首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have used the whole-cell patch-clamp technique to study the effect of mefloquine (Lariam), a commonly used antimalarial drug, on the volume-regulated anion channel (VRAC) in cultured bovine pulmonary artery endothelial cells. We also examined its effects on other Cl(-) channels, i.e., the Ca(2+)-activated Cl(-) channel and the cystic fibrosis transmembrane conductance regulator, to assess the specificity of this compound for VRAC. At pH 7.4 mefloquine induced a fast and reversible block of the volume-sensitive chloride current (I(Cl,swell)), with an IC(50) value of 1.19 +/- 0.07 microM. The blocking efficiency increased with increasing extracellular pH (IC(50) value for pH 8.8 was 0.15 +/- 0.01 microM), indicating that this effect is mediated by the uncharged form of mefloquine. Ca(2+)-activated Cl(-) currents, I(Cl,Ca), activated by loading T84 cells via the patch pipette with 1 microM free Ca(2+) also were inhibited by mefloquine (IC(50) value 3.01 +/- 0.17 microM at pH 7.4). The cystic fibrosis transmembrane conductance regulator channel, transiently transfected in cultured bovine pulmonary artery endothelial cells, was not affected by 10 microM of the drug. This study describes for the first time effects of mefloquine on anion channels. Our data reveal a potent block of VRAC and Ca(2+)-activated Cl(-) channel at therapeutic concentrations. These results may contribute to a better understanding of the actions and side effects of this widely used antimalarial drug.  相似文献   

2.
Fluoxetine is a commonly prescribed antidepressant compound. Its action is primarily attributed to selective inhibition of the reuptake of serotonin (5-hydroxytryptamine) in the central nervous system. Although this group of antidepressant drugs is generally believed to cause fewer proarrhythmic side effects compared with tricyclic antidepressants, serious concerns have been raised by case reports of tachycardia and syncopes associated with fluoxetine treatment. To determine the electrophysiological basis for the arrhythmogenic potential of fluoxetine, we investigated the effects of this drug on cloned human ether-a-go-go-related gene (HERG) potassium channels heterologously expressed in Xenopus oocytes using the two-microelectrode voltage-clamp technique. We found that fluoxetine blocked HERG channels with an IC(50) value of 3.1 microM. Inhibition occurred fast to open channels with very slow unbinding kinetics. Analysis of the voltage dependence of block revealed loss of inhibition at membrane potentials greater than 40 mV, indicating that channel inactivation prevented block by fluoxetine. No pronounced changes in electrophysiological parameters such as voltage dependence of activation or inactivation, or inactivation time constant could be observed, and block was not frequency-dependent. This is the first study demonstrating that HERG potassium channels are blocked by the selective serotonin reuptake inhibitor fluoxetine. We conclude that HERG current inhibition might be an explanation for the arrhythmogenic side effects of this drug.  相似文献   

3.
Human ether-a-go-go-related gene (HERG) potassium channels are one primary target for the pharmacological treatment of cardiac arrhythmias by class III antiarrhythmic drugs. These drugs are characterized by high antiarrhythmic efficacy, but they can also initiate life-threatening "torsade de pointes" tachyarrhythmias. Recently, it has been suggested that combining potassium and calcium channel blocking mechanisms reduces the proarrhythmic potential of selective class III antiarrhythmic agents. BRL-32872 is a novel antiarrhythmic drug that inhibits potassium and calcium currents in isolated cardiomyocytes. In our study, we investigated the effects of BRL-32872 on cloned HERG channels heterologously expressed in Xenopus oocytes. Using the two-microelectrode voltage clamp technique, we found that BRL-32872 caused a high-affinity, state-dependent block of open HERG channels (IC(50) = 241 nM) in a frequency-dependent manner with slow unbinding kinetics. Inactivated channels mainly had to open to be blocked by BRL-32872. The HERG S620T mutant channel, which has a strongly reduced degree of inactivation, was 51-fold less sensitive to BRL-32872 block, indicating that BRL-32872 binding was enhanced by the inactivation process. In an additional approach, we studied HERG channels expressed in a human cell line (HEK 293) using the whole-cell patch-clamp technique. BRL-32872 inhibited HERG currents in HEK 293 cells in a dose-dependent manner, with an IC(50) value of 19.8 nM. We conclude that BRL-32872 is a potent blocker of HERG potassium channels, which accounts for the class III antiarrhythmic action of BRL-32872.  相似文献   

4.
Torsades de pointes (TdP) arrhythmia is a potentially fatal form of ventricular arrhythmia that occurs under conditions where cardiac repolarization is delayed (as indicated by prolonged QT intervals from electrocardiographic recordings). A likely mechanism for QT interval prolongation and TdP arrhythmias is blockade of the rapid component of the cardiac delayed rectifier K+ current (IKr), which is encoded by human ether-a-go-go-related gene (HERG). Over 100 non-cardiovascular drugs have the potential to induce QT interval prolongations in the electrocardiogram (ECG) or TdP arrhythmias. The binding site of most HERG channel blockers is located inside the central cavity of the channel. An evaluation of possible effects on HERG channels during the development of novel drugs is recommended by international guidelines. During cardiac ischaemia activation of ATP-sensitive K+ (KATP) channels contributes to action potential (AP) shortening which is either cardiotoxic by inducing re-entrant ventricular arrhythmias or cardioprotective by inducing energy-sparing effects or ischaemic preconditioning (IPC). KATP channels are formed by an inward-rectifier K+ channel (Kir6.0) and a sulfonylurea receptor (SUR) subunit: Kir6.2 and SUR2A in cardiac myocytes, Kir6.2 and SUR1 in pancreatic beta-cells. Sulfonylureas and glinides stimulate insulin secretion via blockade of the pancreatic beta-cell KATP channel. Clinical studies about cardiotoxic effects of sulfonylureas are contradictory. Sulfonylureas and glinides differ in their selectivity for pancreatic over cardiovascular KATP channels, being either selective (tolbutamide, glibenclamide) or non-selective (repaglinide). The possibility exists that non-selective KATP channel inhibitors might have cardiovascular side effects. Blockers of the pore-forming Kir6.2 subunit are insulin secretagogues and might have cardioprotective or cardiotoxic effects during cardiac ischaemia.  相似文献   

5.
Several macrolides have been reported to cause QT prolongation and ventricular arrhythmias such as torsades de pointes. To clarify the underlying ionic mechanisms, we examined the effects of six macrolides on the human ether-a-go-go-related gene (HERG)-encoded potassium current stably expressed in human embryonic kidney-293 cells. All six drugs showed a concentration-dependent inhibition of the current with the following IC(50) values: clarithromycin, 32.9 microM; roxithromycin, 36.5 microM; erythromycin, 72.2 microM; josamycin, 102.4 microM; erythromycylamine, 273.9 microM; and oleandomycin, 339.6 microM. A metabolite of erythromycin, des-methyl erythromycin, was also found to inhibit HERG current with an IC(50) of 147.1 microM. These findings imply that the blockade of HERG may be a common feature of macrolides and may contribute to the QT prolongation observed clinically with some of these compounds. Mechanistic studies showed that inhibition of HERG current by clarithromycin did not require activation of the channel and was both voltage- and time-dependent. The blocking time course could be described by a first-order reaction between the drug and the channel. Both binding and unbinding processes appeared to speed up as the membrane was more depolarized, indicating that the drug-channel interaction may be affected by electrostatic responses.  相似文献   

6.
Administration of the 5-hydroxytryptamine 3 receptor class of antiemetic agents has been associated with prolongation in the QRS, JT, and QT intervals of the ECG. To explore the mechanisms underlying these findings, we examined the effects of granisetron, ondansetron, dolasetron, and the active metabolite of dolasetron MDL 74,156 on the cloned human cardiac Na(+) channel hH1 and the human cardiac K(+) channel HERG and the slow delayed rectifier K(+) channel KvLQT1/minK. Using patch-clamp electrophysiology we found that all of the drugs blocked Na(+) channels in a frequency-dependent manner. At a frequency of 3 Hz, the IC(50) values for block of Na(+) current measured 2.6, 88.5, 38.0, and 8.5 microM for granisetron, ondansetron, dolasetron, and MDL 74,156, respectively. Block was relieved by strong hyperpolarizing potentials, suggesting a possible interaction with an inactivated channel state. Recovery from inactivation was impaired at -80 mV compared with -100 mV, and the fractional recovery was impaired by drug in a concentration-dependent manner. IC(50) values for block of the HERG cardiac K(+) channel measured 3.73, 0.81, 5.95, and 12.1 microM for granisetron, ondansetron, dolasetron, and MDL 74,156, respectively. Ondansetron (3 microM) also slowed decay of HERG tail currents. In contrast, none of these drugs (10 microM) produced greater than 30% block of the slow delayed rectifier K(+) channel KvLQT1/minK. We concluded that the antiemetic agents tested in this study block human cardiac Na(+) channels probably by interacting with the inactivated state. This may lead to clinically relevant Na(+) channel blockade, especially when high heart rates or depolarized/ischemic tissue is present. The submicromolar affinity of ondansetron for the HERG K(+) channel likely underlies the prolongation of cardiac repolarization reported for this drug.  相似文献   

7.
We studied the effects of irbesartan, a selective angiotensin II type 1 receptor antagonist, on human ether-a-go-go-related gene (HERG), KvLQT1+minK, hKv1.5, and Kv4.3 channels using the patch-clamp technique. Irbesartan exhibited a low affinity for HERG and KvLQT1+minK channels (IC(50) = 193.0 +/- 49.8 and 314.6 +/- 85.4 microM, respectively). In hKv1.5 channels, irbesartan produced two types of block, depending on the concentration tested. At 0.1 microM, irbesartan inhibited the current in a time-dependent manner (22 +/- 3.9% at +60 mV). The blockade increased steeply with channel activation increasing at more positive potentials. However, at 10 microM, irbesartan induced a time-independent blockade that occurred in the range of potentials of channel opening, reaching its maximum at approximately 0 mV, and remaining unchanged at more positive potentials (24.0 +/- 1.0% at +60 mV). In Kv4.3 currents, irbesartan produced a concentration-dependent block, which resulted in two IC(50) values (1.0 +/- 0.1 nM and 7.2 +/- 0.6 microM). At 1 microM, it inhibited the peak current and accelerated the time course of inactivation, decreasing the total charge crossing the membrane (36.6 +/- 7.8% at +50 mV). Irbesartan shifted the inactivation curve of Kv4.3 channels, the blockade increasing as the amount of inactivated channels increased. Molecular modeling was used to define energy-minimized dockings of irbesartan to hKv1.5 and HERG channels. In conclusion, irbesartan blocks Kv4.3 and hKv1.5 channels at therapeutic concentrations, whereas the blockade of HERG and KvLQT1+minK channels occurred only at supratherapeutic levels. In hKv1.5, a receptor site is apparent on each alpha-subunit of the channel, whereas in HERG channels a common binding site is present at the pore.  相似文献   

8.
Fansimef is a new antimalarial combination containing pyrimethamine, sulfadoxine and mefloquine in the weight proportions 1 + 20 + 10. It has been designed to fight plasmodia resistant to the presently used antimalarial drugs and to counter the development of new resistant forms of the parasites. In the present study tablets containing 25 mg pyrimethamine, 500 mg sulfadoxine and 250 mg mefloquine were used. Six Brazilian volunteers received a loading dose of 2 tablets followed by 20 maintenance doses of 1 tablet at a dosage interval of 7 days. The pharmacokinetic evaluation of each of the three components was based on the assumption of an open linear two-compartment model. After the last maintenance dose the following kinetic parameters were determined for pyrimethamine, sulfadoxine and mefloquine, respectively: elimination half-life = 123, 179 and 550 h; volume of distribution in the postdistributive phase = 2.5, 0.15 and 18.6 1 X kg-1, and total systemic clearance = 14.0, 0.64 and 24.0 ml X h-1 X kg-1. All these values agree fairly well with those measured in previous single-dose kinetic studies. At steady state, Cmin values of each of the three components generally showed small variations. No unexpected accumulation of any of the three components was observed, indicating that induction or inhibition of metabolic enzymes did not occur during the trial.  相似文献   

9.
10.
Selective inhibitors of the slow component of the cardiac delayed rectifier K(+) current, I(Ks), are of interest as novel class III antiarrhythmic agents and as tools for studying the physiologic roles of the I(Ks) current. Racemic chromanol 293B is an inhibitor of both native I(Ks) and its putative molecular counterpart, the KvLQT1+minK ion channel complex. We synthesized the (+)-[3S,4R] and (-)-[3R,4S] enantiomers of chromanol 293B using chiral intermediates of known absolute configuration and determined their relative potency to block recombinant human K(+) channels that form the basis for the major repolarizing K(+) currents in human heart, including KvLQT1+minK, human ether-a-go-go-related gene product (hERG), Kv1.5, and Kv4.3, corresponding to the slow (I(Ks)), rapid (I(Kr)), and ultrarapid (I(Kur)) delayed rectifier currents and the transient outward current (I(To)), respectively. K(+) channels were expressed in mammalian cells and currents were recorded using the whole-cell patch-clamp technique. We found that the physicochemical properties and relative potency of the enantiomers differed from those reported previously, with (-)-[3R,4S]293B nearly 7-fold more potent in block of KvLQT1+minK than (+)-[3S,4R]293B, indicating that the original stereochemical assignments were reversed. K(+) current inhibition by (-)-293B was selective for KvLQT1+minK over hERG, whereas the stereospecificity of block for KvLQT1+minK and Kv1.5 was preserved, with (-)-293B more potent than (+)-293B for both channel complexes. We conclude that the (-)-[3R,4S] enantiomer of chromanol 293B is a selective inhibitor of KvLQT1+minK and therefore a useful tool for studying I(Ks).  相似文献   

11.
12.
优降糖对KATP通道介导缺血预适应心肌再灌注损伤的影响   总被引:2,自引:2,他引:2  
目的 :探讨优降糖在完整大鼠心脏模型中 ,对 ATP敏感钾通道 (KATP)介导心肌缺血预适应作用的影响。方法 :将 4 4只大鼠随机分为 4组 :心肌缺血预适应组 (IPC组 )、优降糖组 (GL I组 )、优降糖 IPC组 (G P组 )和对照组 (C组 )。心肌缺血预适应由 3次 10分钟缺血和 10分钟再灌注组成。所有大鼠均接受 30分钟缺血和 6 0分钟再灌注。梗死范围由饱和曲利本蓝和红四氮唑蓝染色判定 ,并以坏死区占缺血区的百分比表示。 导联记录心脏室性心律失常。结果 :IPC能显著缩小缺血再灌注后的心肌梗死范围 ,且这种作用能被 KATP通道阻滞剂优降糖完全取消。 IPC可减少缺血再灌注所致的室性心律失常的发生 ,但这种保护作用不能被优降糖所阻断。结论 :优降糖对 KATP介导 IPC的心肌保护作用有影响。  相似文献   

13.
Experimental data suggest that vascular ATP-sensitive potassium (K(ATP)) channels may be an important determinant of functional hyperaemia, but the contribution of K(ATP) channels to exercise-induced hyperaemia in humans is unknown. Forearm blood flow was assessed in 39 healthy subjects (23 males/16 females; age 22+/-4 years) using the technique of venous occlusion plethysmography. Resting forearm blood flow and functional hyperaemic blood flow (FHBF) were measured before and after brachial artery infusion of the K(ATP) channel inhibitors glibenclamide (at two different doses: 15 and 100 microg/min) and gliclazide (at 300 microg/min). FHBF was induced by 2 min of non-ischaemic wrist flexion-extension exercise at 45 cycles/min. Compared with vehicle (isotonic saline), glibenclamide at either 15 microg/min or 100 microg/min did not significantly alter resting forearm blood flow or peak FHBF. The blood volume repaid at 1 and 5 min after exercise was not diminished by glibenclamide. Serum glucose was unchanged after glibenclamide, but plasma insulin rose by 36% (from 7.2+/-0.8 to 9.8+/-1.3 m-units/l; P =0.02) and 150% (from 9.1+/-1.3 to 22.9+/-3.5 m-units/l; P =0.002) after the 15 and 100 microg/min infusions respectively. Gliclazide also did not affect resting forearm blood flow, peak FHBF, or the blood volume repaid at 1 and 5 min after exercise, compared with vehicle (isotonic glucose). Gliclazide induced a 12% fall in serum glucose (P =0.009) and a 38% increase in plasma insulin (P =0.001). Thus inhibition of vascular K(ATP) channels with glibenclamide or gliclazide does not appear to affect resting forearm blood flow or FHBF in healthy humans. These findings suggest that vascular K(ATP) channels may not play an important role in regulating basal vascular tone or skeletal muscle metabolic vasodilation in the forearm of healthy human subjects.  相似文献   

14.
15.
Many drugs are proarrhythmic by inhibiting the cardiac rapid delayed rectifier potassium channel (IKr). In this study, we use quinidine as an example of highly proarrhythmic agent to investigate the risk factors that may facilitate the proarrhythmic effects of drugs. We studied the influence of pacing, extracellular potassium, and pH on quinidine's IKr blocking effect, all potential factors influencing quinidine's cardiac toxicity. Since the HERG gene encodes IKr, we studied quinidine's effect on HERG expressed in Xenopus oocytes by the 2-electrode voltage clamp technique. When extracellular K+ was 5 mmol/L, quinidine blocked the HERG current dose dependently, with an IC50 of 6.3 +/- 0.2 micromol/L. The blockade was much more prominent at more positive membrane potentials. The inhibition of HERG by quinidine was not use dependent. There was no significant difference between block with or without pacing. When extracellular K+ was lowered to 2.5 mmol/L, the current inhibition by quinidine was enhanced, and IC50 decreased to 4.6 +/- 0.5 micromol/L. At 10 mmol/L extracellular K+, there was less inhibition by quinidine and the IC50 was 11.2 +/- 3.1 micromol/L. Extracellular acidification decreased both steady state and tail currents of HERG. We conclude that the inhibitory effect of quinidine on IKr was decreased with extracellular acidification, which may produce heterogeneity in the repolarization between normal and ischemic cardiac tissue. Thus, the use-independent blockade of IKr by QT-prolonging agents such as quinidine may contribute to cardiac toxicity with bradycardia, hypokalemia, and acidosis further exaggerating the proarrhythmic potential of these agents.  相似文献   

16.
The results of previous work performed in our laboratory using an in situ perfusion technique in rats and rabbit apical brush border membrane vesicles have suggested that the intestinal uptake of valacyclovir (VACV) appears to be mediated by multiple membrane transporters. Using these techniques, it is difficult to characterize the transport kinetics of VACV with each individual transporter in the presence of multiple known or unknown transporters. The purpose of this study was to characterize the interaction of VACV and the human intestinal peptide transporter using Chinese hamster ovary (CHO) cells that overexpress the human intestinal peptide transporter (hPEPT1) gene. VACV uptake was significantly greater in CHO cells transfected with hPEPT1 than in cells transfected with only the vector, pcDNA3. The optimum pH for VACV uptake was determined to occur at pH 7.5. Proton cotransport was not observed in hPEPT1/CHO cells, consistent with previously observed results in tissues and Caco-2 cells. VACV uptake was concentration dependent and saturable with a Michaelis-Menten constant and maximum velocity of 1.64 +/- 0.06 mM and 23.34 +/- 0.36 nmol/mg protein/5 min, respectively. A very similar Km value was obtained in hPEPT1/CHO cells and in rat and rabbit tissues and Caco-2 cells, suggesting that hPEPT1 dominates the intestinal transport properties of VACV in vitro. VACV uptake was markedly inhibited by various dipeptides and beta-lactam antibiotics, and Ki values of 12.8 +/- 2.7 and 9.1 +/- 1.2 mM were obtained for Gly-Sar and cefadroxil at pH 7.5, respectively. The present results demonstrate that VACV is a substrate for the human intestinal peptide transporter in hPEPT1/CHO cells and that although transport is pH dependent, proton cotransport is not apparent. Also, the results demonstrate that the hPEPT1/CHO cell system has use in investigating the transport kinetics of drugs with the human intestinal peptide transporter hPEPT1; however, the extrapolation of these transport properties to the in vivo situation requires further investigation.  相似文献   

17.
Human immunodeficiency virus-1 (HIV-1)-associated dementia is a severe neurological complication of HIV-1 infection that affects 15-20% of the patients in the late stages of acquired immunodeficiency syndrome. HIV-1-associated dementia is most probably a consequence of HIV-1 infection of the brain rather than of an opportunistic pathogen. The exact mechanism by which the virus causes this disorder, however, is not completely understood. A number of HIV-1 proteins have been shown to be released from HIV-1-infected cells and/or to be present in the extracellular milieu in the HIV-1-infected brain. Moreover, these proteins have been shown to possess neurotoxic and/or neuromodulatory features in vitro. This review describes the possible direct interactions of the HIV-1 proteins gp120, gp41, vpr, tat, rev, vpu and nef with neurons, which might play a role in the development of HIV-1-associated dementia in vivo.  相似文献   

18.
BACKGROUND: The voltage-gated, rapid-delayed rectifier current (I(Kr)) is important for repolarization of the heart, and mutations in the genes coding for the K+-ion channel conducting this current, i.e., KCNH2 for the alpha-subunit HERG and KCNE2 for the beta-subunit MiRP1, cause acquired and congenital long Q-T syndrome (LQTS) and other cardiac arrhythmias. METHODS: We developed a robust single-strand conformation polymorphism-heteroduplex screening analysis, with identical thermocycling conditions for all PCR reactions, covering all of the coding exons in KCNH2 and KCNE2. The method was used to screen 40 unrelated LQTS patients. RESULTS: Eleven mutations, of which six were novel, were found in KCNH2. Interestingly, six mutations were found in the region of the gene coding for the Per-Arnt-Sim (PAS) and PAS-S1 regions of the HERG protein, stressing the need to examine the entire gene when screening for mutations. No mutations were found in KCNE2, suggesting that direct involvement of MiRP1 in LQTS is rare. Furthermore, four novel single-nucleotide polymorphisms (SNPs) and one amino acid polymorphism (R1047L) were identified in KCNH2, and one novel SNP and one previously known amino acid polymorphism (T8A) were found in KCNE2. CONCLUSIONS: The potential role of rare polymorphisms in the HERG/MiRP1 K+-channel should be clarified with respect to drug interactions and susceptibility to arrhythmia and sudden death.  相似文献   

19.
Greingor JL 《Resuscitation》2002,55(3):263-267
OBJECTIVE: The aim of this study is to study the quality of chest compressions over a period of 5 min with a compression-ventilation ratio of 5/1 and 15/2. MATERIAL AND METHODS: This prospective study was carried out with an electronic CPR manikin (ResusciAnne with Skillmeter; Laerdal). The participants were 'ambulancier SMUR' (Emergency and Resuscitation Mobil Unit) belonging to a French prehospital emergency team. They all have been trained in cardiopulmonary resuscitation (CPR) and are certified to perform CPR. The quality of chest compression has been evaluated according to the international recommendations. Each participant provided CPR with ratio 5/1 and 15/2. RESULTS: Twenty-one subjects participated in this experiment. The mean number of attempted compressions per min was 69.24 (S.D.=8.7) for a ratio of 5/1 and 79.26 (S.D.=6.7) for a ratio of 15/2. The rates achieved were similar between the two ratios with, respectively, a mean of 103.5 and 112 per min. The mean correct compression was 56.5 (S.D.=15.7) per min for group 5/1 and 44.16 (S.D.=24.8) for group 15/2. Quality of closed chest compression was very significantly better with a ratio of 5/1 than 15/2 (P=0.0002). A significant decrease in compression quality has been found over the time for a ratio of 15/2 (P=0.011). No correlation between correct compression and duration appeared for group 5/1. Incorrect location on sternum was 24 times most frequent with a ratio of 15/2 than ratio 5/1. Compression of insufficient depth remained the most frequent error both with ratio 5/1 and 15/2 and was 2.2 times more frequent with a ratio of 15/2 than a ratio of 5/1. CONCLUSION: Effective closed chest compression was significantly better with a ratio of 5/1 than 15/2. Better management of cardiac arrest suggested by an increase in a number of compressions with a ratio of 15/2 could be attenuated by cardiac compressions of lesser quality.  相似文献   

20.
Fosmidomycin acts through inhibition of 1-deoxy-D-xylulose 5-phosphate (DOXP) reductoisomerase, a key enzyme of the nonmevalonate pathway of isoprenoid biosynthesis. It possesses potent antimalarial activity in vitro and in murine malaria. In a recent clinical study, fosmidomycin was effective and well tolerated in the treatment of patients with acute uncomplicated Plasmodium falciparum malaria but resulted in an unacceptably high rate of recrudescence. In order to identify a potential combination partner, the interaction of fosmidomycin with a number of antimalarial drugs in current use was investigated in a series of in vitro experiments. Synergy was observed between fosmidomycin and the lincosamides, lincomycin and clindamycin. The efficacy of a combination of fosmidomycin and clindamycin was subsequently demonstrated in the Plasmodium vinckei mouse model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号