首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用电生理学方法观察了电刺激杏仁中央核对脑桥臂旁核味觉神经元的影响。结果表明 :电刺激杏仁中央核抑制大部分臂旁核味觉神经元的活动 ,并且提高臂旁核味觉神经元对五种基本味觉刺激反应的特异性。电刺激杏仁中央核对臂旁核的抑制作用以对盐酸和奎宁刺激的反应尤为明显 (P <0 .0 1) ,并且对这两种厌味刺激反应的抑制作用是基本一致的。本研究的结果提示 ,杏仁中央核可能通过抑制脑干味觉神经元对厌味刺激的反应 ,从而参与对摄食行为的调控  相似文献   

2.
利用电生理学方法观察了电刺激杏仁中央核对脑桥臂旁核味觉神经元的影响.结果表明:电刺激杏仁中央核抑制大部分臂旁核味觉神经元的活动,并且提高臂旁核味觉神经元对五种基本味觉刺激反应的特异性.电刺激杏仁中央核对臂旁核的抑制作用以对盐酸和奎宁刺激的反应尤为明显(P<0.01),并且对这两种厌味刺激反应的抑制作用是基本一致的.本研究的结果提示,杏仁中央核可能通过抑制脑干味觉神经元对厌味刺激的反应,从而参与对摄食行为的调控.  相似文献   

3.
The effects of neurotensin (NT) on neurons in the central amygdaloid nucleus (ACe) were investigated in rat brain slice preparations by adding the peptide to the perfusing medium. Of 115 ACe neurons, 69 cells (60%) showed excitatory responses and 10 cells (9%) showed inhibitory responses to application of NT. The excitatory response to NT was observed in a dose-dependent manner and the threshold concentration was approximately 3 × 10−9 M. The excitatory effects of NT persisted under blockade of synaptic transmission. The NT fragment neurotensin 8–13 and the NT analogue neuromedin N showed effects similar to those of NT, whereas the NT fragment neurotensin 1–8 had no effect on ACe neurons. Of 43 neurons in the septal nucleus, 8 cells (19%) and 3 cells (7%) showed excitatory and inhibitory responses, respectively, to NT. The results suggest that NT exerts a potent excitatory effect on ACe neurons through a direct action on specific receptors, in which NT may play a role in amygdala-relevant functions.  相似文献   

4.
Anatomical studies have shown that the central amygdaloid nucleus (CeA) is reciprocally connected with the lateral bed nucleus of the stria terminalis (BSTL), both structures being major components of the central extended amygdala. The CeA also receives projections from the insular cortex (InsCx) and the paraventricular thalamic nucleus (PVT). Extracellular unit activity was recorded from neurons in the lateral CeA (CeL) in urethane anaesthetized rats and their responses were studied after electrical stimulation of the BSTL, InsCx and PVT. The spontaneous activity of CeL neurons was low (1.69 spikes/s) and 40% of recorded cells were silent. The iontophoretic application of the GABAA antagonist, bicuculline, increased the firing rate of 20% of neurons. The BSTL stimulation induced an antidromic response in 33% of the tested cells. Orthodromic responses were obtained from 83% (BSTL stimulation), 70% (InsCx stimulation) and 85% (PVT stimulation) of tested cells, some of which responded to both BSTL and InsCx or PVT stimulations. Orthodromic responses mostly consisted in 1–3 orthodromic spikes followed by an inhibition. During iontophoretic application of bicuculline, stimulation induced additional short latency orthodromic spikes, even in cells that were previously unresponsive. However, the duration of the inhibition was never reduced. These results indicate that GABAergic neurotransmission may play a dominant role in both spontaneous and evoked electrical activities in the CeL, probably mediated by local circuit cells involved in a feed-forward inhibition. This organization, along with the reciprocal connections between the CeL and the BSTL, is considered in the context of the extended amygdala.  相似文献   

5.
The present study reports two experiments that evaluated the influence of bilateral ibotenic acid lesions of the viscerosensory neurons in the lateral parabrachial nucleus (LPBN) on intake of four prototypical taste stimuli (sucrose, sodium chloride, citric acid, and quinine hydrochloride). In the 24-h, two-bottle tests of Experiment 1, rats with lesions of the LPBN were severely impaired in their concentration-dependent consumption of sucrose, displayed a mild disturbance of sodium chloride intake, and drank normal amounts of citric acid and quinine hydrochloride. These lesion-induced deficits were less pronounced when assessed with the 15-min, 1-bottle tests of Experiment 2. The results suggest that destruction of the viscerosensory neurons within the LPBN disrupt the processing of gastrointestinal feedback.  相似文献   

6.
Effects of arginine-vasopressin (AVP) on neurons in the central amygdaloid nucleus (ACe) were investigated with rat brain slice preparations using extracellular recording methods. Of 160 ACe neurons tested, 70 cells (44%) were excited and 9 cells (6%) were inhibited by bath application of AVP at 3×10−7 M. The excitatory effects of AVP were dose-dependent and the threshold concentration was approximately 10−10 to 10−9 M. The excitatory effects of AVP persisted under blockade of synaptic transmission by perfusing with Ca2+-free and high-Mg2+ medium, whereas the inhibitory effects were abolished by synaptic blockade. AVP-induced effects were mimicked by a V1-receptor agonist and completely blocked by a selective V1-antagonist. V2-agonist produced no effects on ACe neurons and V2-antagonist had no effect on AVP-induced excitation. These results showed that the excitatory effect of AVP on ACe neurons was produced by a direct action through the V1-receptors, whereas the inhibitory response of ACe neurons to AVP seemed to be produced by an indirect action. The results of this study suggest that AVP is involved in the amygdala-relevant functions as a neurotransmitter or a neuromodulator.  相似文献   

7.
Response characteristics of neurons in the gustatory and visceral zone of the parabrachial nucleus (PBN) to γ-aminobutyric acid (GABA) were examined using whole cell recordings in brain slices of the rat. Based on the recording site, neurons were divided into three groups: neurons in the dorsolateral quadrant of the PBN (DL-neurons), neurons in the dorsomedial quadrant of the PBN (DM-neurons) and neurons in the ventromedial quadrant of the PBN (VM-neurons). Recordings were made from 44 DL-, 43 DM-, 39 VM-neurons. Superfusion of GABA resulted in a concentration-dependent reduction in input resistance in 67.5% of the neurons in the PBN (73.1% of the DL-, 62.5% of the DM-, 66.7% of the VM-neurons). No obvious difference of the concentration–response curve was found among three groups. The mean reversal potential of the GABA effect was about −74 mV and no significant differences were observed among three groups of neurons. The GABA response was partly or completely blocked by the GABAA antagonist bicuculline in all neurons tested. Superfusion of the GABAA agonist muscimol resulted in a decrease of the input resistance in all neurons tested. It was concluded that GABA functions as an inhibitory neurotransmitter in both gustatory and visceral part of the PBN, mediated in part, by GABAA receptors.  相似文献   

8.
Olfactory responses in the gustatory area of the parabrachial pons   总被引:1,自引:0,他引:1  
Electrophysiological responses to olfactory and gustatory stimuli were recorded in the same neural elements in the parabrachial nuclei (PbN) of rats under Flaxedil. Responses to olfactory stimuli varied in temporal pattern and magnitude from responses to gustatory stimuli. Intravenous infusion of Nembutal while recording from one unit appeared to alter the pattern of responsiveness across stimuli. Most importantly the response to one olfactory stimulus (vanilla) was eliminated by this procedure. Olfactory-gustatory elements were located in the lateral portion of the taste-responsive area of the PbN, just below the brachium conjunctivum. These results suggest that the PbN receives input from both olfactory and gustatory pathways and that these pathways may converge on the same neural elements within the PbN. This convergence may be part of a neurophysiological substrate for the perception of flavor.  相似文献   

9.
Previous research involving tests of innate preferences and aversions shows that bilateral ibotenic acid lesions of the visceral neurons located in the lateral parabrachial nucleus of the pons selectively disrupt consumption of those gustatory stimuli whose intake is augmented or restricted by their postoral consequences. The present study examined the performance of the same experimental subjects in learned preference and aversion tasks. The lesioned rats failed to develop a conditioned taste aversion (Experiment 1), a conditioned flavor preference (Experiment 2), and a conditioned aversion to the oral trigeminal stimulus, capsaicin (Experiment 3). The pattern of results from both types of taste-guided behaviors (innate and learned) suggests that excitotoxic lesions of the lateral parabrachial nucleus diminish sensitivity to gastrointestinal feedback which, in the present experiments, precludes aversive and appetitive associative learning.  相似文献   

10.
Considerable evidence suggests that the amygdaloid central nucleus (ACE) may contribute importantly to autonomic regulation, possibly via direct ACE projections to the brainstem. Lacking, however, have been comprehensive data concerning the electrophysiological characteristics of ACE neurons. The present experiment was therefore undertaken in order to characterize the spontaneous activity and sensory-evoked responses of ACE neurons in the conscious rabbit. Particular attention was given to the identification, via antidromic activation, and characterization of those ACE neurons which project to the lower brainstem. Single-unit recordings were obtained from 100 histologically verified ACE neurons. Most of these, including all brainstem projection neurons, discharged at very low spontaneous rates and were unresponsive to the presentation of auditory, visual and somatic stimuli. Based upon spontaneous activity and sensory-evoked responses, the activity of other ACE neurons appeared to conform to one of several profiles. These included neurons showing increased activity to the presentation of all sensory stimuli, and neurons showing activity that was spontaneously entrained with the respiratory cycle. These data indicate the heterogeneous nature of ACE neuronal activity, and provide a basis for the comparison of additional experiments which concern the electrophysiological characteristics of the ACE.  相似文献   

11.
A microdialysis technique was used to monitor changes in serotonin (5-HT), 5-hydroxyindole acetic acid (5-HIAA) and dopamine (DA) in the extracellular space of the parabrachial nucleus (PBN) of rats to estimate the contribution of these neurotransmitter systems to the acquisition of conditioned taste aversion (CTA). A significant (280%) enhancement of 5-HT was found immediately after saccharin drinking (CS). I.p. injection of unconditioned stimulus LiCl alone (after water drinking) also increased level of 5-HT (200%). However, when saccharin intake was followed by injection of LiCl (CS–US pairing), no change in 5-HT was observed. 5-HIAA and DA were unaffected by any of the above treatments.

Thus in spite of elevation of 5-HT in PBN following saccharin consumption alone (CS) or LiCl administration alone (US) no changes in 5-HT occurred after pairing of both stimuli (CS–US). Our work demonstrates that participation of 5-HT in acquisition of CTA appears to be unlikely, and also DA appears not to be engaged in this acquisition at all. At the level of the PBN 5-HT participates mainly in CS and/or US stimuli processing, where this phenomenon has close relationship to other important physiological mechanisms, involved in behavioral control. Such as anxiety, alimentation intake.  相似文献   


12.
The medial amygdala (MeA) has receptors for gonadal hormones and is a sexually dimorphic area in rats. The aims of the present work were (1) to look at sex differences and the effect of gonadal hormone withdrawal in males castrated as offspring or at adulthood on neuronal soma area in the anterior and posterior MeA and (2) to study the dendritic branching and the density of dendritic spines in neurons from the MeA of intact males and females. Animals were adult rats, for which the single-section Golgi method was used. Stellate and bitufted cells were found in the MeA. Comparing data among groups, no significant difference in cell body area was found. Dendrites divide sparingly and have very different lengths, and a statistical difference (p < 0.001, males higher than females) in the spine density in the anterior MeA, but not in the posterior MeA, was found. These results suggest that castration does not alter the somal area in males submitted to gonadectomy during the early postnatal period or at adulthood. In addition, the already described sex difference in this nucleus may be more related to the neuropil than the neuronal somal area, which may be relevant for the function of the MeA.  相似文献   

13.
Neurotensin (NT) is an endogenous peptide which has been hypothesized to function in the central nervous systems as a neurotransmitter. Injection of NT into the cerebral ventricular system of rodents produces antinociception in a variety of analgesia tests. In the hot plate test, direct microinjection of NT into the central nucleus of the amygdala (AC) produced a significant increase in the nociceptive threshold of the rat, while injections into tissue adjacent to the AC were generally ineffective. Antinociception following intra-AC injection of NT occurred at an ED50 dose of 2.4 μg NT, and was significantly lower than the ED50 dose observed when NT was given into the lateral ventricles (93.2 μg NT). Lesions of the stria terminalis totally abolished the antinociceptive effect of intra-AC administration of NT, indicating that AC efferent or afferent fibers within the stria terminalis are necessary for the observed increase in nociceptive threshold.  相似文献   

14.
Masumi Ichikawa   《Brain research》1987,420(2):253-258
The rearrangement of terminations from the bed nucleus of stria terminalis (BST) was examined in the medial amygdaloid nucleus (MAN) at 2 months following the lesion of the accessory olfactory bulb (AOB) using an electron microscopy and degeneration study. At 2 days following a BST lesion, the number of degenerating synapses was 0.7 ± 0.1 (mean±S.E.M.) per unit area (2500 μm2 in the molecular layer, and 3/0 ± 0.3 in the cellular part. At 2 months after an AOB lesion, the degenerating synapses from the AOB had completely disappeared from the MAN. The BST was then lesioned at 2 months after the AOB lesion and, 2 days following this BST lesion, the degenerating synapses were counted in MAN. The numbers observed were 3.3 ± 0.6 per unit area in the molecular layer and 4.5 ± 0.4 in the cellular part. Therefore, the number of these degenerating synapses increased significantly within the molecular layer, though, in the cellular part the number of synapses was not significantly elevated over control. No differences in postsynaptic profiles (ratio of synapses on dendritic spine to dendritic shaft) were observed after the AOB lesion. These results indicate that the BST fibers formed new synapses in the molecular layer following the denervation of AOB fibers. The possibility of new synapse formation by other afferent fibers in addition to the AOB fibers is discussed as is the relationship between lesion induced synaptic reorganization and functional recovery after injury.  相似文献   

15.
This experiment was carried out in order to investigate the involvement of lateral hypothalamus (LH) in electrical self-stimulation of the central amygdaloid nucleus (CeA). Adult male Sprague-Dawley rats were bilaterally implanted with a guide cannula situated above each LH and with two electrodes in the CeA. Self-stimulation was subsequently obtained separately from both right and left electrodes. The LH was then lesioned unilaterally by ibotenic acid (IBO) injection. Eight days later, the effect of this unilateral lesion on self-stimulation of the ipsilateral and contralateral CeA was tested. Then the neurons of the remaining non-lesioned LH side were lesioned with IBO and self-stimulation was tested 15 days after the second lesion. Both unilateral as well as bilateral lesions of LH produced a significant decrease in CeA self-stimulation rates but had no significant effect on the reward effectiveness. The unilateral lesions did not produce any modification of the rate-intensity function in the contralateral CeA. This lesion-induced depression in performance was reversed by treatment with phenobarbital. These results provide clear evidence that the rewarding effects of CeA electrical stimulation do not result from the activation of the LH outputs and that the apparent decrease in CeA self-stimulation may result from the LH lesion-induced increase in the frequency of epileptiform manifestations that occur following amygdaloid stimulation.  相似文献   

16.
The present study was undertaken to reveal spatio-temporal changes in the distribution of Fos-like immunoreactive (-IR) neurons in the parabrachial nucleus (PBN), one of the important relay nuclei for processing autonomic and somatosensory information from the oro-facial regions, following the induction of experimental tooth movement in rat upper molars. The experimental tooth movement was induced by the insertion of elastic rubber between the first and second upper molars. In normal animals, the PBN contained a smaller number of Fos-IR neurons. Following experimental tooth movement, the Fos-IR neurons increased in number significantly on both the ipsilateral and contralateral PBN, reaching a maximum at 4 h (about 10 times that of normal animals), and then decreased gradually. However, a significant number of Fos-IR neurons remained at 24 h post-operation. Remarkable side-by-side differences in the number of Fos-IR neurons were recognized at 1 to 4 h following the experimental tooth movement. Their number returned to normal (basal) levels at 5 days post. All subnuclei of PBN showed similar temporal changes in the number of Fos-IR neurons, this being particularly apparent in lateral PBN. Administrations of morphine (3 and 10 mg/kg, i.p.) drastically reduced the induction of Fos-IR neurons in all subnuclei of both the ipsilateral and contralateral PBN in a dose-dependent manner, and its effect was antagonized by pretreatment with naloxone (2 mg/kg, i.p.). The reduction of Fos-IR neurons by morphine pretreatment suggests that the appearance of Fos-IR neurons in the PBN may be partly due to the noxious stimulation and/or stress arising from tooth movement. The bilateral expression of Fos-IR neurons in the PBN indicates that the experimental tooth movement causes the activation of PBN neurons for the processing of somatosensory as well as autonomic information. The prolonged expression of Fos-IR neurons in all the subnuclei of bilateral PBN reflects clinical features of the transient discomfort and/or abnormal sensations, which many patients often complain about during orthodontic treatment.  相似文献   

17.
In the study of the neural code for gustation, the relative sensitivity of a cell to a variety of taste stimuli is defined as its response profile. To study the construction of response profiles from incoming signals, electrophysiological responses to NaCl, HCl, quinine-HCl, sucrose and Na saccharin were recorded simultaneously in pairs of single cells: one in the nucleus of the solitary tract (NTS) and the other in the parabrachial nucleus of the pons (PbN), respectively the first and second synapses in the central pathway for gustation. Of 37 units recorded in the NTS and 32 in the PbN, 12 (32%) pairs showed evidence of functional connectivity. Although PbN responses were significantly larger than those in the NTS in general, no amplification of NTS activity was apparent among those units that were functionally connected. Analysis of NTS–PbN connectivity patterns suggests that PbN units receive input from NTS units with response profiles that are both similar and different from their own pattern of sensitivities. Further analysis suggests that the stimulus-selectivity of the response profile of a PbN unit may be determined by stimulus-selective input from NTS cells that show similar response profiles. However, input from NTS cells with response profiles different from their own appears to be non-stimulus-selective. Analysis of the organization of response profiles in the two structures suggests that the cells in both the NTS and PbN cannot be easily distinguished by their patterns of sensitivity to taste stimuli.  相似文献   

18.
Ge X  Yang Z  Duan L  Rao Z 《Brain research》2001,914(1-2):149-158
It is now evident that a bidirectional communication network exists between the central nervous system (CNS) and immune system (IS). However, the way in which the IS passes inform to the brain is not quite clear.In the present study, one of the neural pathways involved in the cytokine-to-brain communication was investigated in the rat. This pathway starts at the vagal nerve projecting to the medullary visceral zone (MVZ), an arc-shape band from the dorsomedial to ventrolateral area in the middle-caudal segment of the medulla oblongata, and terminates at the central amygdaloid nucleus (Ce) which receives projections from large catecholaminergic neurons in the MVZ. Animals were randomly divided into two experimental groups. Triple-labeling was used in Group I animals to combine wheat germ aggulutinin-conjugated horseradish peroxidase (WGA-HRP) retrograde tracing with anti-Fos and anti-tyrosine hydroxylase (TH) immunostaining. WGA-RP was stereotaxically injected into the unilateral Ce of the animals and, after a survival period of 48 h, intraperitoneal (IP) injection of lipopolysaccharide (LPS) was performed. Seven kinds of labeled neurons were observed in the MVZ, namely, HRP-, Fos- or TH-singly-labeled neurons; Fos/HRP-, Fos/TH- or HRP/TH-doubly-labeled neurons; and Fos/HRP/TH-triply-labeled neurons. As for Group II animals, bilateral subdiaphragmatic vagotomy (SDV) or sham operation was performed, followed 4 weeks later by IP injection of LPS. The number of Fos-positive neurons within the Ce and MVZ was significantly lower (P<0.01) in rats having SDV when compared with those receiving sham operation. Our results suggest that part of the peripheral immune information can be conveyed through the vagus to the catecholaminergic neurons in the MVZ, where it is transported to the Ce. The MVZ is a neural relay station in the immune-to-brain communication and might play a significant role in neuroimmuno-modulation via the vagus-MVZ-Ce pathway.  相似文献   

19.
By combining the retrograde-labeling method of injecting Fluoro-Gold (FG) into the parabrachial nucleus (PB) and the immunocytochemical staining of the FOS-like immunoreactive neurons (FLNs) in the trigeminal spinal caudal subnucleus (TSCS) induced by s.c. formalin injection into the perioral region in the rat, it was demonstrated that there are FLNs, FG-labeled neurons and neurons containing both FOS-like immunoreactivity and FG fluorescence in the TSCS. The three kinds of labeled neurons are distributed mainly in laminae I, II and V of the TSCS and there are also some neurons containing both FOS-like immunoreactivity and FG distributed in the adjacent ventrolateral reticular formation. The retrograde-labeling of FG-and double-labeled neurons showed contralateral predominance. In addition, we found that there are retrogradely labeled neurons in bilateral nuclei of the solitary tract with a contralateral predominance. The results suggest that FOS-like immunoreactivity might serve as an indicator for the nociceptive response after formalin injection into the trigeminal region and that the PB might be an important relay station for the further processing of the nociceptive information relayed from the trigeminal afferents. As the PB is known as a relay structure for visceral sensory pathway, it is proposed that there might be viscero-somatic convergence in this nucleus.  相似文献   

20.
We examined whether sites in the lateral parabrachial nucleus (PBN) where

-glutamate produced increases in arterial pressure were involved in mediation of cholinergic inputs to neurons in the rostral ventrolateral medulla (RVLM). Male Wistar rats were anesthetized, paralyzed and artificially ventilated. Unilateral microinjection of

-glutamate into the lateral PBN produced a pressor response. Microinjection of the muscarinic receptor antagonist scopolamine into the unilateral RVLM inhibited the pressor response to

-glutamate injected ipsilaterally into the lateral PBN, whereas microinjection of the cholinesterase inhibitor physostigmine into the RVLM enhanced it. PBN microinjection of

-glutamate also enhanced the firing rate of RVLM sympathoexcitatory neurons and the enhancement of the firing rate was inhibited by scopolamine iontophoretically applied on neurons. PBN injection of

-glutamate produced a tetrodotoxin (TTX)-sensitive release of ACh in the RVLM. Unilateral microinjection of TTX into the lateral PBN inhibited the pressor response induced by RVLM microinjection of physostigmine. These results provide evidence that neurons in the pressor sites of the lateral PBN are involved in mediation of cholinergic inputs responsible for pressor responses in the RVLM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号