首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suppressor cells that regulate experimental autoimmune encephalomyelitis (EAE) are present in rats that recover from the disease and can protect against the development of active EAE when transferred to normal recipients. Both CD4+ T suppressor cells, known to regulate EAE effector cell lymphokine production, and myelin basic protein (MBP)-primed B cells are required to transfer protection against EAE to normal recipients. Neither CD4+ T suppressor cells nor MBP-primed B cells alone could transfer protection. Moreover, the co-transfer of normal B cells with CD4+ T suppressor cells did not provide protection against EAE. These results suggest that the regulation of EAE and perhaps the recovery from acute clinical disease requires the interaction of two specific subpopulations of regulatory lymphocytes.  相似文献   

2.
Infiltration of the central nervous system (CNS) by CD4+ Th1 cells precedes onset and relapses of experimental autoimmune encephalomyelitis (EAE). We reported that (B6xSJL) F1 (H-2b/s) mice with severe relapsing-remitting disease had extensive infiltration by CD4+ T cells compared to that in C57BL/6 (B6) (H-2b) mice, which developed mild low-relapsing disease in response to myelin oligodendrocyte peptide 35-55 (MOG(35-55)). This observation led us to search for mechanisms that specifically regulate trafficking of CD4+ cells in relapsing H-2b/s mice. We show that the CD4+ cell chemoattractant cytokine interleukin (IL)-16 has an important role in regulation of relapsing EAE induced by MOG(35-55) in the (B6xSJL) F1 (H-2b/s) mice. We found production of IL-16 in the CNS of mice with EAE. IL-16 levels in the CNS correlated well with the extent of CD4+ T-cell and B-cell infiltration during acute and relapsing disease. Infiltrating CD4+ T cells, B cells, and to a lesser extent CD8+ T cells all contained IL-16 immunoreactivity. Treatment with neutralizing anti-IL-16 antibody successfully reversed paralysis and ameliorated relapsing disease. In treated mice, diminished infiltration by CD4+ T cells, less demyelination, and more sparing of axons was observed. Taken together, our results show an important role for IL-16 in regulation of relapsing EAE. We describe a novel therapeutic approach to specifically impede CD4+ T cell chemoattraction in EAE based on IL-16 neutralization. Our findings have high relevance for the development of new therapies for relapsing EAE and potentially MS.  相似文献   

3.
In experimental allergic encephalomyelitis (EAE), autoimmune T cells infiltrate the central nervous system (CNS) and initiate demyelinating pathology. We have used flow cytometry to directly analyse the migration to the CNS of MBP-reactive CD4+ T cells labelled with a lipophilic fluorescent dye (PKH2), in SJL/J mice with passively transferred EAE. Labelled cells constituted about 45% of the CNS CD4+ population at the time of EAE onset. Almost all (greater than 90%) of the PKH2-labelled CD4+ T cells from EAE CNS were blasts and were alpha/beta T cell receptor (TCR)+, CD44(Pgp-1)high, and the majority were CD45RB(low). By contrast, most PKH2-labelled CD4+ T cells in lymph nodes, although CD44high, were CD45RBhigh cells. The cells that were transferred to induce EAE were essentially similar to antigen-primed lymph node cell populations, containing less than 15% CD44high cells, and most of them were CD45RBhigh. The CD44high CD45RB(low) phenotype is characteristic of memory/effector T cells that have been activated by antigen recognition. The difference in CD45RB expression between CNS and LN could therefore reflect differential exposure and/or response to antigen. Consistent with this, PKH2-labelled CD4+ cells isolated from the CNS were responsive to MBP in vitro, whereas PKH2+ CD4+ cells from lymph nodes showed almost undetectable responses. In control experiments in which ovalbumin (OVA)-reactive T cells were transferred, a small number of fluorescent-labelled CD4+ T cells were also detected in CNS, but there were very few blasts, and these remained CD45RBhigh. These results argue for induction of the memory/effector phenotype of CD4+ T cells, and their selective retention in the CNS, as a consequence of antigen recognition.  相似文献   

4.
CD8+ T cells in inflammatory demyelinating disease   总被引:3,自引:1,他引:2  
We review the contribution made by CD8+ T cells to inflammation in the central nervous system (CNS) in Multiple Sclerosis (MS), and discuss their role in the animal model Experimental Autoimmune Encephalomyelitis (EAE). We show that the inflammatory cytokines interferon-gamma and interleukin-17 are differentially regulated in CNS-infiltrating CD4+ and CD8+ T cells in EAE, and that CD8+ T cells regulate disease. In MS, CD8+ T cells appear to play a role in promotion of disease, so cytokine regulation is likely different in CD8+ T cells in MS and EAE.  相似文献   

5.
Activation of Th2 cells suppresses clinical experimental autoimmune encephalitis (EAE), demyelination and expression of genes associated with Th1-mediated inflammation. Despite both reduced central nervous system inflammation and IFN-gamma induced MHC class II expression by microglia, the composition of CNS infiltrates in Th2-protected mice were similar to mice with EAE. Analysis of the CNS infiltrating cells by flow cytometry suggests that protection did not correlate with abrogation of CD4+ T cell recruitment, preferential recruitment of donor Th2 cells or an increased frequency of CD25+ CD4+ T cells. By contrast, protection correlated with an increased frequency of neuroantigen-specific Th2 cells infiltrating the CNS. These data suggest that a peripheral Th2 cytokine environment influences both potential antigen presenting cells as well as recruitment and/or retention of neuroAg-specific Th2 CD4+ T cells.  相似文献   

6.
We examined lymphocytes isolated from the spinal cord (SC), peripheral blood (PB) and lymph nodes (LN) draining the immunization site of Lewis rats with acute experimental allergic encephalomyelitis (EAE). Cells were analysed for T cell subset markers CD4 (mAb W3/25) and CD8 (mAb OX8), for IL-2R (mAb OX39), and for high molecular mass leukocyte common antigen (LCA, CD45RB) expression (mAb OX22). T cells expressing high (CD45RB+) or low (CD45RB-) molecular mass LCA are of different maturational stages and/or separate lineages. CD4+ T cells were more predominant in SC than in PB and LN; CD8+ T cells were scarce in SC but common in PB and LN. Activated CD4+ T cells (IL-2R+) were common in the SC and LN but infrequent in blood. CD4+ T cells that were CD45RB+ were scarce in the SC. In contrast, the majority of CD4+ T cells in the PB and LN were CD45RB+. The preferential accumulation of IL-2R+ CD4+ T cells and of CD45RB- CD4+ T cells in the central nervous system (CNS) indicates that a selective mechanism directs cell egress into CNS lesions in EAE.  相似文献   

7.
We investigated the use of an antisense oligonucleotide (ASO) specific for mRNA of the alpha chain (CD49d) of mouse VLA-4 to down-regulate VLA-4 expression and alter central nervous system (CNS) inflammation. ISIS 17044 potently and specifically reduced CD49d mRNA and protein in cell lines and in ex-vivo-treated primary mouse T cells. When administered prophylactically or therapeutically, ISIS 17044 reduced the incidence and severity of paralytic symptoms in a model of experimental autoimmune encephalomyelitis (EAE). This was accompanied by a significant decrease in the number of VLA-4+ cells, CD4+ T cells, and macrophages present in spinal cord white matter of EAE mice. ISIS 17044 was found to accumulate in lymphoid tissue of mice, and oligonucleotide was also detected in endothelial cells and macrophage-like cells in the CNS, apparently due to disruption of the blood–brain barrier during EAE. These results demonstrate the potential utility of systemically administered antisense oligonucleotides for the treatment of central nervous system inflammation.  相似文献   

8.
Experimental autoimmune encephalomyelitis (EAE) disease was accelerated iNOS-deficient (KO) mice: coinciding with greatly increased numbers of Ag-specific Th1 cells in the periphery that appeared to rapidly shift from the spleen to the CNS during onset of disease symptoms. iNOS KO mice had significantly increased Th1 cells in the CNS versus wild-type mice. Apoptosis of CNS-infiltrating CD4+ T cells was impaired in iNOS KO mice at peak of disease; consequently, these mice had more CNS-infiltrating CD4+ T cells. Subsequently, iNOS KO mice up-regulated apoptosis of CNS-CD4+ T cells. During chronic EAE, CNS macrophages were greatly decreased, suggesting elimination of CNS-infiltrating CD4+ T cells and activated macrophages by iNOS-independent mechanisms. INOS is not only required for apoptosis of CNS-CD4+ T cells but also prevents overexpansion of autoreactive Th1 cells in the periphery and the CNS.  相似文献   

9.
Experimental autoimmune encephalomyelitis (EAE) is a widely adopted animal model system for studying human multiple sclerosis that affects the central nervous system (CNS). To understand the underlying pathogenic mechanisms of the autoimmune T cell response, localization, enumeration and characterization of autoreactive T cells are essential. We assessed encephalitogenic proteolipid protein epitope (PLP(139-151))-specific T cells in the periphery and CNS of SJL/J mice using MHC class II I-As multimers during both pre-clinical and clinical phases of PLP-induced EAE in conjunction with T cell function. Our results strongly suggest that PLP(139-151)-specific CD4+ T cells first expand primarily in the CNS-draining cervical lymph nodes and then migrate to the CNS. In the CNS, these PLP-specific CD4+ T cells accumulate, become activated and differentiate into effector cells that produce IFN-gamma in response to the self-peptide.  相似文献   

10.
We investigated the optimum doses of phenytoin for treatment of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE). Oral and intraperitoneal administrations of 0.25 to 1.0mg per mouse (12.5-50mg/kg) 3 times a week improved the clinical course. Intraperitoneal injections of 1.0mg phenytoin were the most effective, as a significant reduction in EAE severity was seen after only 2 administrations with that protocol. Treatment efficacy was associated with amelioration of cellular infiltrates in the CNS, and an increase in CD4(+)Foxp3(+) and CD4(+)CD25(+)CD127(-) regulatory T cells as well as CD8(+) suppressor/cytotoxic T cells in blood.  相似文献   

11.
The rebirth of interest in suppressor T cells has spawned a vast amount of data that shed light on their biology and role in immune system homeostasis. Since the early studies on the naturally occurring CD4+/CD25+ T regulatory cells, much attention has been focused on ways to induce suppressor T cells in vivo. This review discusses the salient features of the induction of antigen-specific suppressor T cells in a T cell receptor (TCR) transgenic mouse model of experimental allergic encephalomyelitis (EAE) in response to epicutaneous immunization with cognate peptide. We discuss the skin environment as a privileged anatomical site for therapeutic intervention against pro-inflammatory auto-immune disorders using non-invasive approaches for antigen delivery.  相似文献   

12.
To investigate regulatory mechanisms which naturally prevent autoimmune diseases, we adopted the genetically restricted immunodeficient (RAG‐1?/?) myelin basic protein (MBP)‐specific T cell receptor (TCR) double transgenic (T/R?) mouse model of spontaneous experimental autoimmune encephalomyelitis (Sp‐EAE). Sp‐EAE can be prevented after transfer of CD4+splenocytes from naïve immunocompetent mice. RAG‐1+ double transgenic (T/R+) mice do not develop Sp‐EAE due to the presence of a very small population (about 2%) of non‐Tg TCR specificities. In this study, CD4+BV8S2+ T cells that predominate in T/R+ mice, and three additional populations, CD4+BV8S2?, CD4?CD8?BV8S2+, and CD4?CD8+BV8S2+ T cells that expanded in T/R+ mice after immunization with MBP‐Ac1‐11 peptide, were studied for their ability to prevent Sp‐EAE in T/R? mice. Only the CD4+BV8S2? T cell population conferred complete protection against Sp‐EAE, similar to unfractionated splenocytes from non‐Tg donors, whereas CD4?CD8?BV8S2+ and CD4+BV8S2+ T cells conferred partial protection. In contrast, CD4?CD8+BV8S2+ T cells had no significant protective effects. The highly protective CD4+BV8S2? subpopulation was CD25+, contained non‐clonotypic T cells, and uniquely expressed the CCR4 chemokine receptor. Protected recipient T/R? mice had marked increases in CD4+CD25+ Treg‐like cells, retention of the pathogenic T cell phenotype in the spleen, and markedly reduced inflammation in CNS tissue. Partially protective CD4+BV8S2+ and CD4? CD8?BV8S2+ subpopulations appeared to be mainly clonotypic T cells with altered functional properties. These three Sp‐EAE protective T cell subpopulations possessed distinctive properties and induced a variety of effects in T/R? recipients, thus implicating differing mechanisms of protection. © 2002 Wiley‐Liss, Inc.  相似文献   

13.
Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) represent complex processes that lead to destruction of oligodendrocytes (ODCs) and myelin. T cells are integral to the development of these diseases, but whether T cell-mediated cytolytic mechanisms are involved in the destruction of MHC Class II-negative targets, such as oligodendroglia and myelin, in the CNS is unclear. The primary lytic mechanism employed by CD4+ T cells is Fas-dependent, but can be MHC-unrestricted. Thus, T cell-mediated Fas–FasL interactions could directly contribute to the pathology of EAE and MS. This review summarizes studies from our laboratory and others that implicate Fas–FasL interactions in both the pathogenesis and regulation of demyelinating diseases.  相似文献   

14.
Infection with an avirulent strain of Semliki Forest virus (SFV-A7) facilitates the development of experimental allergic encephalomyelitis (EAE) in a genetically resistant BALB/c mouse strain. Irradiation which is necessary for EAE induction caused a decrease in the total number of lymphocytes and an increase in CD4+/CD8+ T cell ratio in the spleen of BALB/c mice. EAE induction increased the ratio further until clinical and histological signs of EAE appeared. Entry of perivascular CD4+ and CD8+ cells preceded the onset of clinical signs and the appearance of MAC-1+ cells in the central nervous system (CNS). In the acute phase of EAE, cellular infiltrates, which were sparse, consisted mainly of MAC-1+ cells and a few CD4+ and CD8+ cells. Inflammatory cells gradually disappeared during the recovery phase. SFV-A7 infection after irradiation and EAE induction did not significantly change the CD4+/CD8+ ratio in the spleen or in the CNS infiltrates but enhanced the entry of inflammatory cells into the CNS. Similar perivascular cell influx was also seen in untreated mice infected with SFV-A7. We conclude that observed rapid reduction of splenic mononuclear cells and increase of the CD4+/CD8+ T cell ratio caused by irradiation prior EAE induction are early crucial events in disease induction in this resistant strain of mice. SFV-A7 infection, which further facilitates the development of EAE, does not induce immunoregulatory changes but provides its effect by enhancing the entry of inflammatory cells into the CNS. The combination of these two mechanisms thus effectively breaks the natural resistance against EAE in this genetically resistant mouse strain.  相似文献   

15.
Expression of CD1 by microglia, macrophages and T cells was investigated ex vivo. In the healthy central nervous system (CNS), resident microglia, macrophages and T cells express levels of CD1 significantly lower than that expressed by splenic macrophages and T cells. During experimental autoimmune encephalomyelitis (EAE), CD1 expression by microglia and the number of CD1+ microglia increase. Macrophages and T cells strongly upregulate CD1 expression in the CNS, but not in the spleen. Whereas the function of CD1 expressed by T cells remains unclear, the expression by microglia and macrophages provides the CNS with a (glyco)lipidic-presenting molecule in an inflammatory and demyelinating environment.  相似文献   

16.
In experimental allergic encephalomyelitis (EAE), autoimmune T cells infiltrate the central nervous system (CNS) and initiate demyelinating pathology. We have used flow cytometry to directly analyse the migration to the CNS of MBP-reactive CD4+ T cells labelled with a lipophilic fluorescent dye (PKH2), in SJL/J mice with passively transferred EAE. Labelled cells constituted about 45% of the CNS CD4+ population at the time of EAE onset. Almost all (>90%) of the PKH2-labelled CD4+ T cells from EAE CNS were blasts and were α/β T cell receptor (TCR)+, CD44(Pgp-1)high, and the majority were CD45RBlow. By contrast, most PKH2-labelled CD4+ T cells in lymph nodes, although CD44high, were CD45RBhigh cells. The cells that were transferred to induce EAE were essentially similar to antigen-primed lymph node cell populations, containing less than 15% CD44high cells, and most of them were CD45RBhigh. The CD44high CD45RBlow phenotype is characteristic of memory/effector T cells that have been activated by antigen recognition. The difference in CD45RB expression between CNS and LN could therefore reflect differential exposure and/or response to antigen. Consistent with this, PKH2-labelled CD4+ cells isolated from the CNS were responsive to MBP in vitro, whereas PKH2+ CD4+ cells from lymph nodes showed almost undetectable responses. In control experiments in which ovalbumin (OVA)-reactive T cells were transferred, a small number of fluorescent-labelled CD4+ T cells were also detected in CNS, but there were very few blasts, and these remained CD45RBhigh. These results argue for induction of the memory/effector phenotype of CD4+ cells, their selective retention in the CNS, as a consequence of antigen recognition.  相似文献   

17.
Fas system up-regulation in experimental autoimmune encephalomyelitis   总被引:7,自引:0,他引:7  
Experimental autoimmune encephalomyelitis (EAE) is a T-cell-mediated disorder characterized by infiltration of the central nervous system (CNS) by mononuclear cells and macrophages, and serves as a model for multiple sclerosis. In acute monophasic and relapsing remitting forms of EAE, the CNS inflammatory infiltrates are cleared within a few days and, simultaneously, animals recover from their clinical disability. The mechanisms for rapid disappearance of the inflammatory cells are not fully understood. Fas and Fas-ligand (Fas-L) molecules are thought to play an important role in the deletion of autoimmune reactive T cells through apoptosis. However, recent observations in transgenic lpr and gld mice show that mutations inactivating Fas and Fas-L respectively ameliorate signs of EAE despite persistence of immune cell infiltrates into the CNS. In the current study, the expression of Fas and Fas-L was investigated by immunochemistry and in situ hybridization during the course of EAE in DA rats that were actively immunized with syngenic spinal cord homogenate. CNS apoptotic cells were simultaneously examined using terminal transferase dUTP nick end-labeling techniques. During the acute phase of the disease, a significant proportion of CNS CD4+ cells (80%) and macrophages (50%) expressed Fas and Fas-L (80 and 60%, respectively). Simultaneously, about 20% of CD4+ cells and 30% of macrophages were found to be apoptotic. Some astrocytes and neurons also expressed Fas and Fas-L, although they did not appear to be apoptotic. These results further support a role for Fas-mediated lymphocyte and macrophage apoptosis in this model of CNS autoimmune disease but they also suggest a more complex role for Fas/Fas-L interactions in CNS autoimmunity, including resident cells.  相似文献   

18.
CD8+ macrophages appear in the central nervous system (CNS) under various pathological conditions such as trauma and ischemia. Furthermore, macrophages expressing CD8 were found in CNS lesions of chronic, but not acute, experimental autoimmune encephalomyelitis (EAE). To further characterize cells with this phenotype, we examined CD8+ macrophages/monocytes in the CNS and peripheral organs during the course of acute and chronic EAE that had been induced by immunization of rats with myelin basic protein and myelin oligodendrocyte glycoprotein, respectively. Counting CD8+ macrophages in CNS lesions revealed that their numbers increased reaching about 60% of total infiltrating macrophages in chronic EAE, while CD8+ macrophages remained less than 5% throughout the course of acute EAE. Unexpectedly, however, higher abundance of CD8+ monocytes/macrophages in the peripheral blood was found in both acute and chronic EAE. Real-time polymerase chain reaction analysis revealed no significant difference in the levels of chemokines and chemokine receptors of blood CD8+ monocytes between acute and chronic EAE. mRNA expression of perforin, a cytotoxic substance, was up-regulated in CD8+ monocytes compared with that of CD8- monocytes in both acute and chronic EAE. These findings suggest that activated CD8+ macrophages may play a cytotoxic role in chronic EAE lesions and that cells other than CD8+ monocytes/macrophages determined the difference in CNS pathology between acute and chronic EAE. Analysis of CD8+ monocytes/macrophages may provide useful information to permit further dissect the pathomechanisms of multiple sclerosis and to develop effective immunotherapies against autoimmune diseases in the CNS.  相似文献   

19.
Immunomodulatory effects of estrogen have been demonstrated by clinical and experimental observations, but the mechanisms by which estrogen exhibits the effects remain to be defined. One possible mechanism by which estrogen inhibits the development of experimental allergic encephalomyelitis (EAE), a commonly used model of multiple sclerosis (MS) in humans, is over the functions of dendritic cells (DC). Here, we describe that splenic DC from Lewis rats obtained on day 12 post-immunization (p.i.) with myelin basic protein (MBP) encephalitogenic peptide 68-86+Freund's complete adjuvant (FCA), after being exposed in vitro 17beta-estradiol, exhibited therapeutic effects on acute EAE when injected subcutaneously on day 5 p.i. Blood mononuclear cells (MNC) were isolated from thus treated rats on day 12 p.i. Administration of estrogen-exposed DC prevented the expansion of CD4+ T cells and increased proportions of regulatory T cells producing IL-10 and CD4+CD28- suppressor T cells, accompanied with increased IL-10 and IFN-gamma, and reduced TNF-alpha production. Infiltrates of CD68+ macrophages within the central nervous system and MBP 68-86-induced T cell proliferation were inhibited in rats injected with estrogen-exposed DC compared to rats injected with naive DC. Estrogen up-regulated the expression of indoleamine 2,3-dioxygenase, which promotes tolerogenic properties of DC. The results suggest that in vitro exposure of DC to estrogen modulates DC functions and results in a therapeutic effect of DC.  相似文献   

20.
In experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, apoptosis of T cells is mainly seen at inflammation sites of the central nervous system (CNS). Cumulative data suggests that astrocytes might render T cells susceptible to induction of apoptotic cell death. We observed that apoptotic cell death of proteolipid protein (PLP)-reactive T cells was induced by an interferon (IFN)-γ-treated astrocyte cell line. In this study, we have identified and cloned the genes derived from the IFN-γ-treated astrocyte cell line that induce apoptosis of autoreactive T cells. We created subtraction cDNA libraries from the IFN-γ-treated astrocyte cell line and obtained 100 positive clones. After screening of subtracted cDNAs, we found two candidate genes that induced apoptosis of the PLP-reactive T cell line. The first is a previously unknown gene of 726 base pairs that we named astrocyte-derived immune suppressor factor (AdIF). It contained an open reading frame encoding a polypeptide of 228 amino acids. The second was SPARC/osteonectin, a multifunctional glycoprotein secreted in the extracellular matrix. AdIF protein was found at the inflammatory sites of the EAE brain, and bound to the surface of CD4(+) T cells. Purified recombinant AdIF protein inhibited the proliferation of activated PLP-reactive CD4(+) T cells and induced their apoptosis in vitro. Intravenous administration of recombinant AdIF protein to mice with in which acute EAE was induced prevented the incidence of EAE and suppressed the symptoms. The newly discovered molecule AdIF may render auto-reactive T cells susceptible to the induction of apoptotic cell death and could potentially be a new therapeutic agent for multiple sclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号