首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PURPOSE: The discovery and development of small-molecule inhibitors of hypoxia-inducible factor-1 (HIF-1) is an attractive, yet challenging, strategy for the development of new cancer therapeutic agents. Here, we report on a novel tricyclic carboxamide inhibitor of HIF-1alpha, NSC 644221. EXPERIMENTAL DESIGN: We investigated the mechanism by which the novel compound NSC 644221 inhibited HIF-1alpha. RESULTS: NSC 644221 inhibited HIF-1-dependent, but not constitutive, luciferase expression in U251-HRE and U251-pGL3 cells, respectively, as well as hypoxic induction of vascular endothelial growth factor mRNA expression in U251 cells. HIF-1alpha, but not HIF-1beta, protein expression was inhibited by NSC 644221 in a time- and dose-dependent fashion. Interestingly, NSC 644221 was unable to inhibit HIF-1alpha protein accumulation in the presence of the proteasome inhibitors MG132 or PS341, yet it did not directly affect the degradation of HIF-1alpha as shown by experiments done in the presence of cyclohexamide or pulse-chase labeling using [35S]methionine. In contrast, NSC 644221 decreased the rate of HIF-1alpha translation relative to untreated controls. Silencing of topoisomerase (topo) IIalpha, but not topo I, by specific small interfering RNA completely blocked the ability of NSC 644221 to inhibit HIF-1alpha. The data presented show that topo II is required for the inhibition of HIF-1alpha by NSC 644221. Furthermore, although NSC 644221 induced p21 expression, gammaH2A.X, and G2-M arrest in the majority of cell lines tested, it only inhibited HIF-1alpha in a distinct subset of cells, raising the possibility of pathway-specific "resistance" to HIF-1 inhibition in cancer cells. CONCLUSIONS: NSC 644221 is a novel HIF-1 inhibitor with potential for use as both an analytic tool and a therapeutic agent. Our data provide a strong rationale for pursuing the preclinical development of NSC 644221 as a HIF-1 inhibitor.  相似文献   

2.
Inhibition of proteasome function induced apoptosis in gastric cancer   总被引:22,自引:0,他引:22  
The ubiquitin-proteasome pathway plays a critical role in the degradation of cellular proteins and cell cycle control. Dysregulating the degradation of such proteins should have profound effects on tumor growth and causes cells to undergo apoptosis. The aims of this study are to evaluate the ubiquitin-proteasome pathway in gastric cancer and the potential role of pharmacological inhibition of proteasome on induction of apoptosis in gastric cancer cells. Gastric cancer cell lines AGS (p53 wild-type) and MKN-28 (p53 mutant) were treated with proteasome inhibitor MG132. The results showed that MG132 inhibited cell proliferation in AGS and MKN-28 cells in a time- and dose-dependent manner. The inhibition of cell proliferation was caused by apoptosis which was also time- and dose-dependent. AGS cells were more responsive to MG132 than MKN-28 cells. Induction of apoptosis was preceded by the activation of caspase-3, as measured by a colorimetric caspase-3 cellular activity and Western blotting of the cleavage of caspase-3 and its substrate PARP. Activation of caspase-7 was also exhibited. In addition, z-VAD-fmk, a broad spectrum caspase inhibitor, reversed apoptosis induced by MG132 in AGS and MKN28 cells. Although z-DEVD-fmk, a specific caspase-3 inhibitor, suppressed MG132-induced apoptosis in MKN28 cells, it only partially rescued the apoptotic effect in AGS cells. Caspase-3 activation was the result of release of cytochrome c from mitochondria into the cytosol, as a consequence of upregulation of bax. There were overexpressions of all the proteasome-related proteins p53, p21(waf1) and p27(kip1) at 4 hr after proteasome inhibition which was identified by the accumulation of ubiquitin-tagged proteins. This was accompanied by accumulation of cells at G(1) phase. Our present study suggests that inhibition of proteasome function in gastric cancer cells induces apoptosis and proteasomal inhibitors have potential use as novel anticancer drugs in gastric cancer.  相似文献   

3.
目的 探讨组蛋白去乙酰化酶(histone deacetylase,HDAC)抑制剂曲古抑霉素A (trichostatin A,TSA)通过HIF-2α途径抗肿瘤作用机制。方法 体外模拟低氧环境培养骨肉瘤MG-63细胞,RT-PCR、western blot检测不同浓度的TSA对骨肉瘤MG-63细胞HIF-2α、VEGF及Glut-1 mRNA、蛋白表达的影响。使用蛋白酶体抑制剂MG132处理MG-63细胞和VHL基因缺陷的786-0细胞,western blot检测TSA对HIF-2α表达的影响。骨肉瘤MG-63细胞注入裸鼠皮下,待肿瘤体积长至20 mm3时,分为TSA组(N=6)和生理盐水组(N=6),每3天给药1次,17天后镜下观察肿瘤组织形态;裸鼠处死后肿瘤组织提取蛋白,western blot检测HIF-2α表达情况。结果 体外低氧状态下,在培养的MG-63细胞系中,TSA呈浓度依赖性抑制HIF-2α蛋白及靶基因VEGF和Glut-1mRNA的表达;在蛋白酶体抑制剂MG132存在的情况下,可以逆转TSA对HIF-2α的抑制作用。在VHL基因缺陷的786-0细胞系中,TSA呈浓度依赖性抑制HIF-2α蛋白表达,MG132可以逆转TSA的作用。在动物移植瘤中,TSA抑制HIF-2α的表达。结论 实验表明,TSA通过一个VHL非依赖性的蛋白酶体依赖的途径抑制HIF-2α表达,TSA的抗肿瘤作用有一部分是通过抑制HIF-2α介导的,这为研究组蛋白去乙酰化酶抑制剂抗肿瘤作用的分子机制提供了一个新的方向。  相似文献   

4.
5.
The role of the ubiquitin-proteasome pathway during roscovitine induced apoptosis was evaluated in the non-small cell lung carcinoma cell line MR65. To this end specific inhibitors of proteasome activity, MG132 and lactacystin were used. Addition of MG132 or lactacystin, 1 h prior to the addition of the CDK-inhibitor roscovitine to the cell cultures inhibited apoptosis significantly, as measured by PS exposure, cytokeratin 18 cleavage and caspase-3 activation. Furthermore, we show that inhibition of proteasome activation prior to induction of apoptosis by roscovitine prevents loss of mitochondrial inner transmembrane potential (DeltaPsim). In addition we found that MG132 and lactacystin prevent release of cytochrome c from the mitochondrion. In contrast to the above findings we see no effect of proteasome inhibition in Fas-mediated apoptosis. Taken together our data suggest a specific role for proteasomes very early in roscovitine-induced apoptosis, upstream from the caspase cascade and mitochondrion.  相似文献   

6.
Ubiquitin-mediated protein degradation in vertebrates has been implicated in cell cycle control. In this report we explored the effects of proteasome inhibitors (MG132, lactacystin and ALLN) on cell cycle distribution. Colorectal carcinoma HCT116 cells were treated with proteasome inhibitor MG132. The results showed that MG132 inhibited cell proliferation in a dose-dependent manner. MG132 arrested HCT116 cells at G2/M phase, which was associated with drug-induced blockade of p53 degradation and/or induction of p53-related gene expression along with the accumulation of cyclin B, cyclin A and p21. MG132 treated HCT116 (wild-type) had a similar cell cycle distribution as the MG132 treated HCT116 (p53-/-) and HCT116 (p21-/-) cells, suggesting that p53 and p21 may not be essential for MG132-induced G2/M phase arrest. The release experiments from nocodazole-induced mitotic phase cells indicated that MG132 inhibits the proliferation of HCT116 cells via arrest in the G2 phase. In addition, when HCT116 cells were exposed to combination of sodium butyrate and MG132 enhanced cell growth inhibition and induction of apoptosis were observed.  相似文献   

7.
8.
9.
We demonstrate here for the first time novel positive and negative effects of the FLICE-like inhibitory protein (FLIP) on human prostate cancer cell survival. A proteaosome inhibitor, MG132, mediated cell cycle arrest at G2/M and apoptosis through p38 activation. Interestingly, FLIP was stabilized by MG132 and interacted with Raf-1, resulting in enhancement of p38 signals and cytotoxicity. In contrast, overexpression of FLIP inhibited ubiquitylation and proteasomal degradation of beta-catenin, resulting in increase of the target gene cyclin D1, colony formation and invasive activity. Immunohistochemical analysis and in vitro experiments in primary culture showed FLIP to be overexpressed, statistically associated with expression of beta-catenin/cyclin D1 in metastatic cells, the FLIP/beta-catenin/cyclin D1 signals contributing to colony formation and invasion, which were canceled by FLIP knock down. In contrast, MG132-induced cytotoxicity including apoptosis was strongly inhibited by reduction of FLIP. Taken together, the results indicate that FLIP plays an important role in development of metastatic prostate cancer by inhibiting proteasomal degradation of beta-catenin, whereas it is mainly involved in proteasome inhibitior-mediated cell cycle arrest and apoptosis through activating the Raf-1/p38 pathway. Furthermore, proteasome inhibitors may be effective drugs for advanced prostate cancers overexpressing FLIP.  相似文献   

10.
In cervical carcinogenesis, the p53 tumor suppressor pathway is disrupted by HPV (human papilloma virus) E6 oncogene expression. E6 targets p53 for rapid proteasome-mediated degradation. We therefore investigated whether proteasome inhibition by MG132 could restore wild-type p53 levels and sensitize HPV-positive cervical cancer cell lines to apoptotic stimuli such as rhTRAIL (recombinant human TNF-related apoptosis inducing ligand). In a panel of cervical cancer cell lines, CaSki was highly, HeLa intermediate and SiHa not sensitive to rhTRAIL-induced apoptosis. MG132 strongly sensitized HeLa and SiHa to rhTRAIL-induced apoptosis in a caspase-dependent and time-dependent manner. MG132 massively induced TRAIL receptor DR4 and DR5 membrane expression in HeLa, whereas in SiHa only DR5 membrane expression was upregulated from almost undetectable to high levels. Antagonistic DR4 antibody partially inhibited apoptosis induction by rhTRAIL and MG132 in HeLa but had no effect on apoptosis in SiHa. Inhibition of E6-mediated p53 proteasomal degradation by MG132 resulted in elevated levels of active p53 as demonstrated by p53 small interfering RNA (siRNA) sensitive p21 upregulation. Although p53 siRNA partially inhibited MG132-induced DR5 upregulation in HeLa and SiHa, no effect on rhTRAIL-induced apoptosis was observed. MG132 plus rhTRAIL enhanced caspase 8 and caspase 3 activation and concomitant cleavage of X-linked inhibitor of apoptosis (XIAP), particularly in HeLa. In addition, caspase 9 activation was only observed in HeLa. Downregulation of XIAP using siRNA in combination with rhTRAIL induced high levels of apoptosis in HeLa, whereas MG132 had to be added to the combination of XIAP siRNA plus rhTRAIL to induce apoptosis in SiHa. In conclusion, proteasome inhibition sensitized HPV-positive cervical cancer cell lines to rhTRAIL independent of p53. Our results indicate that not only DR4 and DR5 upregulation but also XIAP inactivation contribute to rhTRAIL sensitization by MG132 in cervical cancer cell lines. Combining proteasome inhibitors with rhTRAIL may be therapeutically useful in cervical cancer treatment.  相似文献   

11.
You BR  Park WH 《Oncology reports》2011,25(3):871-877
Propyl gallate (PG) used in processed food and medicinal preparations has been shown to induce cell death in normal and cancer cells. The inhibition of proteasome function has emerged as a useful strategy to maneuver apoptosis. Here, we investigated the combined effects of PG and MG132 (a proteasome inhibitor) on HeLa cells in relation to cell growth, cell death, reactive oxygen species (ROS) and glutathione (GSH). PG induced growth inhibition and apoptosis in HeLa cells, accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm), activation of caspase 3 and PARP cleavage. The levels of ROS and GSH depletion were increased in PG-treated HeLa cells. MG132 intensified apoptosis and PARP cleavage in PG-treated HeLa cells. MG132 also increased ROS levels including mitochondrial O2?-, MMP (ΔΨm) loss and GSH depletion in PG-treated HeLa cells. PG induced a G1 phase arrest of the cell cycle in HeLa cells, which was significantly prevented by MG132. MG132 alone inhibited HeLa cell growth via inducing the cell cycle arrests and triggering apoptosis. Conclusively, the inhibition of proteasome by MG132 plays a role as an enhancement factor in PG-induced apoptosis of HeLa cells via increasing ROS levels and GSH depletion.  相似文献   

12.
Reversible down-regulation of gap junctional intercellular communication (GJIC) is proposed to be an important cellular mechanism in tumor promotion. Gap junction function is modified by a variety of tumor promoters, including the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). Treatment of cells with TPA results in the activation and subsequent depletion of the TPA-responsive protein kinase C (PKC) isoforms. TPA-induced degradation of the PKC isoforms alpha, delta and epsilon was recently shown to occur via the ubiquitin-proteasome pathway. In the present study we investigated the role of the proteasome in the TPA-induced modification of GJIC in IAR20 rat liver epithelial cells. TPA exposure of IAR20 cells induced hyperphosphorylation of gap junction protein connexin43 and inhibition of GJIC. Prolonged TPA treatment induced down-regulation of PKCalpha, delta and epsilon and a reduction in the total PKC activity, which was associated with recovery of GJIC. Co-treatment of IAR20 cells with TPA and the proteasomal inhibitor MG132 suppressed down-regulation of PKCalpha, delta and epsilon and caused prolonged PKC activity. Under these conditions, the recovery of GJIC was blocked. The general PKC inhibitor GF109203X reversed the effect of MG132, indicating that the prolonged TPA-induced inhibition of GJIC caused by MG132 was due to the prolonged PKC activity. These results indicate that proteasomal degradation of PKC is one mechanism by which the recovery of GJIC after TPA treatment is regulated.  相似文献   

13.
14.
15.
CBP/p300-interacting transactivator with ED-rich carboxy-terminal domain 4 (CITED4) inhibits HIF-1α transactivation by binding to CBP/p300. We hypothesised that either somatic mutation or hypermethylation of the CITED4 gene underlies CITED4 down-regulation and thus enhanced HIF-1α expression in some breast tumours. DNA sequencing was used to screen for somatic mutations. Methylation-sensitive high resolution melting was performed to identify CITED4 methylation. RT-qPCR was carried out to measure the expression of CITED4 and selected HIF downstream targets. HIF-1α and downstream gene expression was assessed with immunohistochemistry. No somatic mutations of CITED4 were identified in 10 tumour cell lines and 100 breast carcinomas. However, CITED4 promoter methylation was identified in 5/168 breast carcinomas (four infiltrating ductal carcinomas and one infiltrating lobular carcinoma) and in 3/10 breast cancer cell lines (MDA-MB-453, MDA-MB-231 and Hs578T). CITED4 mRNA expression in cell lines was inversely correlated with DNA methylation. CITED4 mRNA expression was significantly increased in all three cell lines after 5-aza-2-deoxycytidine (DAC) treatment. Treatment of the MDA-MB-231 cell line with DAC followed by hypoxia (0.1% O2) resulted in down-regulation of expression of the HIF-1α downstream genes VEGFA and SLC2A1 (P = 0.0029). HIF-1α downstream SLC2A1 was decreased (P = 0.021) after CITED4 was re-expressed under hypoxia. Loss of expression of CITED4 in breast cancer may be due to DNA methylation but is unlikely to be due to mutation. Demethylation and histone modification can potentially reactivate CITED4 gene expression in some breast cancers and lead to changes in tumour behaviour. Strategies such as HDAC inhibitors may overcome this effect.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号