首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peripheral axotomy in neonatal rats induces neuronal death. We studied the anti-apoptotic protein Bcl-2 and cell death promoter Bax in spinal cord of neonatal rats after sciatic transection and treatment with melatonin, a neuroprotective substance. Pups were unilaterally axotomized at P2 and received melatonin (1 mg/kg; sc) or vehicle 1 h prior to lesion, immediately after, at 1 h, 2 h and then once daily. Rats were sacrificed at 3 h, 6 h, 24 h, 72 h and 5 days postaxotomy. Intact animals were used as controls. Lumbar enlargement was processed for Nissl staining, immunohistochemistry and RT-PCR for Bax or Bcl-2 and TUNEL reaction. Motoneurons (MN) of lesioned (L) and normal (N) sides were counted, and MN survival ratio (MSR=L/N) was calculated. Bax and Bcl-2 showed cytoplasmic immunoreactivity (IR). Bax IR was noticeable in small cells but less evident in MN. In unlesioned pups, some Bax-positive small cells (B+) and TUNEL-positive nuclei (T+) were mainly seen in the dorsal horn. In lesioned animals given vehicle, Bax mRNA levels and numbers of B+ and T+ were increased in comparison with intact controls at 24 h postaxotomy. The basal IR for Bax in MN was not changed by axotomy. Bcl-2 IR was noted in all cells and, like Bcl-2 mRNA, was unaltered after lesion. Melatonin reduced MN loss at 24 h, 72 h and 5 days and T+ at 24 h after lesion but did not interfere with Bax or Bcl-2 expression. These results suggest that (1) sciatic transection at P2 increases Bax mRNA and the amount of B+ and T+ in the lumbar enlargement, (2) Bax IR in immature MN is not altered by axotomy and (3) melatonin protects MN and dorsal horn cells through a mechanism independent of Bax and Bcl-2.  相似文献   

2.
Retrograde degeneration of retinal ganglion cells as a consequence of optic nerve lesion has been shown to fulfil the criteria of apoptosis. In the present study, we investigated the time course of ganglion cell apoptosis following intraorbital crushing of the optic nerve in adult rats using morphological criteria and applying a terminal transferase technique (TUNEL) for in situ detection of DNA strand breaks. In addition, we examined expression patterns of the anti-apoptotic proteins Bcl-2 and Bcl-X and the cell death-promoting protein Bax in retinae after crushing the optic nerve. Apoptotic nuclei were detected in the ganglion cell layer in the first 3 weeks after optic nerve crush, with a peak after 6 days. Bcl-2 and Bcl-X proteins were expressed in ganglion cells at low levels. Expression of Bcl-2 decreased further during the days following crush. Bcl-X expression was initially increased, followed by a decline over the following days. In contrast, Bax protein, which was expressed in most ganglion cells at moderate baseline levels, was sharply increased as early as 30 min after crush, reached peak levels after 3 days, and remained up-regulated for at least 1 week thereafter. Double labelling for Bax and TUNEL in retinal sections, however, did not reveal colocalization of the two signals in individual retinal ganglion cells, consistent with the idea that increases in Bax precede apoptosis after optic nerve lesion. Thus, retinal ganglion cell death might be prevented by ablation of Bax protein in these cells, or by up-regulation of Bax-antagonists such as Bcl-2 or Bcl-X.  相似文献   

3.
Activation of Fas death receptor (Fas DR) signaling cascade is seen after neonatal hypoxia-ischemia (HI). Cell survival is favored when signaling through the death-inducing signaling complex and cleavage of caspase 8 to its active form is blocked by FLIP, a dominant negative of caspase 8. H2O2 quickly downregulates expression of FLIP. Neonatal mice overexpressing glutathione peroxidase (GPx) have less injury and less H2O2 accumulation compared with neonatal mice overexpressing superoxide dismutase (SOD) or wild-type (WT) littermates. Expression of both FLIP(L) and FLIP(S) is increased in GPx-oxerexpressing mice relative to WT mice at 24 h and relative to SOD-overexpressing mice at 2 and 24 h following neonatal HI (ANOVA, p < 0.05). There is an increase in Fas DR expression at 24 h in both WT and GPx-overexpressing mice and significant differences between WT and SOD-overexpressing mice (ANOVA, p < 0.01). There is no difference in FADD expression among the 3 groups 24 h after HI. At 24 h following HI, the ratio of FLIP to Fas DR expression supports a significant negative correlation with injury score (r2 = 0.99, slope = -4.01), and expression of both the active fragment of caspase 8 and caspase 8 activity is increased in SOD overexpressors compared to GPx overexpressors at 24 h after HI (ANOVA, p < 0.05). The overall degree of injury previously seen in these 3 strains correlates well with changes in expression of Fas DR signaling proteins favoring neuroprotection in the GPx-overexpressing mice, i.e. increased FLIP expression and decreased caspase 8 activity compared to SODtg mice. The mechanism by which antioxidant status alters FLIP levels following neonatal HI may be related to the ability to detoxify H2O2 produced following neonatal HI.  相似文献   

4.
In neonatal rats, superior colliculus (SC) ablation results in a massive and rapid increase in retinal ganglion cell (RGC) death that peaks about 24 h post-lesion (PL). Naturally occurring cell death during normal development, and RGC death after axonal injury in neonatal and adult rats, has primarily been ascribed to apoptosis. Given that normal developmental cell death is reported to involve caspase 3 activation, and blocking caspase activity in adults reduces axotomy-induced death, we examined whether blocking caspases in vivo reduces RGC death after neonatal SC lesions. Neither general nor specific caspase inhibitors increased neonatal RGC survival 6 and 24 h PL. These inhibitors were, however, effective in blocking caspases in another well-defined in vitro apoptosis model, the corpus luteum. Caspase 3 protein and mRNA levels in retinas from normal and SC-lesioned neonatal rats were assessed 3, 6 and 24 h after SC removal using immunohistochemistry, western and northern blots and quantitative real-time polymerase chain reaction. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) was used to independently monitor retinal cell death. The polymerase chain reaction data showed a small but insignificant increase in caspase 3 mRNA in retinas 24 h PL. Western blot analysis did not reveal a significant shift to cleaved (activated) caspase 3 protein. There was a small increase in the number of cleaved caspase 3 immunolabelled cells in the ganglion cell layer 24 h PL but this represented only a fraction of the death revealed by TUNEL. Together, these data indicate that, unlike the situation in adults, most lesion-induced RGC death in neonatal rats occurs independently of caspase activation.  相似文献   

5.
The anti-apoptotic proteins Bcl-w and Bcl-2 and the pro-apoptotic protein Bax may mediate cell death or survival via regulation of the mitochondria including second mitochondria-derived activator of caspase (Smac)/direct inhibitor of apoptosis protein (IAP)-binding protein with low pI (DIABLO) release. This study aimed to explore alterations in Bcl-w, Bcl-2, and Bax and the relationship between these proteins and Smac/DIABLO by means of in situ hybridization, immunohistochemical (IHC) staining, and Western blots after low- and high-intensity photothrombotic ring stroke. At 4 h after low-intensity irradiation, we found widespread bcl-w overexpression on both the mRNA and protein levels in the bilateral cortex except the ring lesion region and in subcortical regions. A prolonged elevation of Bcl-2 with relatively unchanged Bax in the mitochondrial fraction was demonstrated from 4 to 72 h. These upregulated anti-apoptotic proteins combined with little Smac/DIABLO release might be associated with increased cell survival and thereby remarkable morphological recovery after low-intensity irradiation. After high-intensity irradiation, we observed decreased bcl-w and bcl-2 mRNA with increased Bcl-2 protein in the cytosolic fraction, whereas the Bax protein remained in scattered ischaemic cells in the ring lesion and the region at risk that corresponded with release of Smac/DIABLO from mitochondria to the cytosol at 1-24 h. These changes might be related to the massive cell death observed after high-intensity irradiation. Taken together, the balance and the location of anti-apoptotic proteins vs. pro-apoptotic proteins could be associated with the translocation of Smac/DIABLO from the mitochondria to the cytosol and therefore closely related to cell death or survival after focal cerebral ischaemia.  相似文献   

6.
Spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by mutations in the survival motor neuron gene. The degeneration and loss of the anterior horn cells constitute the major neuropathological finding in SMA, although the mechanism and timing of this abnormal motor neuron death remain unknown. It has recently been reported that the fetal SMA spinal cord shows a significant increase in cells with DNA fragmentation, suggesting that the programmed cell death is aberrantly increased in type I SMA during development. We have analyzed 2 antiapoptotic proteins, Bcl-2 and Bcl-X, by Western blot and immunohistochemistry screening for differential expression in control and SMA fetal spinal cords. Expression of these proteins was found in various neuronal populations and structures of the developing spinal cord. At 15 weeks, motor neurons of SMA fetuses showed a marked decrease in the levels of Bcl-2 and a delay in the expression of Bcl-X in comparison with controls. The difference in the pattern and degree of expression is consistent with a role for both proteins in the aberrant programmed cell death observed in type I SMA.  相似文献   

7.
Apoptosis-related mechanisms are important in the pathophysiology of hypoxic–ischemic injury in the neonatal brain. Caspases are the major executioners of apoptosis, but there are a number of upstream players that influence the cell death pathways. The Bcl-2 family proteins are important modulators of mitochondrial permeability, working either to promote or prevent apoptosis. In this study we focused on the anti-apoptotic Bcl-2 protein after neonatal cerebral hypoxia–ischemia (HI) in 8-day-old rats. Bcl-2 translocated to nuclei and accumulated there over the first 24 h of reperfusion after HI, as judged by immunohistochemistry and immuno-electron microscopy. We also found that the total level of Bcl-2 decreased after HI in vivo and after ionophore challenge in cultured human neuroblastoma (IMR-32) cells in vitro. Furthermore, the Bcl-2 reduction was calpain-dependent, because it could be prevented by the calpain inhibitor CX295 both in vivo and in vitro, suggesting cross-talk between excitotoxic and apoptotic mechanisms.  相似文献   

8.
9.
Etoposide-induced death comprises such nuclear events as the formation of topoisomerase II-DNA cleavable complex and cytosolic events including caspase activation. By first establishing the temporospatial death sequence triggered by etoposide in a neuronal cell line, MN9D overexpressing Bcl-X(L) (MN9D/Bcl-X(L)) or control vector (MN9D/Neo), we examined whether formation of this complex is primarily responsible for cell death and at which strategic points and how Bcl-X(L) blocks etoposide-induced neuronal death. Etoposide induced death that was dependent on caspase, cycloheximide, and calpain in MN9D/Neo cells. Etoposide also induced death in enucleated MN9D/Neo cells, although this was less severe. The level of topoisomerase II-DNA cleavable complex reached at a maximum of 2 hr after etoposide treatment was identical in MN9D/Neo and MN9D/Bcl-X(L) cells. In MN9D/Neo cells, cytochrome c release into the cytosol and caspase activation occurred as early as 2 hr and 3-6 hr after etoposide treatment, respectively. Etoposide-induced DNA laddering potentially via caspase appeared as early as 12 hr after drug treatment, followed by nuclear swelling in MN9D/Neo cells (>18-20 hr). Subsequently, nuclear condensation started by 24-28 hr and became apparent thereafter. All of these events except for nuclear swelling were substantially blocked in MN9D/Bcl-X(L). At the later stage of cell death (<32-36 hr), a specific cleavage of Bax and fodrin appeared that was completely blocked by calpain inhibitor or by Bcl-X(L). Taken together, our data suggest that Bcl-X(L) prevents etoposide-induced neuronal death by exerting its anticaspase and anticalpain effect on cellular events after the formation of topoisomerase II-DNA cleavable complex that may not be a major contributor to cell death.  相似文献   

10.
The patterns of expression of the Bcl-2, Bax, and Bcl-xL proteins were examined immunocytochemically in rat hippocampus and neocortex after severe hypobaric hypoxia (180 Torr for 3 h) and severe hypoxia preconditioned by intermittent mild hypoxia (360 Torr for 2 h daily, for 3 consecutive days, 24 h prior to severe hypoxia). As revealed by TUNEL assay, severe hypobaric hypoxia produced extensive apoptotic damage to the neurons of hippocampal CA1-CA4 and the neocortex but not the dentate gyrus granule cells. Remarkable posthypoxic up-regulation of Bax expression maximal at 24 h was detected in the CA1-CA4 areas of hippocampus and neocortex 3-72 h after severe hypoxia. The preconditioning to severe hypoxia protected neurons from the posthypoxic apoptotic transformations, the up-regulation of Bax expression, and resulted in persistent overexpression of Bcl-2 and Bcl-xL. We conclude that the protective action of hypoxic preconditioning is at least in part mediated by shifting of neuronal Bax/Bcl-2-Bcl-xL ratio to a favor of antiapoptotic proteins Bcl-2 and Bcl-xL.  相似文献   

11.
Wang H  Xing L  Li W  Hou L  Guo J  Wang X 《Journal of neuroimmunology》2002,125(1-2):155-162
Programmed cell death (apoptosis) is critical for the normal development and homeostasis of the immune system. There is increasing evidence that dysregulations of apoptotic pathways are associated with autoimmune disease, including multiple sclerosis (MS). Cellular commitment to apoptosis is partly regulated by the Bcl-2 family proteins, which includes the death antagonists Bcl-2 and Bcl-X(L), and death agonists Bax and Bad. Since the role of these proteins in the pathogenesis of MS is currently unknown, we analyzed their expression profile in peripheral and intrathecal lymphocytes from MS patients and appropriate controls. We observed a significant reduction in the expression ratios of pro-apoptotic to anti-apoptotic Bcl-2 members in both peripheral and intrathecal lymphocytes from MS patients when compared to corresponding ratios in patients with inflammatory or noninflammatory neurologic controls, or healthy individuals. The relative coexpression ratios of these pro- and anti-apoptotic Bcl-2 family proteins in MS were more significant than the expression of individual members. The low cellular expression ratios of pro-apoptotic proteins in MS were confirmed in vitro activated T lymphocytes. Cellular expression of Bcl-2, Bcl-X(L), Bax or Bad in MS patients was independent of the expression of other apoptotic regulatory molecules, such as Fas receptor protein or FLIP. Our findings suggest that the abnormal expression patterns of Bcl-2 family proteins in MS may promote apoptotic resistance of potentially pathogenic, autoreactive lymphocytes, and may allow for continuing cellular proliferation and tissue destruction within the central nervous system.  相似文献   

12.
13.
The purpose of this study was to characterize the expression of apoptosis (caspase 3, Bcl-2) and survival (HSP 70, antioxidant CuZn-SOD) proteins in intestinal lymphocytes (IL) of mice after repeated exercise stress. Plasma corticosterone concentration was greater than twofold higher immediately after exercise compared with the non-exercised condition. IL numbers decreased 24 h after cessation of exercise (p<0.05); this was associated with increased caspase 3 (p<0.05), HSP 70 (p<0.001) and CuZn-SOD (p<0.05) expression in IL immediately after exercise relative to IL from non-exercised mice. Expression of these proteins returned to control levels 24 h after the cessation of exercise stress.  相似文献   

14.
To further characterize MPP(+)-induced cell death and to explore the role of Bcl-2-related proteins in this death paradigm, we utilized a mesencephalon-derived dopaminergic neuronal cell line (MN9D) stably transfected with human bcl-2 (MN9D/Bcl-2), its C-terminal deletion mutant (MN9D/Bcl-2Delta22), murine bax (MN9D/Bax), or a control vector (MN9D/Neo). As determined by electron microscopy and TUNEL assay, MN9D/Neo cells exposed to MPP(+) underwent a cell death that was characterized by mitochondrial swelling and irregularly scattered heterochromatin without accompanying DNA fragmentation. However, cell swelling typically seen in necrosis did not appear. To examine the biochemical events associated with MPP(+)-induced cell death, various analyses were conducted. Addition of a broad-spectrum caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (50-400 microM) or Boc-aspartyl(OMe)-fluoromethylketone (50-200 microM) did not attenuate MPP(+)-induced cell death while the same treatment protected MN9D/Neo cells against staurosporine-induced apoptotic cell death. Concurrent treatment with an inhibitor of macromolecule synthesis such as cycloheximide, emetine, or actinomycin D blocked MPP(+)-induced cell death, suggesting that new protein synthesis is required as demonstrated in many apoptotic cell death. The level of cytosolic calcium in MN9D/Neo cells was unchanged over 24 h following MPP(+) treatment, as monitored by means of the fluorescent probe Fura-2. Western blot analysis indicated that expression level of proapoptotic protein, Bax was not significantly altered after MPP(+) treatment. In this death paradigm, overexpression of Bcl-2 but not its C-terminal deletion mutant attenuated MPP(+)-induced cell death whereas overexpression of Bax had no effect. Taken together, these data indicate that (i) MPP(+) induces a distinct form of cell death which resembles both apoptosis and necrosis; and (ii) full-length Bcl-2 counters MPP(+)-induced morphological changes and cell death via a mechanism that is dependent on de novo protein synthesis but independent of cytosolic calcium changes, Bax expression, and/or activation of caspase(s) in MN9D cells.  相似文献   

15.
Bad, a proapoptotic Bcl-2 family protein, plays a critical role in determining cell death/survival. The phosphatidylinositol 3-kinase (PI3-K)/Akt pathway and the c-Jun N-terminal kinase (JNK) pathway are thought to be involved in regulation of Bad. Therefore, the present study was performed to clarify the role of Bad as a common target of the PI3-K/Akt and JNK pathways after transient focal cerebral ischemia (tFCI) in rats. We found that Akt activity increased at 3 h and then decreased, whereas JNK activity increased 7 to 24 h in the peripheral area after tFCI. Administration of LY294002, a PI3-K-specific inhibitor, exacerbated DNA fragmentation, whereas administration of SP600125, a JNK-specific inhibitor, attenuated it. Inhibited by LY294002, phospho-Bad (Ser136) expression increased in the peripheral area 3 h after tFCI, with suppression of Akt activity. Furthermore, phospho-Bad (Ser136) and phospho-Akt (Ser473) were colocalized. Decreases in phospho-Bad (Ser136) and Bad/14-3-3 dimerization and increases in Bcl-X(L)/Bad or Bcl-2/Bad dimerization observed 7 to 24 h after tFCI, were prevented by SP600125 administration, with inhibition of JNK activity. The present study indicates that signal predominance varies from PI3-K/Akt-mediated survival signaling to JNK-mediated death signaling with the development of neuronal damage in the peripheral area after tFCI. This study also suggests that PI3-K/Akt has a role in Bad inactivation, whereas the JNK pathway is involved in Bad activation. We conclude that Bad may be an integrated checkpoint of PI3-K/Akt-mediated survival signaling and JNK-mediated death signaling and that it contributes to cell fate in the peripheral area after cerebral ischemia.  相似文献   

16.
目的研究Bcl-2的P53蛋白在新生儿缺氧缺血性脑损伤(HIBD)中的表达及与细胞凋亡的关系。方法将新生7日龄Wistar大鼠制成HlBD模型,应用免疫组织化学-SP法及原位缺口末端标记(TUNEL)研究Bcl-2和P53蛋白在新生大鼠及缺氧缺血(HI)后脑中表达及与凋亡的关系。结果新生大鼠HIBD时凋亡与坏死并存,以凋亡为主。Bcl-2免疫蛋白在正常新生大鼠脑内广泛表达(+~++++);Hl后脑病变处Bcl-2免疫强度明显下降(-~+);P53蛋白在正常新生大鼠脑内基本无表达;HI后病变部位散在分布阳性凋亡细胞。结论Hl后Bcl-2免疫表达减弱,P53的免疫表达增强,提示Bcl-2可抑制凋亡,P53可能促进凋亡。  相似文献   

17.
T cell resistance towards apoptotic elimination by activation-induced cell death (AICD) might be a crucial pathogenic feature of multiple sclerosis (MS). Since the Bcl-2 family is critically involved in the regulation of apoptosis, we investigated the protein expression of Bcl-2, Bcl-X(L), and Bax in peripheral blood mononuclear cells (PBMC) of 23 MS patients and 29 control subjects. An in vitro model of AICD, which exemplifies the elimination of antigen-reactive T cells in vivo, was used as an indication of T cell susceptibility or resistance towards apoptosis. Increased expression of the survival factor Bcl-X(L), which directly correlated with a resistance towards AICD, was observed in peripheral immune cells of MS patients. In contrast to Bcl-X(L), no differences were found in the protein expression of Bcl-2 and Bax between patients and controls. Our data indicate that the anti-apoptotic factor Bcl-X(L), responsible for T cell resistance towards apoptosis, might be an important factor in the MS pathogenesis and a potential target for therapeutic intervention.  相似文献   

18.
目的观察单纯缺氧损伤对体外培养海马神经元内源性神经营养因子-3(neurotrophin-3, NT-3)表达的影响及外源性NT-3转导对单纯缺氧所致神经元凋亡的保护作用。方法体外分散培养新生Wistar大鼠海马神经元,体外培养第7天通过充氮法建立单纯缺氧损伤模型;用重组腺病毒载体pAC- CMV-PLPA构建携带NT-3全长cDNA的重组腺病毒Ad-NT-3,并分别于损伤前后向体外培养的海马神经元转导外源性NT-3;采用Western Blot检测在缺氧损伤前后及有无外源性NT-3转导的情况下NT-3 及Bcl-2的表达水平;采用TUNEL法检测缺氧及外源性NT-3转导后神经元凋亡的情况。结果 (1)单纯缺氧损伤后海马神经元的凋亡细胞标记指数由15.2%上升至56.4%,内源性NT-3表达量下降至对照组水平的71%。(2)缺氧损伤前重组腺病毒转导可使损伤后NT-3表达量上升至对照组的1.88倍、损伤后重组腺病毒转导亦可使NT-3表达量上升至对照组的1.42倍,而Bcl-2的表达量相应地上升至对照组的 1.69倍和1.32倍,凋亡细胞标记指数降至32.8%和45.4%。(3)统计学分析显示,海马神经元NT-3与Bcl- 2表达量间呈显著性正相关,二者与凋亡细胞标记指数间均呈显著性负相关。结论单纯缺氧损伤可使体外培养的海马神经元内源性NT-3表达量下降;腺病毒转导的外源性NT-3可保护单纯缺氧损伤神经元免于凋亡;其保护作用部分可能是通过对Bcl-2表达的诱导实现的。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号