首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
目的:脑磁共振图像的自动分割是近几年研究的一大热点,本文在通过分析比较当前各种图像分割算法后,介绍了一种基于边界跟踪的脑磁共振图像(MRI)分割算法,在MRI中提取出脑组织部分。方法:应用迭代法对脑磁共振图像进行二值化处理;扫描二值化图像,根据脑组织的形态,确定一点作为脑组织边界的起点;根据边界点的像素特征,对传统的边界跟踪算法进行改进,计算出MRI脑组织的边界,最后应用区域生长法在原始MRI中提取脑组织图像,实现MRI分割。结果:实验结果表明,改进后的边界跟踪算法在提取脑组织边界时,细节处理能力强,不易陷入死循环,具有较高的运算速度。提取的真实脑磁共振图像的脑组织区域,能满足临床的实际需要。结论:对图像二值化处理,对图像有微弱的损害,但是极大地提高了计算速度。与传统的边界跟踪算法相比,改进后的边界跟踪算法分割效率高,更易实现MRI的自动分割。获得的边界曲线在细节上更接近于脑组织的实际边界。  相似文献   

2.
目的 基于Matlab和VC++混合编程,实现了图论在脑肿瘤分割及提取中的应用,为之后脑肿瘤三维重建提供准确的分割结果.方法 在Matlab和VC++开发平台下,首先读取含脑肿瘤的MRI图像,经过一定的预处理后,调用C++编写的图论分割函数,实现MRI图像的全局分割,然后通过肿瘤区域的颜色信息进行区域二值化和轮廓提取等后处理,很好地完成了脑肿瘤的分割提取.结果 通过与专家手动分割的脑肿瘤区域进行比较以及对算法各模块运行时间的监测,显示脑肿瘤分割准确度高,且算法运行稳定.结论 基于图论的分割算法能够反映图像全局特性,且运行稳定,是一种值得推广的脑肿瘤分割方法.  相似文献   

3.
三维医学图像序列的自动连续分割   总被引:2,自引:0,他引:2  
我们针对医学辅助诊断系统中从M R图像分割脑肿瘤的问题,改进了区域竞争算法,并利用它实现了医学图像序列间的连续自动分割,特别是脑肿瘤的分割和脑膜瘤的自动识别。模糊化区域竞争算法是为了更好的适应医学图像的模糊与不均匀的特点,而用区域增长做初始化可以给区域竞争提供用来竞争和合并的过分割区域。为了实现医学图像序列的自动连续分割,每一副切片的分割结果都会被用作初始化下一张切片;并且我们根据脑膜瘤的特点实现了它的自动识别。实验表明,我们的自动分割算法对仿真脑图像和真实脑图像均有较好的分割精度,并能满足系统对分割快速性的需要。  相似文献   

4.
针对脑科医生对二维脑部图像通过想象建立起三维空间的立体结构缺乏直观性与准确性的缺陷,设计了基于Matlab GUI的脑胶质瘤三维显示辅助诊断系统软件。软件具有读取MRI原始数据、对脑部MRI图像的预处理、图像插值放大、图像分割和三维重建等功能。通过该软件,可以对脑部MRI图像进行合适的预处理,提取出脑部肿瘤组织区域,三维重建可以凸显肿瘤区域的位置、形状和大小。该软件界面友好,使用方便,为临床医生诊断脑胶质瘤与确定治疗区域提供了参考。  相似文献   

5.
针对脑胶质瘤形状、位置及大小的不一致性,本文提出了一种基于双通道三维密集连接网络的脑胶质瘤核磁共振成像(MRI)自动分割算法。该算法基于三维卷积神经网络,在两个通道采用不同大小卷积核,从而在不同尺度感受野下提取多尺度特征,并构造各自的密集连接块进行特征学习与传递,通过特征结联后输入到分类层进行目标体素分类,最终实现脑胶质瘤的自动分割。为了验证本文算法的实用性,本文采用公开的脑肿瘤分割挑战赛数据集对网络进行训练与验证,并将得到的结果与其他脑胶质瘤分割方法比较。实验结果表明,本文所提出的算法能够更准确地分割出不同的肿瘤病变区域,在临床脑肿瘤疾病诊断中具有一定的应用价值。  相似文献   

6.
利用BP神经网络技术对MR脑肿瘤图像中的肿瘤区域与正常组织区域进行分割,以辅助医疗诊断与治疗。首先,人工分割出部分影像中的肿瘤组织与正常组织作为已知样本;其次,在BP神经网络模型中输入已知样本中进行训练;最后,用训练好的BP神经网络处理其他脑肿瘤图像。BP神经网络能够有效分割MR脑肿瘤图像,辨别出肿瘤与周围正常组织的差异,但模糊区域也常被误判为肿瘤。因此,本研究提出进一步对模糊区域样本进行针对性训练与特殊的滤波处理,所得结果有较大改进。BP神经网络能有效地进行脑肿瘤MRI图像分割,但在使用时仍需正确选择输入样本的区域和范围并结合特殊的滤波处理。  相似文献   

7.
脑部MRI图像的脑组织提取是神经影像学分析的一项重要预处理过程,为提高提取精度,提出一种基于graph cuts的脑组织自动提取方法,主要适用于T1加权MRI图像。首先采用Smith等提出的脑组织提取工具(BET)得到感兴趣区域 (ROI),仅在该区域内用graph cuts方法进行演化;并在graph cuts中加入一个速度限制因子,解决脑组织提取过程中的局部收敛和边界泄漏问题;此外,还采用一种逐层处理2D图像切片的3D数据初始化方法。利用IBSR(Internet Brain Segmentation Repository)网站提供的18组数据,将所提出方法与现有的部分脑组织提取方法(脑组织提取工具(BET)、 脑组织表面提取算法(BSE)、 分水岭算法(WAT)、 混合分水岭算法(HWAT)、 图割算法(GCUT) 和鲁棒脑组织提取算法(ROBEX)),进行对比试验。结果显示,本方法最接近于标准分割,平均Dice系数达到095,并且在多个评价参数(假阳性率32%和Hausdorff距离96)上都取得最好结果。实验表明,所提出方法具有较好的精确性和稳定性。  相似文献   

8.
基于层间先验知识从脑MRI图像中自动提取脑组织   总被引:1,自引:0,他引:1  
目的从脑MRI图像中提取脑组织,解决边缘模糊时脑和非脑组织难以分离的问题。方法首先利用各向异性扩散滤波的方法对脑MRI图像进行去噪处理;然后利用形态学的方法对初始脑MRI图像进行脑组织提取,在此分割结果的基础上,利用相邻层脑形态差异较小的特点,实现结构元素的自适应选取,完成从脑MRI图像中逐层准确、自动提取脑组织。结果采用不同来源的数据对算法性能进行了测试,结果优于经典背散射电子成像(BSE)方法的分割结果。结论利用层间先验知识有利于实现边缘模糊的脑组织自动准确提取,且适用性较强。  相似文献   

9.
为了得到均值漂移的自适应带宽并更精确地分割出脑部磁共振成像(MRI)的肿瘤,本文提出了一种改进的均值漂移方法。首先利用脑部图像的空间特征去除MRI图像中的头骨,消除头骨对分割的影响;然后根据脑部不同组织(包括肿瘤)在空间上集聚的特征,利用边界点得到优化的初始均值以及相应的自适应带宽,从而提高肿瘤分割的精度。实验结果表明,与固定带宽均值漂移算法相比,本文方法分割肿瘤更为精确。  相似文献   

10.
目的:在研究CT脑肿瘤灌注成像过程中,肿瘤相关特征参数的定量分析为临床诊断提供重要依据。方法:介绍了CT脑灌注的相关参数,包括脑血流量(CBF)、脑血容量(CBV)、平均通过时间(MTT)和表面通透性等(PS),根据CT扫描所获得的一系列时间影像序列,利用VisualC++编程实现了脑肿瘤区域的时间密度曲线的显示,在基于去卷积方法基础之上,提出改进的算法,结合CT灌注图像上肿瘤区域的长度,角度,面积等参数的测量方法,计算出更精确地血流动力学参数。结论:脑肿瘤CT灌注图像相关特征参数的定量分析可用于脑瘤的及时诊断和治疗。  相似文献   

11.
基于三维区域生长算法的脑灰质提取方法的研究   总被引:2,自引:1,他引:2  
目的探求从头颅磁共振成像(MRI)图像中提取出大脑灰质图像的方法。方法采用阈值分割预处理MRI图像,人工选择种子点、采用18-邻域的三维区域生长从头颅MRI图像中提取脑灰质图像,最终用腐蚀和膨胀算法弥补区域生长算法的不足。结果利用此方法对5套MRI数据进行操作,取得了满意的分割效果;使用VTK提供的面绘制算法对提取出的脑灰质图像进行三维重建,得到了高质量的大脑皮层图像。结论该方法能够得到满意的大脑灰质提取效果。  相似文献   

12.
Diagnosis of brain tumor gliomas is a challenging task in medical image analysis due to its complexity, the less regularity of tumor structures, and the diversity of tissue textures and shapes. Semantic segmentation approaches using deep learning have consistently outperformed the previous methods in this challenging task. However, deep learning is insufficient to provide the required local features related to tissue texture changes due to tumor growth. This paper designs a hybrid method arising from this need, which incorporates machine-learned and hand-crafted features. A semantic segmentation network (SegNet) is used to generate the machine-learned features, while the grey-level co-occurrence matrix (GLCM)-based texture features construct the hand-crafted features. In addition, the proposed approach only takes the region of interest (ROI), which represents the extension of the complete tumor structure, as input, and suppresses the intensity of other irrelevant area. A decision tree (DT) is used to classify the pixels of ROI MRI images into different parts of tumors, i.e. edema, necrosis and enhanced tumor. The method was evaluated on BRATS 2017 dataset. The results demonstrate that the proposed model provides promising segmentation in brain tumor structure. The F-measures for automatic brain tumor segmentation against ground truth are 0.98, 0.75 and 0.69 for whole tumor, core and enhanced tumor, respectively.  相似文献   

13.
Fast segmentation of bone in CT images using 3D adaptive thresholding   总被引:1,自引:0,他引:1  
Fast bone segmentation is often important in computer-aided medical systems. Thresholding-based techniques have been widely used to identify the object of interest (bone) against dark backgrounds. However, the darker areas that are often present in bone tissue may adversely affect the results obtained using existing thresholding-based segmentation methods. We propose an automatic, fast, robust and accurate method for the segmentation of bone using 3D adaptive thresholding. An initial segmentation is first performed to partition the image into bone and non-bone classes, followed by an iterative process of 3D correlation to update voxel classification. This iterative process significantly improves the thresholding performance. A post-processing step of 3D region growing is used to extract the required bone region. The proposed algorithm can achieve sub-voxel accuracy very rapidly. In our experiments, the segmentation of a CT image set required on average less than 10 s per slice. This execution time can be further reduced by optimizing the iterative convergence process.  相似文献   

14.
Tumor segmentation from magnetic resonance (MR) images may aid in tumor treatment by tracking the progress of tumor growth and/or shrinkage. In this paper we present the first automatic segmentation method which separates non-enhancing brain tumors from healthy tissues in MR images to aid in the task of tracking tumor size over time. The MR feature images used for the segmentation consist of three weighted images (T1, T2 and proton density (PD)) for each axial slice through the head. An initial segmentation is computed using an unsupervised fuzzy clustering algorithm. Then, integrated domain knowledge and image processing techniques contribute to the final tumor segmentation. They are applied under the control of a knowledge-based system. The system knowledge was acquired by training on two patient volumes (14 images). Testing has shown successful tumor segmentations on four patient volumes (31 images). Our results show that we detected all six non-enhancing brain tumors, located tumor tissue in 35 of the 36 ground truth (radiologist labeled) slices containing tumor and successfully separated tumor regions from physically connected CSF regions in all the nine slices. Quantitative measurements are promising as correspondence ratios between ground truth and segmented tumor regions ranged between 0.368 and 0.871 per volume, with percent match ranging between 0.530 and 0.909 per volume.  相似文献   

15.
目的:鉴于K-均值聚类算法易受初始聚类中心的影响,初始聚类中心不仅影响聚类速度。还可能使算法陷入局部极小值,得到错误的聚类结果,基于SOM神经网络,提出了一种改进的K.均值聚类算法并将其应用于脑实质分割。方法:首先,由SOM神经网络对图像进行初始聚类,得到&个聚类中心值;然后,以SOM神经网络获得的k个聚类中心值作为K_均值聚类算法的初始聚类中心对图像进行%.均值聚类,最终获得图像的聚类分割结果。结果:基于SOM神经网络的K-means聚类算法的分割精度为O.9274,K-means聚类算法的分割精度为0.8649。结论:利用改进的K-均值聚类算法对磁共振脑部图像进行了分割实验,结果表明该算法有效改善了K-means聚类算法初始聚类中心选取的盲目性,使聚类结果更为准确、稳定,取得了比单一方法更好的分割结果。  相似文献   

16.
摘要:目的:研究基于脉冲耦合神经网络PCNN的PET/CT图像自动分割技术在肺癌靶区勾画中的应用。方法:采集20例无转移的肺癌患者的PET/CT图像。由2名有经验的放疗科医生分别依据CT图像和PET/CT图像采用目测法勾画肿瘤靶区,分别命名为GTV-cT和GTV-PET。所有PET图像均由自主编写的基于PCNN的分割方法进行靶区的自动分割.所得靶区为GTv-PETauto。采用PINNACLEV9.2放射治疗计划系统分别计算三种方法所勾画的靶区体积,对三种GTV的体积大小和重合关系进行比较。结果:两名医生依据cT图像勾画的靶区平均体积GTV-CTl和GTV-CT2分别为(210.56+197.38)cm3和(192.83±187.05)cm3,两者之间差异有统计学意义(P〈0.05);依据PET/CT勾画的靶区GTV-PETl和GTV.PET2分别为(141.50±118.43)cm3和(130.47±116.70)cm3,未见统计学差异(P〉0.05)。两名医生依据PET/CT图像勾画的靶区差异较依据CT的差异小。PET/CT自动分割靶区GTV-PETauto为(133.19±101.28)cm3,与GTV-PET比较未见统计学差异(P〉0.05),验证了PCNN分割方法的可靠性。GTV-PETauto、GTV-PET均小于CT手动勾画靶区GTV-CT,差异有统计学意义(P〈0.05),其中13例靶区因区分肿瘤和肺不张而缩小。结论:基于PCNN的PET/CT图像分割技术提高了肿瘤靶区勾画的精确性,减少了不同医生勾画靶区的差异性,并大大缩短了医生进行靶区勾画的时间。  相似文献   

17.
基于CT图像的肺结节计算机辅助诊断系统   总被引:8,自引:0,他引:8  
本文介绍了一种基于CT图像的肺结节计算机辅助自动诊断系统。我们将肺结节的自动检测分为肺实质的提取、感兴趣区域(ROI)的分割和ROI特征参数提取及分类判别几个步骤。该系统能够在对肺部CT图像进行自动分析后给医生提示出可疑肺结节,从而提高了医疗诊断效率。  相似文献   

18.
目的胸部CT图像的肺实质自动分割是肺部疾病计算机辅助检测的重要基础。为提高分割速度,本文提出并实现了一种基于重采样的分割算法。方法首先对数据重采样,提取部分(1/8)体数据。再基于重采样体数据,通过阈值分割、胸腔提取、气管剔除、血管填充、左右肺分离和肺壁结节填充等步骤,得到初步分割结果。然后将该结果还原到完整数据体上,形态学平滑后即完成最终分割。最后将算法应用于20例患者数据(2556个断层),并与放射科医生手动分割结果进行比较。结果本文算法对20例患者数据均能取得优异结果,与放射科医生手动分割的平均面积重叠率达99.02%,且适用于左右肺相连、肺壁存在结节、视野不完整等异常情况。通过数据重采样极大缩短分割时间,一般可缩短50%,一帧图像平均耗时小于0.25s。结论本文算法能够实现胸部cT图像肺实质的自动分割,结果准确可靠,鲁棒性好,速度快,基本满足实际临床需求。  相似文献   

19.
腿部磁共振图像脂肪分割对于代谢综合征和代谢功能异常诊断具有重要意义,但皮下脂肪和肌肉间脂肪存在连通区域,难以分割。本文提出水平集算法和模糊C均值算法相结合的方法,对腿部磁共振图像脂肪和其他组织进行分割提取。实验结果表明,该方法能够较好地分割出腿部的皮下脂肪组织、肌肉间脂肪组织及其他组织。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号