1、A-B-DRB1单倍型分别有122、147和278种,83种A-B-DRB1单倍型有至少两条以上相同的单倍型,占总单倍型数的18.44%(83/450)。A30-B13-DRB1*07、A02-B46-DRB1*09、A01-B37-DRB1*10、A24-B15-DRB*15、A02-B46-DRB1*08、A33-B58-DRB1*03是最常见的单倍型。结论 西北地区汉族群体HLA单倍型多态性较为丰富,等位基因频率和单倍型频率数据可用于骨髓移植供者的选择、法医学亲权鉴定以及人类学研究。  相似文献   

15.
Identification of human leukocyte antigen (HLA) antigens that are known as the highest polymorphic genes has become a valuable tool for tissue transplantation, platelet transfusion, disease susceptibility or resistance, and forensic and anthropological studies. In the present study, the allele and haplotype frequencies of HLA-A, HLA-B, and HLA-DRB1 were studied in 237 unrelated healthy Western Javanese (Indonesia) by the high-resolution polymerase chain reaction-Luminex method. A total of 18 A, 40 B, and 20 DRB1 alleles were identified. The most frequent HLA-A, -B, and -DRB1 alleles were HLA-A*2407 (21.6%), HLA-B*1502 (11.6%) and HLA-B*1513 (11.2%), and DRB1*1202 (37.8%), respectively. The most frequent two-locus haplotypes were HLA-A*2407-B*3505 (7%) and HLA-B*1513-DRB1*1202 (9.2%), and three-locus haplotypes were HLA-A*3401-B*1521-DRB1*150201 (4.6%), HLA-A*2407-B*3505-DRB1*1202 (4.3%), and HLA-A*330301-B*440302-DRB1*070101 (4.2%). HLA allele and haplotype frequencies in addition to phylogenetic tree and principal component analyses based on the four-digit sequence-level allele frequencies for HLA-A, HLA-B, and HLA-DRB1 showed that Western Javanese (Indonesia) was closest to Southeast Asian populations.  相似文献   

16.
Abstract: HLA class II DNA typing was conducted for 1335 unrelated Japanese individuals. The study on the linkage disequilibrium revealed a striking conservation of HLA DR13 haplotypes. Among these Japanese, 155 were typed for HLA-DR13 serologically, and they were correspondent to three DRB1 alleles, DRB1*1301, 1302 and 1307 defined by using the polymerase-chain reaction and sequence-specific oligonucleotide probe (PCR-SSOP) method. The two alleles, DRB1*1301 and 1307 were exclusively associated with each specific DRB3-DQA1-DQB1 combination which was DRB1*1301-DRB3*0101-DQA1*0103-DQB1*0603, and DRB1*1307-DRB3*0202-DQA1*0501-DQB1*0301, respectively. DRB1* 1302, the most common DR13 allele in Japanese, had two significant associations with DRB3*0301-DQA1*0102-DQB1*0604 (DRB1*1302A) and with DRB3*0301-DQA1*0102-DQB1*0605 (DRB1*1302B). In this study, no other DR13 class II combinations were found. Ony the DRB1*1302A halotype was associated with the DPB1*0401 allele while the DRB1*1302B haplotype was not. The complete conservation of these DR13 class II haplotypes was found to extend toward the HLA class I region. They were HLA A3-B44-DRB1*1301, A33-B44-DRB1*1302A and A33-B17-DRB1*1302B. Japanese could be characterized with these three extended haplotypes which were remakrably different from those in Caucasian, Black and Asian other than Korean populations.  相似文献   

17.
Lee KW  Oh DH  Lee C  Yang SY 《Tissue antigens》2005,65(5):437-447
High-resolution human leukocyte antigen (HLA) typing exposes the unique patterns of HLA allele and haplotype frequencies in each population. In this study, HLA-A, -B, -C, -DRB1, and -DQB1 genotypes were analyzed in 485 apparently unrelated healthy Korean individuals. A total of 20 HLA-A, 43 HLA-B, 21 HLA-C, 31 HLA-DRB1, and 14 HLA-DQB1 alleles were identified. Eleven alleles (A*0201, A*1101, A*2402, A*3303, B*1501, Cw*0102, Cw*0302, Cw*0303, DQB1*0301, DQB1*0302, and DQB1*0303) were found in more than 10% of the population. In each serologic group, a maximum of three alleles were found with several exceptions (A2, B62, DR4, DR14, and DQ6). In each serologic group exhibiting multiple alleles, two major alleles were present at 62-96% (i.e. A*0201 and A*0206 comprise 85% of A2-positive alleles). Multiple-locus haplotypes estimated by the maximum likelihood method revealed 51 A-C, 43 C-B, 52 B-DRB1, 34 DRB1-DQB1, 48 A-C-B, 42 C-B-DRB1, 46 B-DRB1-DQB1, and 30 A-C-B-DRB1-DQB1 haplotypes with frequencies of more than 0.5%. In spite of their high polymorphism in B and DRB1, identification of relatively small numbers of two-locus (B-C and DRB1-DQB1) haplotypes suggested strong associations of those two loci, respectively. Five-locus haplotypes defined by high-resolution DNA typing correlated well with previously identified serology-based haplotypes in the population. The five most frequent haplotypes were: A*3303-Cw*1403-B*4403-DRB1*1302-DQB1*0604 (4.2%), A*3303-Cw*0701/6-B*4403-DRB1*0701-DQB1*0201/2 (3.0%), A*3303-Cw*0302-B*5801-DRB1*1302-DQB1*0609 (3.0%), A*2402-Cw*0702-B*0702-DRB1*0101-DQB1*0501 (2.9%), and A*3001-Cw*0602-B*1302-DRB1*0701-DQB1*0201/2 (2.7%). Several sets of allele level haplotypes that could not be discriminated by routine HLA-A, -B, and -DRB1 low-resolution typing originated from allelic diversity of A2, B61, DR4, and DR8 serologic groups. Information obtained in this study will be useful for medical and forensic applications as well as in anthropology.  相似文献   

18.
Abstract: This study describes the characterization of endogenous peptides associated with the two major subtypes of HLA-B44. The two subtypes differ for a single amino acid substitution from Asp (HLA-B*4402) to Leu (HLA-B*4403) in position 156 of the α2 domain, causing strong alloreactivity in vivo. In order to study the involvement of peptides in this phenomenon, the peptide motifs of the two subtypes were determined from natural peptide pools using Edman degradation. The motif was found to be essentially identical for HLA-B*4402 and -B*4403, with a strong predominance for Glu at position 2, Tyr or Phe at positions 9 and 10 and hydrophobic residues, especially Met, at position 3. Two individual naturally processed ligands of HLA-B*4403 were sequenced and shown to be derived from intracellularly expressed proteins found in protein sequence databases. The sequence of these natural peptide ligands conform well to the determined motif. These data will allow the prediction of HLA-B44 restricted peptide epitopes from viral and tumor antigens of known amino acid sequences. Moreover, they indicate that the peptide repertoire presented by HLA-B*4402 and -B*4403 is very similar, suggesting that the strong alloresponse between these two subtypes is not due to presentation of a different set of self peptides.  相似文献   

19.
HLA-DRB and -DQB1 polymorphism in the Macedonian population   总被引:2,自引:0,他引:2  
HLA-DRB1, DRB3/4/5 and DQB1 polymorphism has been studied in a population of 80 unrelated healthy Macedonians using molecular methods. Twenty-five different DRB1 alleles were identified of which DRB1*1104, *1501, *1601, and *1101 were found most frequently. Among the 15 identified DQB1 alleles, two were predominant: DQB1*0301 and *0502. The most frequent three-locus haplotypes were DRB1*1104-DRB3*02-DQB1*0301 (18%/), DRB1*1101-DRB3*02-DQB1*0301 (9%) and DRB1*1601-DRB5*02-DQB1*0502 (10%). Polymorphism for DRB1*04, *13 and *15 haplotypes was extensive. Eleven different DR2-related haplotypes were found, some of which were unusual for European populations: DRB1*1501-DRB5*0102-DQB1*0502, DRB1*1501-DRB5*02-DQB1*0502, DRB1*1501-DRB5*0102-DQB1*0601.  相似文献   

20.
We describe for the first time extended haplotypes in a Croatian population. The present study gives the HLA-A, -B, -DRB1, -DQA1 and -DQB1 allele and haplotype frequencies in 105 families with at least two offspring. All individuals were studied by conventional serology for HLA class I antigens (A and B), while class II alleles (DRB1, DQA1, DQB1) were typed using the PCR-SSOP method. HLA genotyping was performed by segregation in all 105 families. For extended haplotype analysis, 420 independent parental haplotypes were included. Fourteen HLA-A, 18 HLA-B, 28 DRB1, 9 DQA1 and 11 DQB1 alleles were found in the studied population. Most of the DRB1 alleles in our population had an exclusive association with one specific DQA1-DQB1 combination. This strong linkage disequilibrium within the HLA class II region is often extended to the HLA-B locus. A total of 10 HLA-A, -B, -DRB1, -DQA1, -DQB1 haplotypes were observed with a frequency 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号